From Newton's law to the linear Boltzmann equation without ...

36
From Newton’s law to the linear Boltzmann equation without cut-off Nathalie Ayi (1) (1) Universit ´ e Pierre et Marie Curie 27 Octobre 2017 Nathalie AYI eminaire LJLL 27 Octobre 2017 1 / 35

Transcript of From Newton's law to the linear Boltzmann equation without ...

From Newton’s law to the linear Boltzmannequation without cut-off

Nathalie Ayi (1)

(1)Universite Pierre et Marie Curie

27 Octobre 2017

Nathalie AYI Seminaire LJLL 27 Octobre 2017 1 / 35

Organisation of the talk

1- Physical and historical context of the result2- Difficulty in our framework3- Presentation of the usual tools for the proof4- Adaptation of the tools + new strategy in our context

Nathalie AYI Seminaire LJLL 27 Octobre 2017 2 / 35

Context

Kinetic theory of gases = Describe a gas as a physical system constituted ofa large number of small particles.

Statistical point of view : we are interested in the evolution of the density ofparticles f(t, x, v) where

t = timex = positionv = velocity

For all infinitesimal volume dxdv around the point (x, v):f(t, x, v)dxdv = number of particles which have position x and velocity v attime t.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 3 / 35

Historical results:• A fundamental example, the Boltzmann equation (1872) = the evolution

equation for the density of particles of a sufficiently rarefied gas.

∂tf + v.∇xf︸ ︷︷ ︸free transport

= Q(f, f)︸ ︷︷ ︸localized binary collisions

• In the sixth problem of Hilbert (1900), idea = Boltzmann equation asan intermediate step in the transition between atomistic and contiuousmodel for gas dynamics.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 4 / 35

Historical results:• A fundamental example, the Boltzmann equation (1872) = the evolution

equation for the density of particles of a sufficiently rarefied gas.

∂tf + v.∇xf︸ ︷︷ ︸free transport

= Q(f, f)︸ ︷︷ ︸localized binary collisions

• In the sixth problem of Hilbert (1900), idea = Boltzmann equation asan intermediate step in the transition between atomistic and contiuousmodel for gas dynamics.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 4 / 35

The Boltzmann-Grad scaling

Change of scale = passage to the limit on one precise parameter of thesystem

Boltzmann-Grad scaling = N →∞, Nεd−1 = 1.

Rarefied gas : Nεd � 1, not too much collisions.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 5 / 35

Historical Panorama

Lanford proved the derivation of the Boltzmann equation from systems ofparticles in the context of hard-spheres (1975).

Particles bounces off according to the laws of elastic reflection.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 6 / 35

Proof recently improved by Gallagher, Saint-Raymond and Texier, Pulvirenti,Saffirio and Simonella in the context of hard-spheres and short rangepotentials.

(Figure: The Boltzmann equation and its application, Cercignani.)

Our context: infinite-range potentials.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 7 / 35

The Boltzmann equation without cut-off

The Boltzmann equation

∂tf + v.∇xf =∫

Rd

∫Sd−1

(f ′f ′1 − ff1)b(v − v1, ν)dνdv1

b(v − v1, ν) = cross-section, θ = deviation angle

b(v − v1, ν) = b(|v − v1|, cos(θ))

integrability with respect to θ ⇒ Boltzmann with cut-offnon-integrability with respect to θ ⇒ Boltzmann without cut-off

ExampleInverse-power law potentials: Φ(r) = 1

rs−1 , s > 2. The cross-sectionsatisfies

b(|v − v1|, cos θ) = q(cosθ)|v − v1|γ ,

sind−2θq(cos θ) ∼ Cθ−1−α, α > 0

Nathalie AYI Seminaire LJLL 27 Octobre 2017 8 / 35

Hard-spheres, Short range potentials⇒ Boltzmann with cut-off

Difficulty = infinite range potential⇒ singularity due to grazing collisions⇒ Boltzmann without cut-off

Intuitive idea= use of compensation between gain and loss terms

f(v)f(v1) ≈ f(v′)f(v′1)

The Boltzmann equation

∂tf + v.∇xf =∫

Rd

∫Sd−1

(f ′f ′1 − ff1)b(v − v1, ν)dνdv1

Nathalie AYI Seminaire LJLL 27 Octobre 2017 9 / 35

The Hard-spheres case

Microscopic Model: for i ∈ {1, . . . , N},dxidt

= vi, xi, vi ∈ Rd

dvidt

= 0, |xi(t)− xj(t)| > ε.

