From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External...

14
From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco) Stefano Vitale a, , Mohamed Najib Zaghloul b , Francesco D'Assisi Tramparulo a , Bilal El Ouaragli b , Sabatino Ciarcia a a Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Italy b Department of Earth Sciences, F.S.T.-Tangier, University of Abdelmalek Essaadi, Morocco abstract article info Article history: Received 25 March 2014 Received in revised form 7 June 2014 Accepted 22 June 2014 Available online xxxx Keywords: Rif Jurassic rifting Inversion Tectonics Alboran Sea Maghrebian Flysch Basin Liassic rocks of the External Dorsale Calcaire succession, cropping out in the northern Rif close to Chefchaouen city, host pre-orogenic structures, such as normal faults, veins and fractures, resulting from extension related to the Jurassic rifting of the Neotethys Domain. The successive inclusion of these rocks in the orogenic wedge, which mainly occurred in the Miocene time, deformed the most of pre-orogenic structures in a passive manner, without an overall reverse reactivation. The orogenic deformation includes two main stages; the rst tectonic pulse, which occurred during the BurdigalianLanghian interval, was characterized by a NESW shortening (in the current coordinates) and recorded by folds, thrust and back-thrust faults. During this stage the carbonates of the External Dorsale Calcaire tectonically covered the Predorsalian succession, producing, in the thrust front, a SW-verging regional fold. The second orogenic deformation, consisting of a NWSE shortening, was expressed by thrust faults and related folds both verging to NW and SE, which probably occurred in the Late Miocene-Pliocene time. © 2014 Elsevier B.V. All rights reserved. 1. Introduction The Dorsale Calcaire Complex (Fallot, 1937; Mattauer, 1960) mainly consists of TriassicJurassic carbonates and some OligoceneMiocene turbiditic successions. Presently it forms a very elongated thrust-sheet pile with its frontal sector overlying the Maghrebian Flysch Basin successions by means of a main regional thrust fault (Bouillin, 1986; Durand-Delga, 1980; Durand-Delga et al., 2000; Guerrera et al., 2005). Starting from RhaetianLiassic time, the external sector of the Dorsale Calcaire Domain, characterized by shallow water and slope to basin sed- iments, recorded an extension related to the Neothetys rifting (Lallam et al., 1997; Schettino and Turco, 2011). Subsequently, during the Miocene time, this domain was included in a tectonic wedge experienc- ing at least two main regional shortening stages (Hlila and Sanz de Galdeano, 1995; Vitale et al., 2014). The main purpose of this paper is to analyze the deformation evolu- tion of the External Dorsale Calcaire cropping out close the Chefchaouen city, a key area of the Rif Chain where all tectonic contacts are well- exposed. This study aims also to describe the role of meso-structures associated with the Jurassic rifting during the subsequent orogenic shortening stage. 2. Geological setting Rif and Betic Cordillera form an arcuate belt surrounding the Alboran Sea (Fig. 1), both characterized by the superposition of three main tectonic realms: (i) Internal Domain (the so-called Alboran Domain; García-Dueñas et al., 1992); (ii) Maghrebian Flysch Basin Domain (Bouillin, 1986; Guerrera et al., 1993, 2005) and (iii) External Domain formed by successions deposited on the southern Iberian and northern African paleomargins (e.g. Chalouan et al., 2008). In the Rif belt, the Internal Domain includes, from the bottom to the top, the Sebtide, Ghomaride and Dorsale Calcaire Complexes (e.g. Chalouan and Michard, 2004; Chalouan et al., 2008; Michard and Chalouan, 1991; Michard et al., 1997; Fig. 2a). The Sebtide Complex consists of sub-continental mantle peridotites (Beni Bousera Unit; Ari et al., 2011; Kornprobst, 1974; Saddiqi et al., 1995) covered by HP/HT to MP/HT metamorphic units (Lower Sebtide granulites, gneisses and micaschists; e.g. Durand-Delga and Kornprobst, 1963; Kornprobst, 1974; Saddiqi et al., 1995), in turn underlying the Permo-Triassic Upper Sebtide Units (Federico Units; Zaghloul, 1994) made of HP/LT to eclogitic schists re-equilibrated under lower pressure (Bouybaouene et al., 1998; Michard et al., 1997, 2006). The Ghomaride Complex, covering the previous units, encompasses Paleozoic rocks affected by low-grade Eo-Variscan and Variscan meta- morphism (Chalouan and Michard, 1990). These rocks are sealed by Tectonophysics xxx (2014) xxxxxx Corresponding author. Tel.: +39 812538124; fax: +39 812538338. E-mail address: [email protected] (S. Vitale). TECTO-126369; No of Pages 14 http://dx.doi.org/10.1016/j.tecto.2014.06.028 0040-1951/© 2014 Elsevier B.V. All rights reserved. Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Please cite this article as: Vitale, S., et al., From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), http://dx.doi.org/10.1016/j.tecto.2014.06.028

Transcript of From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External...

Page 1: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Tectonophysics xxx (2014) xxx–xxx

TECTO-126369; No of Pages 14

Contents lists available at ScienceDirect

Tectonophysics

j ourna l homepage: www.e lsev ie r .com/ locate / tecto

From Jurassic extension to Miocene shortening: An example ofpolyphasic deformation in the External Dorsale Calcaire Unit(Chefchaouen, Morocco)

Stefano Vitale a,⁎, Mohamed Najib Zaghloul b, Francesco D'Assisi Tramparulo a,Bilal El Ouaragli b, Sabatino Ciarcia a

a Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Italyb Department of Earth Sciences, F.S.T.-Tangier, University of Abdelmalek Essaadi, Morocco

⁎ Corresponding author. Tel.: +39 812538124; fax: +3E-mail address: [email protected] (S. Vitale).

http://dx.doi.org/10.1016/j.tecto.2014.06.0280040-1951/© 2014 Elsevier B.V. All rights reserved.

Please cite this article as: Vitale, S., et al., FroDorsale Calcaire Unit (Chefchaouen, Morocc

a b s t r a c t

a r t i c l e i n f o

Article history:Received 25 March 2014Received in revised form 7 June 2014Accepted 22 June 2014Available online xxxx

Keywords:RifJurassic riftingInversion TectonicsAlboran SeaMaghrebian Flysch Basin

Liassic rocks of the External Dorsale Calcaire succession, cropping out in the northern Rif close to Chefchaouencity, host pre-orogenic structures, such as normal faults, veins and fractures, resulting from extension relatedto the Jurassic rifting of the Neotethys Domain. The successive inclusion of these rocks in the orogenic wedge,which mainly occurred in the Miocene time, deformed the most of pre-orogenic structures in a passive manner,without an overall reverse reactivation. The orogenic deformation includes two main stages; the first tectonicpulse, which occurred during the Burdigalian–Langhian interval, was characterized by a NE–SW shortening(in the current coordinates) and recorded by folds, thrust and back-thrust faults. During this stage the carbonatesof the External Dorsale Calcaire tectonically covered the Predorsalian succession, producing, in the thrust front, aSW-verging regional fold. The second orogenic deformation, consisting of a NW–SE shortening,was expressed bythrust faults and related folds both verging to NW and SE, which probably occurred in the LateMiocene-Pliocenetime.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Dorsale Calcaire Complex (Fallot, 1937; Mattauer, 1960) mainlyconsists of Triassic–Jurassic carbonates and some Oligocene–Mioceneturbiditic successions. Presently it forms a very elongated thrust-sheetpile with its frontal sector overlying the Maghrebian Flysch Basinsuccessions by means of a main regional thrust fault (Bouillin, 1986;Durand-Delga, 1980; Durand-Delga et al., 2000; Guerrera et al., 2005).Starting from Rhaetian–Liassic time, the external sector of the DorsaleCalcaireDomain, characterized by shallowwater and slope to basin sed-iments, recorded an extension related to the Neothetys rifting (Lallamet al., 1997; Schettino and Turco, 2011). Subsequently, during theMiocene time, this domainwas included in a tectonicwedge experienc-ing at least two main regional shortening stages (Hlila and Sanz deGaldeano, 1995; Vitale et al., 2014).

The main purpose of this paper is to analyze the deformation evolu-tion of the External Dorsale Calcaire cropping out close the Chefchaouencity, a key area of the Rif Chain where all tectonic contacts are well-exposed. This study aims also to describe the role of meso-structuresassociated with the Jurassic rifting during the subsequent orogenicshortening stage.

9 812538338.

m Jurassic extension to Mioceo), Tectonophysics (2014), ht

2. Geological setting

Rif and Betic Cordillera form an arcuate belt surrounding theAlboranSea (Fig. 1), both characterized by the superposition of three maintectonic realms: (i) Internal Domain (the so-called “Alboran Domain”;García-Dueñas et al., 1992); (ii) Maghrebian Flysch Basin Domain(Bouillin, 1986; Guerrera et al., 1993, 2005) and (iii) External Domainformed by successions deposited on the southern Iberian and northernAfrican paleomargins (e.g. Chalouan et al., 2008).

In the Rif belt, the Internal Domain includes, from the bottom tothe top, the Sebtide, Ghomaride and Dorsale Calcaire Complexes (e.g.Chalouan and Michard, 2004; Chalouan et al., 2008; Michard andChalouan, 1991; Michard et al., 1997; Fig. 2a).

The Sebtide Complex consists of sub-continental mantle peridotites(Beni Bousera Unit; Afiri et al., 2011; Kornprobst, 1974; Saddiqi et al.,1995) covered by HP/HT to MP/HT metamorphic units (Lower Sebtidegranulites, gneisses andmicaschists; e.g. Durand-Delga and Kornprobst,1963; Kornprobst, 1974; Saddiqi et al., 1995), in turn underlying thePermo-Triassic Upper Sebtide Units (Federico Units; Zaghloul, 1994)made of HP/LT to eclogitic schists re-equilibrated under lower pressure(Bouybaouene et al., 1998; Michard et al., 1997, 2006).

The Ghomaride Complex, covering the previous units, encompassesPaleozoic rocks affected by low-grade Eo-Variscan and Variscan meta-morphism (Chalouan and Michard, 1990). These rocks are sealed by

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 2: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 1. Tectonic scheme of the peri-Mediterranean chains.After Vitale et al. (2013a); modified.

2 S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

an unconformable Middle Triassic-Middle Miocene sedimentary cover(Chalouan et al., 2008; Zaghloul et al., 2010a,b and references therein).

The Dorsale Calcaire Complex (Chalouan et al., 2008; El Kadiri andFauzi, 1996; El Kadiri et al., 1992; Fallot, 1937; Hlila, 2005; Lallamet al., 1997; Mattauer, 1960; Wildi et al., 1977; Zaghloul et al., 2005) isformed by some sedimentary successions, ranging in age from theTriassic to the Early Miocene and deposited on a basement probablycorresponding to the Sebtide or Ghomaride Complexes (Balanyá andGarcía-Dueñas, 1988; Chalouan and Michard, 2004; Wildi, 1983). TheDorsale Calcaire, including several thrust sheets, is classically dividedin (i) Interne, (ii) Intermediate and (iii) External. It forms the backboneof the internal Rif Domain with variable tectonic relationships with theother units: the Dorsale Calcaire generally tectonically covers theMaghrebian Flysch Basin Units and in turn is overthrust by Sebtideand Ghomaride Units, however in some sectors it back-thrust onto theGhomaride Units (Hlila, 2005; Hlila and Sanz de Galdeano, 1995).