If |xi − xj | = ε,v′i = vi + ((vj − vi) · ν)νv′j = vj − ((vj − vi) · ν)ν

Appropriate quantities:

fN (t, ZN ) = distribution function of N particles

with zi = (xi, vi), ZN = (z1, . . . , zN ). Marginal of order one :

f(1)N (t, x1, v1) =

∫fNdx2 . . . dxNdv2 . . . dvN .

Nathalie AYI Seminaire LJLL 27 Octobre 2017 10 / 35

Formal justification of the limit

Liouville equation + Green formula⇒

∂tf(1)N + v1 · ∇x1f

(1)N = (N − 1)εd−1

∫Sd−1×Rd

[f

(2)N (t, x1, v

′1, x1 + εν, v′2)

−f (2)N (t, x1, v1, x1 − εν, v2)

]((v2 − v1) · ν)+dνdv2.

N →∞,

∂tf + v1 · ∇x1f =∫

Sd−1×Rd

[f (2)(t, x1, v

′1, x1, v

′2)

−f (2)(t, x1, v1, x1, v2)]

((v2 − v1) · ν)+dνdv2

If f (2)(Z2) = f(z1)f(z2)⇒ the Boltzmann equation.

Key notion = Propagation of chaos.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 11 / 35

Technical proofThe BBGKY hierarchy: for s < N ,

∂tf(s)N + Vs · ∇Xsf

(s)N = Cs,s+1f

(s+1)N

Iterated Duhamel formula⇒ expression of the marginals as series.

The Boltzmann hierarchy : gs(t, Zs) = g(t, z1)g(t, z2) . . . g(t, zs)with g solution of the Boltzmann equation is a solution of

∂tgs + Vs · ∇Xsgs = C0s,s+1gs+1

Two steps to prove the result :- bounds for the series,- the termwise convergence of each term of the series.

Key idea = Geometrical interpretation of the terms

Nathalie AYI Seminaire LJLL 27 Octobre 2017 12 / 35

Iterated Duhamel’s formula.Duhamel’s formula:

f(s)N (t) = Ts(t)f (s)

N (0) +∫ t

0Ts(t− t1)Cs,s+1f

(s+1)N (t1)dt1.

The BBGKY series:

f(s)N (t) =

N−s∑n=0

∫ t

0

∫ t1

0. . .

∫ tn−1

0Ts(t−t1)Cs,s+1Ts+1(t1−t2)Cs+1,s+2 . . . Ts+n(tn)

f(s+n)N (0)dtn . . . dt1.

The Boltzmann series:

g(s)(t) =∑n≥0

∫ t

0

∫ t1

0. . .

∫ tn−1

0T 0s (t−t1)C0

s,s+1T 0s+1(t1−t2)C0

s+1,s+2 . . . T 0s+n(tn)

g(s+n)(0)dtn . . . dt1

Strategy: Notion of pseudo-trajectories.Nathalie AYI Seminaire LJLL 27 Octobre 2017 13 / 35

pt

pt1

pt20

v1

v2

v3

FIGURE : Representation of a pseudo-trajectory associated to the term∫ t

0

∫ t1

0T1(t− t1)C1,2T2(t1 − t2)C2,3T3(t2)f (3)

N (0)dt2dt1 for the BBGKY hierar-

chy.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 14 / 35

pt

pt1

pt20

v1

v2

v3

FIGURE : Representation of a pseudo-trajectory associated to the term∫ t

0

∫ t1

0T 0

1 (t− t1)C01,2T 0

2 (t1 − t2)C02,3T 0

3 (t2)f (3)N (0)dt2dt1 for the Boltzmann hi-

erarchy.