Internal Units tectonically cover a thrust-sheet pile formed byPredorsalian (Olivier, 1984), Mauritanian and Massylian Units (Guerreraet al., 1993, 2005). The latter units, including Jurassic-Early Miocenesedimentary successions, were deposited in a basin floored by thinnedcontinental or oceanic crust eastward passing to the Ligurian Domain(Maghrebian Flysch Basin Domain; Bouillin, 1986; Durand-Delga et al.,2000; Guerrera et al., 2005; Vitale and Ciarcia, 2013; Vitale et al., 2013a,2013b). The Predorsalian Unit consists of a siliciclastic slope to basin sed-imentary sequence with several carbonate debris, macro-breccias andolistoliths indicating an inner paleogeographic location in theMaghrebianFlysch Basin close to the Dorsale Calcaire Domain (Guerrera et al., 1993;Olivier, 1984).

Finally the External Rif Domain (Prerif, Mesorif and Intrarif) consistsof some Mesozoic-Miocene basin successions (e.g. Andrieux, 1971;Didon et al., 1973; Durand-Delga et al., 1960–1962; Suter, 1965, 1980)unconformably covered by upper Tortonian–Messinian wedge-topbasin conglomerates and sandy marls (Di Staso et al., 2010 and refer-ences therein). Presently the Rif chain is segmented by some transferregional structures, probably acting during themigration of the InternalDomain thrust front, allowing different displacements between

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

different segments of the orogenic chain. Among them are the left-lateral Jebha–Chrafate Fault cutting through the Internal Units in thecentral Rif belt (Benmakhlouf et al., 2012) and the left-lateral NekorFault in the eastern Rif belt (Frizon de Lamotte, 1985; Leblanc, 1980).

In the study area (Fig. 2b), the carbonates of ExternalDorsale Calcaireform a regional anticline crosscut by minor thrust faults. These rockstectonically override the Predorsalian succession by means of a gentlyE-dipping regional thrust plane, in turn overlying the Massylian succes-sion (Fig. 2b, c). The whole thrust sheet pile is cut by high-angle normaland strike–slip faults.

The External Dorsale Calcaire is a succession with importantheteropic relationships, characterized by stratigraphic gaps andcondensed series (e.g. Wildi et al., 1977). An attempt to reconstruct anoverall stratigraphic log is shown in Fig. 3a (after Chalouan et al.,2008; El Kadiri and Fauzi, 1996; El Kadiri et al., 1992; Hlila, 2005;Lallamet al., 1997;Wildi et al., 1977). The stratigraphic succession startswith shallow water deposits consisting of Upper Triassic laminatedstromatolitic dolomites with marly-calcareous interbeds, followed byRhaetian marl–dolomite–limestone alternations and black shales andthenHettangianmassive limestones. The successionpasses to Sinemurianslope and basin deposits including cherty limestones, cherty conglomer-ates, Ammonitico rosso facies and Pleinsbachian–Toarcian cherty, marlyand nodular limestones.

The sedimentary pile (Fig. 3a) upward continueswith theMiddle andUpper Jurassic green and red radiolarites, Tithonian–Berriasian aptychuslimestones, late Upper Cretaceous Globotruncana marls, condensed de-positsmade of Paleocene yellowmarls, black shales and dark limestones,Lower-Middle Eocene variegated marls and calcarenites and finallyUpper Eocene–Upper Oligocene chaotic deposits of calcareous conglom-erates. The youngest sediments consist of Aquitanian–lower Burdigalianalternance of marls and calcareous sandstones.

The curve of sediment thickness versus time (Fig. 3b), calculatedwith no decompaction, paleo-water-depths, eustatic corrections norback-stripping, shows a dramatic increase in the sediment thicknessin the Rhaetian–Liassic interval with respect the adjacent deposits.The Rhaetian–Liassic lithofacies reflect a paleoenvironment evolution

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 3: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 2. (a) Tectonic scheme of northern Rif. (b) Geological map of the Chefchaouen area and (c) cross section.

3S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

(Lallam et al., 1997) from (i) inner shelf (massive limestones) to(ii) slope (cherty limestones, organized breccias and slumpedlimestones); (iii) base of slope (disorganized and thick megabreccias,breccias and conglomerates, and associated debrite–turbidite deposits),and (iv) basin (micrite limestones and fine-bedded cherty limestones).From (ii) to (iv) rocks, accumulated along carbonate slopes and in smallbasins on tilted blocks bounded by normal faults, are interpreted assyntectonic deposits related to the Liassic extension (Blidi, 1993; Blidiand Hervouet, 1991; El Hatimi et al., 1991; El Kadiri, 2002; El Kadiriet al., 1992; Lallam et al., 1997; Mouhssine et al., 1990) as consequenceof the Neotethys rifting (e.g. Schettino and Turco, 2011).

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

3. Structural analysis

3.1. Pre-orogenic structures

Widespread normal faults, related to a pre-orogenic extension, arehosted in Liassic cherty limestones and conglomerates. Generally theyoccur in conjugate sets, with occasionally associated en-echelon veins(Figs. 4, 5). All these structures were successively deformed in a short-ening stage related to the tectonic stacking of Dorsale Calcaire Unitsonto the Predorsalian succession. As consequence somewhere pre-orogenic extensional structures were tilted, presently appearing as

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 4: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 3. (a) Schematic stratigraphic log of External Dorsale Calcaire. (b) Sediment thickness versus time diagram. LM: Lower Miocene.