Strategy: Coupling of the pseudo-trajectories.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 15 / 35

Recollision

pt

pt∗

pt1

pt20

v1

v2

v3

Figure: An example of a recollision between particles 1 and 2 at time t∗.

Strategy: Geometrical control of the recollisions

Nathalie AYI Seminaire LJLL 27 Octobre 2017 16 / 35

Strategy of the proof and limit

Main term with no pathological situations converges to Boltzmann.

Remainders associated to recollisions vanishes when passing to the limit.

Limit : Short time validity of the results for the nonlinear Boltzmannequation due to the fact that compensation between gain and loss termsare ignored for the bounds of the series.

Bodineau, Gallagher and Saint-Raymond (2014): overcome the difficulty ofthe short time validity in the case of a fluctuation around the equilibrium⇒ derivation of the linear Boltzmann equation.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 17 / 35

The infinite range potential case

Difficulty = The singularity prevents the single-use of Lanford’s approach.

Ideas =- framework of perturbation around the equilibrium,- ∇Φ = ∇φ>R +∇Φ<R,- new terms with presence of derivatives⇒ weak approach.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 18 / 35

ResultMicroscopic Model: for i ∈ {1, . . . , N}, xi ∈ Td, vi ∈ Rd,

dxidt

= vi,

dvidt

= −1ε

∑j 6=i∇Φ(xi − xj

ε).

Tagged particle in a gas at equilibrium:

f0N (ZN ) := MN,β(ZN )ρ0(x1)

ρ0 density of probability on Td, MN,β Gibbs measure: for β > 0

MN,β(ZN ) := 1ZN

)dN/2exp(−βHN (ZN ))

with HN (ZN ) :=∑

1≤i≤N

12 |vi|

2 +∑

1≤i<j≤NΦ((xi − xj

ε).

Nathalie AYI Seminaire LJLL 27 Octobre 2017 19 / 35

Theorem (A., 2016)

Consider the initial distribution f0N describing the density of a tagged

particle in a gas at equilibrium, then the distribution f(1)N (t, x, v) of the

tagged particle converges in D′(Td ×Rd) when N goes to∞ under theBoltzmann-Grad scaling Nεd−1 = 1 to Mβ(v)h(t, x, v) where h(t, x, v) is thesolution of the linear Boltzmann equation without cut-off

∂th+ v.∇xh = −∫ ∫

[h(v)− h(v1)]Mβ(v1)b(v − v1)dv1dν

with initial data ρ0(x1) and where Mβ(v) :=(β

)d/2exp

(−β2 |v|

2)

, β > 0.

First partial result: Desvillettes and Pulvirenti (1999).

Nathalie AYI Seminaire LJLL 27 Octobre 2017 20 / 35

The infinite range potential case

Truncated marginals:

f(s)N,R(t, Zs) :=

∫Td(N−s)×Rd(N−s)

fN (t, Zs, zs+1, . . . , zN )∏

1≤i≤ss+1≤j≤N

1{|xi−xj |>Rε}dzs+1 . . . dzN

The BBGKY hierachy: for s < N ,

∂tf(s)N,R +

s∑i=1

vi.∇xi f(s)N,R −

s∑i,j=1i 6=j

∇Φ<(xi − xjε

).∇vi f(s)N,R

= Cs,s+1f(s+1)N,R +Cs,s+1f

(s+1)N,R + 1

ε

s∑i,j=1i 6=j

∇Φ>(xi − xjε

).∇vi f(s)N,R

+ (N − s)ε

s∑i=1

∫Td(N−s)×Rd(N−s)

∇Φ(xi − xs+1

ε).∇vifN (t, ZN )∏

1≤l≤ss+1≤k≤N

1{|xl−xk|>Rε}dZ(s+1,N)