4 S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

reverse faults, such as some of those analyzed in this work, being thesestructures located in the steep limb of the regional anticline (Vitale et al.,2014). Synthetic normal faults often form bookshelf structures hostedboth in calcareous layers (Fig. 4f) and cherty levels (Fig. 4e). In placesboth calcareous and cherty beds are deflexed without a discrete planeof shear (Fig. 4a), or showing a brittle–ductile deformation (Figs. 4b,5e, f, g) including en-echelon veins (Fig. 4g). Dip-separations are variableand usually centimeter-sized (Fig. 4c, d), expiring along short distances(Fig. 4c). Occasionally fault surfaces show slickenside structures, such ascalcite fibers, suggesting an original dominant dip–slip displacement.The pre-orogenic normal kinematics is more commonly inferred bydrag folds and deflexed layers (Fig. 4a, b). Diagenetic stylolites andveins are present, pre- and post-dating the early extensional structures(Fig. 5b).

Meso-scale pre-orogenic normal faults, with metric displacements,commonly separate cherty limestones from overlying conglomerates(Fig. 5a). The latter sediments host veins and stylolites and occasionallyextensional structures such as conjugate normal faults with minordisplacements (Fig. 5c) and associated drag folds. Conglomerates(Fig. 6a–c) are generally disorganized clast-supported, rarely coarsen-ing or fining upward. Calcareous and cherty clasts are rounded to sub-

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

rounded and centimeter-sized (Fig. 6a, b). Matrix-supported conglom-erates usually occur with a calcareous–cherty matrix embedding thecalcareous clasts (Fig. 6c).

3.1.1. Orientation dataBeing someof pre-orogenic structures, analyzed in this study, hosted

in the steep limb of the regional fold (Fig. 6d), each datumwas unfoldedby rotating the corresponding bedding back to horizontal. Pre-orogenicnormal faults (Fig. 7a), when restored (Fig. 7b), indicate ameanNW–SEdirection (Fig. 7c). Normal fault planes usually form conjugate sets(Figs. 4c, d and 5c, e, g) providing restored sub-horizontal intersectionlines and normal dip–slip kinematics (Anderson, 1951). Restored pre-orogenic veins show steeply dipping to vertical planes, with mainNW–SE and subordinate NE–SW directions (Fig. 7d, e). Finally, restoredpre-orogenic stylolites show gently dipping to sub-horizontal planes(Fig. 7f, g).

3.2. Orogenic structures

Several pre-orogenic structures are deformed by folds and thrustfaults at meso- and macro-scales (Figs. 6, 8 and 9). The regional thrust,

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 5: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 4. Some examples of pre-orogenic extensional structures. (a–b) Normal faults marked by plastically deflexed or faulted cherty layers presently with a reverse kinematics.(c–d) Conjugate normal faultswith associated veins. Bookshelf structures presentlywith a reverse kinematics in (e) cherty layer and (f) cherty limestones. (g) Veins showing an en-echelongeometry.

5S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

leading the carbonates of the External Dorsale Calcaire Unit onto argil-lites, marls and conglomerates of the Predorsalian Unit (Olivier, 1984;Vitale et al., 2014; Wildi et al, 1977), generated a SW-verging anticline(Fig. 6d) characterized by numerous meso-scale structures such asminor folds, thrust and back-thrust faults indicating a main NE–SWshortening (Vitale et al., 2014).

Structures related to the early layer parallel shortening (LPS),include: (i) stylolites orthogonal to the bedding and crosscutting thepre-orogenic veins (Fig. 5d), and (ii) pre-buckle thrusts (Figs. 8e and9b–d). The latter, characterized byminor displacements, often dislocatesingle cherty beds (Figs. 8e and 9c) or packages of cherty layers (Fig. 9b,d). Parasitic F1 folds show open to isoclinal geometries (Fig. 8a, b, f)

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

especially located in the hinge zone of the regional fold (Fig. 8a). Fre-quently meso-scale folds are accommodated, in the hinge zone, by frac-tures (Fig. 9e, f) or minor thrust faults, well-evidenced by dislocatedcherty layers (Fig. 9e, g). Slickensides, related to the flexural-slip mech-anism, are very common on the bedding surfaces, as well as veinshosted in the outer arc of the parasitic folds (Fig. 5d). A spaced cleavageconvergent fan (S1) is present in the inner arc of folded calcareous bedstypically marked by pressure-solution surfaces. Late northeastwardverging back-thrusts are regularly in association with S-C structures lo-calized in the footwall rocks (e.g. Vitale et al., 2014). The succession ex-perienced a further shortening accommodated by F2 open to tight foldsoften related to thrust faults (Fig. 8c) and S-C structures (Fig. 8d). Rarely

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 6: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 5. (a) Pre-orogenic normal fault, presently with a reverse kinematics, sealed by cherty conglomerates. (b) Calcareous bed hosting diagenetic veins and stylolites and a pre-orogenicnormal fault. (c) Pre-orogenic conjugate normal faults in conglomerates. (d) LPS stylolites and outer arc veins. (e) Pre-orogenic conjugate normal faults in flat-lying cherty limestones andorogenic pre-buckle thrust. (f) Pre-orogenic normal fault with associated a brittle–ductile deformation. (g) Pre-orogenic normal faults crosscutting cherty layers. (h) Indentation ofhanging wall and footwall blocks of a pre-orogenic normal fault.

6 S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

these two fold sets (F1 and F2) produce an interference pattern of 3-typeRamsay's classification (Ramsay, 1967) such as shown in Fig. 8f.

Frequently pre-orogenic meso-scale normal fault planes are de-formed by an early layer parallel shortening producing the indentationof footwall and hanging wall blocks enhanced by pressure-solutionmechanisms (Figs. 5h and 8e).More rarely pre-orogenicmeso-scale nor-mal faults are reactivated as minor thrusts (Fig. 9a) or with the samekinematics in response to a push-up of the footwall block (Fig. 9a). Theshortening is also recorded in the conglomerates as indentation between

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

calcareous clasts by means of pressure-solution mechanisms actingalong the clast boundaries (Fig. 6a, b).

3.2.1. Orientation dataPoles to bedding (S0) of cherty limestones showa broad girdle distri-

bution with a mean NE–SW direction (Fig. 10a). Poles to tectonic folia-tion (S1) indicate weaklyW-dipping to sub-vertical planes (Fig. 10b). F1fold hinges (A1) are about sub-horizontal showing ameanNW–SE trend(Fig. 10c), whereas the axial plane poles (AP1) spread out around a

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 7: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 6. (a–b) Indented clasts in cherty conglomerates. (c) Conglomerate with cherty matrix. (d) Panoramic view of the SW-verging anticline of Chefchaouen.

7S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

NE–SW cyclograph (Fig. 10d). Pre-buckle thrust planes (Fig. 10e), whenrestored (Fig. 10f), indicate a prevalence of NNW–SSE and secondarilyE–W directions. This feature is well-marked in the corresponding rosediagram (Fig. 10g). Thrust faults (Fig. 10h), associated with the first oro-genic deformation stage, provide a ENE–WSW shortening (Fig. 10i). F2fold hinges (A2) are weakly to moderately plunging to NE and SW(Fig. 10j), whereas axial plane poles (AP2) form a main cluster providinga 267/71 mean pole (Fig. 10k). Flexural-slip lineations show a NE–SWmean trend (Fig. 10l). Finally orogenic stylolites (Fig. 10m), when re-stored (Fig. 10n), indicate moderately dipping to sub-vertical planeswith a mean NW–SE direction.

4. Discussion

The pre-orogenic extension is well-recorded in the analyzed Liassicsuccession of the External Dorsale Calcaire. En-echelon veins, normalfaults and related structures, such as drag folds and deflexed chertylayers, suggest a synsedimentary brittle–ductile deformation related touncompleted lithification of calcareous and cherty sediments. Accord-ing to several authors (Blidi, 1993; Blidi and Hervouet, 1991; El Kadiri,2002; El Kadiri et al., 1992; Lallam et al., 1997; Mouhssine et al.,1990), this pre-orogenic extensional deformation, synchronous withthe deposition of cherty limestones and conglomerates, was the resultof the Liassic Neotethys rifting (Fig. 11a). However the most of exten-sional deformation was probably recorded during the deposition ofconglomerates, because they both fill structural depressions, sealgraben-bounding normal faults and host extensional structures.

The majority of pre-orogenic normal faults, when restored, show amain NW–SE direction indicating a dominant NE–SW extension. Veins

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

(Figs. 4c, d, g, 5b), generally characterized by high dip angles andNW–SE and NE–SW restored directions (Fig. 7e), occasionally coexistwith pre-orogenic normal faults. The occurrence of two orthogonalsets of veinswas probably related to a local exchange between the inter-mediate (σ2) and the minimum (σ3) stress axes close to the growingfractures (e.g. Guerriero et al., 2010).

The successive shortening (Fig. 11b–d) was characterized by aNE–SW direction, i.e. parallel to the previous pre-orogenic extension(at least in this sector of the Rif chain), producing the overthrusting ofthe ExternalDorsale CalcaireUnit onto the Predorsalian Unit. This defor-mation stage includes an early layer parallel shortening (Fig. 11b)expressed by pre-buckle thrusts, stylolites orthogonal to cherty lime-stonebeds and indented clasts in cherty conglomerates. The progressiveshortening (Fig. 11c) resulted in the development of the Chefchaouenanticline (locally with an overturned limb) with associated several par-asitic folds and occasionally meso-scale SW-verging thrust faults, lateNE-verging back-thrusts (Fig. 11d) and an overall northeastward tiltingof all allochthonous units (Guerrera et al., 2005; Hlila, 2005; Michardet al., 2002).

Inherited tectonic structures, such as pre-orogenic extensionalfaults, can heavily control the development of successive shorteningstructures in the mountain building. Commonly they rule the geometryof the new structures by means of (i) a simple reactivation of them-selves as reverse or strike–slip faults (e.g. Coward, 1994; Quintà andTavani, 2012; Tavani et al., 2011; Ziegler et al., 1995); (ii) truncationor folding by late thrust faults (e.g. Scisciani et al., 2002; Tavarnelli,1996); and (iii) localization of the new structures without a notable re-activation (e.g. Laubscher, 1976; Wiltschko and Eastman, 1982). In theanalyzed succession of External Dorsale Calcaire, the most of pre-

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 8: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 7. Stereographic projections (equiareal net, lower hemisphere), rose diagrams and contour plots of the analyzed pre-orogenic structures.

8 S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

orogenic structures were not reactivated with a reverse kinematic butrather they behaved as passive markers, such as described in other oro-genic chains (e.g. Uzkeda et al., 2013; Vitale et al., 2012). Frequently thepre-orogenic normal fault planes were dislocated along the beddingsurfaces as consequence of the flexural-slip mechanism, or indentedby the buttressing effect between hanging wall and footwall rocks en-hanced by pressure-solution processes. Only occasionally pre-orogenicnormal faults show a reverse reactivation with minor displacements(Fig. 9a).

Several geological features, such as striations along the beddingplanes, stylolites and fold-related fractures, indicate shallow deforma-tion conditions for both shortening stages, ruled by the flexural-slipmechanism, as dominant process for the fold development, precededand accompanied by pressure-solution mechanisms. However the notabundance of veins and stylolites suggests a deficiency offluids assistingthe shortening deformation. This feature, in addition to: (i) lacking ofrelevant damage-zones related to inherited meso-scale normal faultsable to convey fluids (Sibson, 2004); (ii) unfavorable orientation ofpre-orogenic normal faults generally characterized by high-angles tothe bedding and orthogonal to the shortening direction; and (iii) local-ization of the Miocene deformation along neo-formed low-angle struc-tures or along favorably oriented major pre-orogenic normal faults asdescribed in other areas (e.g. El Hatimi et al., 1991; Mouhssine et al,1990); triggered the passive behavior of the pre-orogenic meso-scalestructures rather than their reactivation.