Nathalie AYI Seminaire LJLL 27 Octobre 2017 21 / 35

Duhamel’s formula:

f(s)N,R(t, Zs) = Ss(t)f (s)

N,R(0, Zs)

+∫ t

0Ss(t− t1)Cs,s+1f

(s+1)N,R (t1, Zs)dt1

+∫ t

0Ss(t− t1)Cs,s+1f

(s+1)N,R (t1, Zs)dt1

+1ε

s∑i,j=1i 6=j

∫ t

0Ss(t− t1)

[∇Φ>(xi − xj

ε).∇vi f

(s)N,R

](t1, Zs)dt1

+(N − s)ε

s∑i=1

∫ t

0Ss(t− t1)

[∫Td(N−s)×Rd(N−s)

∇Φ(xi − xs+1

ε).∇vifN

∏1≤l≤s

s+1≤k≤N

1{|xl−xk|>Rε}dZ(s+1,N)

(t1, Zs)dt1

Nathalie AYI Seminaire LJLL 27 Octobre 2017 22 / 35

Obstacles to the convergence

Four possible obstacles to the convergence:- the very long-range interactions,- clusters (or multiple simultaneous interactions),- the presence of recollisions,- super-exponential collision process.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 23 / 35

The pruning process

Definition

Let τ > 0 and denote t := Kτ for some large integer K. We split [0, t] into∪1≤k≤K [(k − 1)τ, kτ ]. We call a collision tree “of controlled size” a collisiontree such that it has less than nk = 2k branch points on the interval[t− kτ, t− (k − 1)τ ].We call a collision tree with super-exponential growth a collision treewhich does not satisfy the above property.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 24 / 35

Figure: A super-exponential tree (Source: The Brownian Motion as the limitof a deterministic system of hard-spheres, Bodineau et al).

Nathalie AYI Seminaire LJLL 27 Octobre 2017 25 / 35

Obstacles to the convergence

Four possible obstacles to the convergence:- the very long-range interactions,- clusters (or multiple simultaneous interactions),- the presence of recollisions,- super-exponential collision process.

Iteration on the term:∫ t

0Ss(t− t1)Cs,s+1f

(s+1)N,R (t1, Zs)dt1.

New strategy = truncations at each iteration step.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 26 / 35

Truncations to avoid pathological situations

Elimination of recollisions: notion of good configurations.

Definition

The set of good configuration Gk(ε0) is defined as follows:

Gk(ε0) := {Zk ∈ Tdk ×Rdk|∀u ∈ [0, t] ∀i 6= j d(xi − uvi, xj − uvj) ≥ ε0}.

Bad sets to remove geom(s+k) :s+ k − 1 particles in a good configuration −→ after a delay δ, the s+ kparticles are in a good configuration.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 27 / 35

Truncations associated to the elimination of recollisions:- cutting off the energy of the system via a smooth function such that

χE2(x) =

{1 if |x| ≤ E2

0 if |x| ≥ E2 + 1.

χE2(Hk(Zk)) := χ{Hk(Zk)≤E2} for all integer k,

- separation of the collision times by δ.Additional truncation:

- small relative velocities via a smooth function such that

χη(x) ={

0 if |x| ≤ η/21 if |x| ≥ η

χ{∀i∈{1,...,k}|vi−vk+1|≥η} :=k∏i=1

χη(vi − vk+1).

Nathalie AYI Seminaire LJLL 27 Octobre 2017 28 / 35

One iteration:

∫ t

0Ss(t− t1)Cs,s+1f

(s+1)N,R (t1, Zs)dt1

=∫ t

t−δSs(t− t1)Cs,s+1f

(s+1)N,R (t1, Zs)dt1

+∫ t−δ

0Ss(t− t1)Cs,s+1

(1− χ{Hs+1(Zs+1)≤E2}

)f

(s+1)N,R (t1, Zs)dt1

+∫ t−δ

0Ss(t− t1)Cs,s+1χ{Hs+1(Zs+1)≤E2}χgeom(s+1)f

(s+1)N,R (t1, Zs)dt1

+∫ t−δ

0Ss(t− t1)Cs,s+1χ{Hs+1(Zs+1)≤E2}

(1− χgeom(s+1)