As concerning the age of the overthrusting of the External DorsaleCalcaire Unit onto the Predorsalian Unit, it is constrained between the

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

early Burdigalian (age of onset deformation of the internal DorsalCalcaire) and Langhian (age of the deformation of the inner part ofMaghrebian Flysch Basin foredeep) such as suggested by several au-thors (Chalouan et al., 2008; de Capoa et al., 2007; Hlila, 2005; Vitaleet al., 2014; Zaghloul et al., 2005, 2007).

The successive deformation stage, characterized by a main NW–SEshortening, about orthogonal to the previous shortening direction,was expressed by both NW an SE verging fold and thrust faults(Fig. 11e). However this deformation was localized only in few placesproducing interference pattern between F1 and F2 fold sets of type 3 ofRamsay's classification (Fig. 7f). Due to the lacking of stratigraphic con-straints, the late NW–SE shortening stage cannot be precisely dated.However according to Hlila (2005) and Chalouan et al. (2006) andin analogy to those recorded in central sector of the Betic Cordillera(e.g. Soria et al., 1998), a late Tortonian-Pliocene age can be envisagedfor this tectonic event.

Fig. 12 shows the paleogeographic evolution from Early Jurassic toMiddle Miocene of the western Mediterranean area and relatedschematic cross sections (after Arboleya et al., 2004; Michard et al.,2007; Frizon de Lamotte et al., 2009; Schettino and Turco, 2011).Pre-orogenic structures, hosted in the analyzed rocks, presently indicatea NE–SW extension; however it reasonable to assume that they weresuccessively rotated following the arching of the orogenic belt(e.g. Feinberg et al., 1996; Platzman et al., 1993). Supposing, in theEarly Jurassic time (Fig. 12a), an original NW–SE direction of the exten-sion, associated with the rifting and opening of Neotethys Domain(e.g. Handy et al., 2010; Schettino and Turco, 2011), a counterclockwise

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 9: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 8. (a) Parasitic F1 folds in the hinge zone of themacro-scale anticline. (b) F1 isoclinal fold. (c) SE-verging thrust fault and related F2 fold. (d) S-C structures in the footwall block of a D2

thrust fault. (e) A pre-orogenic normal fault deformed by the early LPS; pre-buckle thrust deformed by a late F1 parasitic fold. (f) Interference pattern between F1 and F2 folds of 3-typeRamsay's classification.

9S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

rotation of 80–90° for this sector is inferred. These values are consistentwith the paleomagnetic data carried out on the ExternalDorsale Calcairein this area the by Platzman et al. (1993).

In theMiddle Eocene–Oligocene interval (Fig. 12b) some extensionalbasins of the northern Africanmargin, such as the High andMiddle Atlas(Arboleya et al., 2004) and theMesorif Suture Zone (MSZ, Michard et al.,2007), previously formed as consequence of the Neotethys rifting(e.g. Schettino and Turco, 2011), were tectonically inverted. This stageended in the Late Oligocene (Fig. 12c) about synchronouslywith the tec-tonic imbrication of some of the Internal Units (i.e. Ghomaride Nappes).Such as described before, in the Burdigalian–Langhian interval (Fig. 12d,e), the External Dorsale Calcaire, Predorsalian, Mauretanian and

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

Massylian Units were progressively included in the accretionary wedgeforming an arcuate belt with radial displacements and extension parallelto the thrust front (Vitale et al., 2014). Finally in the lateMiddleMiocene(Fig. 12f) the thrust front migrated toward the external zones includingthe Intrarif, MSZ, Mesorif and Prerif domains (Frizon de Lamote, 1985;Michard et al., 2007).

5. Concluding remarks

• Carbonates of the External Dorsale Calcaire Unit, cropping out in theChefchaouen area, experienced a polyphasic deformation character-ized by an early synsedimentary extension related to the Liassic

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 10: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 9. (a) Pre-orogenic normal faults reactivated as reverse or normal in the D1 deformation stage. (b–d) D1 pre-buckle thrusts affecting cherty layers. (e) F1 fold deforming calcareouslayers hosting pre-orogenic normal faults. (f) F1 fold-related fractures. (g) Minor thrust faults in cherty layers accommodating deformation in the F1 fold hinge.

10 S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

Neotethys rifting and a subsequentMiocene shortening including twomain deformation stages.

• Pre-orogenic extensional structures, such as normal faults and veinsmainly behaved as passive markers in the successive orogenic stages.Inherited normal faults were folded, tilted, dislocated by flexural-slipand deformed bymeans of pressure-solution mechanisms as a conse-quence of the buttressing effect between footwall and hanging wallrocks. Only few meso-scale extensional structures were reactivatedas reverse faults with minor displacements.

• The passive behavior, during the shortening stages, was probablydue to: (i) scarcity of fluids and well-developed fault-relateddamage zones able to convey fluids; (ii) unfavorable orientation of

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

pre-orogenic structures generally at high angle to the bedding;(iii) strain localization along neo-formed low-angle thrusts.

• The first orogenic deformation, characterized by a NE–SW shorten-ing, was recorded by a progressive deformation expressed by earlystructures such as pre-buckle thrusts and LPS stylolites andsubsequent meso- to macro-scale folds and thrust faults. Lateback-thrusts affected the whole thrust-sheet pile, as well as tec-tonic contacts among the Internal Units, frequently northeastwardtilted.

• The subsequent deformation stage, consisting of a NW–SE shorten-ing, about orthogonal to the previous shortening direction, in-cludes thrust faults and related folds verging both to NW and SE.

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 11: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 10. Stereographic projections (equiareal net, lower hemisphere), rose diagram, contour and PBT plots (Angelier and Mechler, 1977; Reiter and Acs, 1996–2003) of the analyzed oro-genic structures. PBT plot of thrust faults: P (254/05) R = 82%, B (345/06) R = 79%, T (133/83) R = 91%.

11S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

• According to several authors (Chalouan et al., 2006; de Capoa et al.,2007; Guerrera et al., 2005; Hlila, 2005; Hlila and Sanz deGaldeano, 1995; Michard et al., 2002; Vitale et al., 2014; Zaghloulet al., 2007) the deformation related to the overthrusting of theExternal Dorsale Calcaire onto the Predorsalian succession oc-curred during the Burdigalian–Langhian interval, whereas the suc-cessive NW–SE shortening, including thrusts and folds affectingthe whole tectonic thrust-sheet pile, probably occurred duringthe late Tortonian–Pliocene interval.

• The Jurassic extension and the successive Miocene shorteningpresently show the same NE–SW direction, however assuming aJurassic NW–SE extension (e.g. Handy et al., 2010; Schettino andTurco, 2011), a Miocene counterclockwise rotation of 80–90° re-sults, well-fitting with paleomagnetic data for the External DorsaleCalcaire in this area (Platzman et al., 1993).

Acknowledgments

We thank the Chief Editor Án Yin and the reviewers F. Roure and C.Sanz de Galdeano for the useful comments and suggestions.We are alsograteful to S. Tavani for the precious discussions.

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

References

Afiri, A., Gueydan, F., Pitra, P., Essaifi, A., Précigout, J., 2011. Oligo-Miocene exhumation ofthe Beni-Bousera peridotite through a lithosphere-scale extensional shear zone.Geodin. Acta 24 (1), 49–60.

Anderson, E.M., 1951. The Dynamics of Faulting and Dyke Formation, 2nd ed. Oliver &Boyd, Edinburgh.

Andrieux, J., 1971. La structure du Rif central. Notes et Mémoires du Service géologique duMaroc, 235, pp. 1–155.

Angelier, J., Mechler, P., 1977. Sur une méthode graphique de recherche des contraintesprincipales également utilisable en tectonique et en séismologie: la méthode desdièdres droits. Bull. Soc. Geol. Fr. 19, 1309–1318.

Arboleya, M.L., Teixell, A., Charroud, M., Julivert, M., 2004. A structural transect throughthe High and Middle Atlas of Morocco. J. Afr. Earth Sci. 39, 319–327.

Balanyá, J.C., García-Dueñas, V., 1988. El cabalgamiento cortical de Gibraltar y la tectónicade Béticas y Rif. II Congreso geológico de España. Simposio cinturones orogénicos.Sociedad Geológica de España, pp. 35–44.

Benmakhlouf, M., Galindo-Zaldívar, J., Chalouan, A., Sanz de Galdeano, C.,Fedal Ahmamou, M., López-Garrido, A.C., 2012. Inversion of transfer faults: theJebha–Chrafate fault (Rif, Morocco). J. Afr. Earth Sci. 73–74, 33–43.

Blidi, M., 1993. Les calciturbidites à silex de la Dorsale calcaire entre Chaouen etAssifane (Rif interne, Maroc). Témoins d'un rifting liasique téthysienThèse Univ.,Pau, p. 232.

Blidi, M., Hervouet, Y., 1991. Dépôts de pente de bas de talus lies au rifting liasique de laDorsale calcaire (Rif interne, Maroc): étude de formations à silex près de Chaouen. C.R. Acad. Sci. Paris 312, 1379–1384.

Bouillin, J.P., 1986. Le bassin maghrébin : une ancienne limite entre l'Europe et l'Afrique àl'ouest des Alpes. Bull. Soc. Geol. Fr. 2, 5547–5558.

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 12: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 11. Cartoon showing deformation structures at macro- and meso-scale and related deformation orientations and ages.

12 S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

Bouybaouene, M.L., Goffé, B., Michard, A., 1990. High-pressure granulites on top of theBeni Bousera peridotites, Rif Belt, Morocco: a record of an ancient thickened crustin the Alboran domain. Bulletin de la Société Géologique de France 169, 153–162.

Chalouan, A., Michard, A., 1990. The Ghomarides Nappes, Rif Coastal Range, Morocco: aVariscan chip in the Alpine belt. Tectonics 9, 165–183.

Chalouan, A., Michard, A., 2004. The Alpine Rif Belt (Morocco): a case of mountainbuilding in a subduction–subduction–transform fault triple junction. PAGEOPH,161, pp. 489–519.

Chalouan, A., Galindo-Zaldívar, J., Akil, M., Marín, C., Chabli, A., Ruano, P., Bargach, K., Sanzde Galdeano, C., Benmakhlouf, M., Ahmamou, M., Gourari, L., 2006. Tectonic wedgeexpulsion in the southwestern front of the Rif Cordillera (Morocco). In: Moratti, G.,Chalouan, A. (Eds.), Tectonics of the western Mediterranean and North Africa.Geological Society of London, Special Publication, 262, pp. 101–118.

Chalouan, A., Michard, A., El Kadiri, K., Negro, F., Frizon de Lamotte, D., Soto, J.I., Saddiqi, O.,2008. The Rif. In: Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D. (Eds.),Continental Evolution: The Geology of Morocco — Structure, Stratigraphy, andTectonics of the Africa–Atlantic–Mediterranean Triple Junction. Springer (424 pp.).

Coward, M., 1994. Inversion Tectonics. In: Hancock, P.L. (Ed.), Continental Deformation.Pergamon Press, Oxford, pp. 289–304.

De Capoa, P., Di Staso, A., Perrone, V., Zaghloul, M.N., 2007. The age of the foredeepsedimentation in the Betic–Rifian Mauretanian units: a major constraint for thereconstruction of the evolution of the Gibraltar Arc. C. R. Geosci. 339, 161–170.