) (1− χ{∀i∈{1,...,s}|vi−vs+1|≥η}

)f

(s+1)N,R (t1, Zs)dt1

+∫ t−δ

0Ss(t− t1)Cs,s+1χ{Hs+1(Zs+1)≤E2}

(1− χgeom(s+1)

)χ{∀i∈{1,...,s}|vi−vs+1|≥η}

f(s+1)N,R (t1, Zs)dt1.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 29 / 35

Definition of the operators:

Qs,s(t) := Ss(t)

Qs,s+n(t) :=∫ t−δ

0

∫ t1−δ

0. . .

∫ tn−1−δ

0Ss(t− t1)Cs,s+1χHs+1

(1− χgeom(s+1)

)χηs+1 . . .

. . .Ss+n−1(tn−1 − tn)Cs+n−1,s+nχHs+n

(1− χgeom(s+n)

)χηs+nSs+n(tn)dtn . . . dt1.

Remainders associated to the long-range part:

rPot,as,m+1(0, t, Zs) :=m∑n=0

∫ t−nδ

0Qs,s+n(t− tn+1)

s+n∑i,j=1i 6=j

[∇Φ>(

xi − xjε

).∇vi f(s+n)N,R

](tn+1, Zs)dtn+1

Nathalie AYI Seminaire LJLL 27 Octobre 2017 30 / 35

rPot,bs,m+1(0, t, Zs) :=m∑n=0

∫ t−nδ

0Qs,s+n(t− tn+1)

(N − (s+ n))ε

s+n∑i=1

[∫Td(N−(s+n))×Rd(N−(s+n))

∇Φ(xi − xs+n+1

ε).∇vifN

∏1≤l≤s+n

s+n+1≤k≤N

1{|xl−xk|>Rε}dZ(s+n,N)

(tn+1, Zs)dtn+1.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 31 / 35

Control of the new terms

Maximum Principle for the Liouville equation⇒ A priori estimates on thetruncated marginals.

Problem: Control on the marginals but not on the derivatives of the marginals⇒Weak approach.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 32 / 35

Advantage of the iteration method

no pathological situations⇒ easy to pass from Zm(tm) to z (state ofparticle 1 at time t) via changes of variables such as

Td ×Rd × [0, t− δ]× Sd−1 ×Rd × · · · × [0, tm−1 − δ]× Sd−1 ×Rd → T(m+1)d ×R(m+1)d

(z, t1, ν2, v2, . . . , tm, νm+1, vm+1) 7→ Zm+1 = Zm+1(tm).

Key point: z Lipschitz function of (x1, v1, . . . , xm+1, vm+1)

Tools to prove it: study of the reduced dynamics- bound on the microscopic time of interaction thanks to the lower

bound on relative velocites,- use of the Cauchy-Lipschitz theorem, ∇Φ being Lipschitz,- Lipschitz character of the collision times.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 33 / 35

Proposition

The function (x1, v1, . . . , xk+1, vk+1) 7→ z = z(x1, v1, . . . , xk+1, vk+1), where(x1, v1, . . . , xk+1, vk+1) is the state of the k + 1 particles after k collisionsat time t+k+1 (i.e. before the k + 1-th collision) on a pseudo-trajectory is a

(CR,η,ε)k-Lipschitz function with CR,η,ε = CReCR3/η

η | cos(π2 − ε

)|ε

and C is a constant

which can only depend on ∇Φ.

Lipschitz control associated to the pseudo-trajectories =⇒ bound of theremainder associated to the long-range part controlled by(

eCR3η

)2K+1

‖∇Φ>‖∞.

Limit of the approach: Very decreasing potentials.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 34 / 35

Thank you for your attention.

Nathalie AYI Seminaire LJLL 27 Octobre 2017 35 / 35