Di Staso, A., Perrone, V., Perrotta, S., Zaghloul, M.N., Durand-Delga, M., 2010. Stratigraphy,age and petrography of the Beni Issef successions (External Rif; Morocco): insightsfor the evolution of the Maghrebian Chain. C. R. Geosci. 342, 718–730.

Didon, J., Durand-Delga, M., Kornprobst, J., 1973. Homologies géologiques entre les deuxrives du détroit de Gibraltar. Bull. Soc. Geol. Fr. 15, 79–105.

Durand Delga, M., Kornprobst, J., 1963. Esquisse géologique de la région de Ceuta. Bull.Soc. Geol. Fr. 7, 1049–1057.

Durand-Delga, M., 1980. La Méditerranée occidentale, étapes de sa genèse et problèmesstructuraux liés à celle-ci. Mém. Soc. Géol. Fr. 10, 203–224.

Durand-Delga, M., Hottinger, L., Marçais, J., Mattauer, M., Milliard, Y., Suter, G.,1960–1962. Actual data about the Rif structure. Mém. Soc. Géol. Fr. 1, 399–422.

Durand-Delga, M., Rossi, P., Olivier, Ph., Puglisi, D., 2000. Situation structurale et natureophiolitique de roches basiques jurassiques associées aux flyschs maghrébins du Rif(Maroc) et de Sicile (Italie). C. R. Acad. Sci. Paris 331, 29–38.

El Hatimi, N., Duée, G., Hervouet, Y., 1991. La Dorsale calcaire du Haouz: ancienne margecontinentale passive téthysienne (Rif, Maroc). Bull. Soc. Geol. Fr. 162, 79–90.

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

El Kadiri, K., 2002. Jurassic ferruginous hardgrounds of the “Dorsale Calcaire” and the JbelMoussa Group (internal Rif Morocco) stratigraphical context and paleoceanographicconsequences of mineralization processes. Geol. Romana 36, 33–70.

El Kadiri, K., Fauzi, M., 1996. Les formations carbonates massives de la Dorsale Calcaireexterne (Rif interne, Maroc), un exemple de plate-forme tidale sous controlegéodynamique durant le Trias moyen-Lias inférieur. Mines Géologique Rabat, 55,pp. 79–92.

El Kadiri, K., Linares, A., Oloriz, F., 1992. La Dorsale calcaire rifaine (Maroc septentrional):Evolution stratigraphique et géodynamique durant le Jurassique-Crétacé. Notes etMémoires de Service Géologique du Maroc, 336, pp. 217–265.

Fallot, P., 1937. Essai sur la géologie du Rif septentrional. Notes et Mémoires du ServiceGéologique du Maroc, 40, p. 548.

Feinberg, H., Saddiqi, O., Michard, A., 1996. New constraints on the bending of theGibraltar Arc from paleomagnetism of the Ronda peridotite (Betic Cordilleras,Spain). In: Morris, A., Tarling, D.H. (Eds.), Paleomagnetism and Tectonics of theMediterranean Region. Geological Society of London, Special Publication, 105, pp. 43–52.

Frizon de Lamotte, D., 1985. La structure du Rif oriental (Maroc), rôle de la tectoniquelongitudinale et importance des fluides. Thèse de Doctoratès-Sciences, Univ. ParisVI, 85-03 (436 pp.).

Frizon de Lamotte, D., Leturmy, P., Missenard, Y., Khomsi, S., Ruiz, G., Saddiqi, O.,Guillocheau, F., Michard, A., 2009. Mesozoic and Cenozoic vertical movements inthe Atlas system (Algeria, Morocco, Tunisia): an overview. Tectonophysics 475, 9–28.

García-Dueñas, V., Balanyá, J.C., Martínez-Martínez, J.M., 1992. Miocene extensionaldetachments in the outcropping basement of the Northern Alboran Basin (Betics)and their tectonic implications. Geo-Mar. Lett. 12, 88–95.

Guerrera, F., Martín-Algarra, A., Perrone, V., 1993. Late Oligocene-Miocene syn/lateorogenic successions in Western and central Mediterranean chains form the BeticCordillera to the southern Apennines. Terra Nova 5, 525–544.

Guerrera, F., Martin-Martin, M., Perrone, V., Tramontana, M., 2005. Tectono-sedimentary evolution of the southern branch of western thetys (MaghrebianFlysch Basin and Lucanian Ocean) on the basis of the stratigraphic record. TerraNova 17, 358–367.

Guerriero, V., Iannace, A., Mazzoli, S., Parente, M., Vitale, S., Giorgioni, M., 2010. Quantify-ing uncertainties in multi-scale studies of fractured reservoir analogues: implement-ed statistical analysis of scan line data. J. Struct. Geol. 32, 1271–1276.

Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, E., Bernoulli, D., Hlila, R., 2010. Reconcil-ing plate-tectonic reconstructions of Alpine Tethys with the geological–geophysicalrecord of spreading and subduction in the Alps. Earth Sci. Rev. 102, 121–158.

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 13: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

Fig. 12. Paleogeographic reconstruction and cross sections of the western Mediterranean area. Not to scale. IDC: Internal Dorsale Calcaire; EDC: External Dorsale Calcaire; MSZ: MesorifSuture Zone.

13S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

Hlila, R., 2005. Evolution tectono-sédimentaire tertiaire au front ouest du domained'Alboran (Ghomarides et Dorsale calcaire)(Phd thesis) Univ. de Tétouan (351 pp.).

Hlila, R., Sanz de Galdeano, C., 1995. Structure de la chaîne du Haouz (Rif interne, Maroc):Interprétation et aspects chronologiques. C. R. Acad. Sci. Paris 318, 1261–1266.

Kornprobst, J., 1974. Contribution à l'étude pétrographique et structurale de la zoneinterne du Rif, (Maroc septentrional). Notes et Mémoires de Service Géologique,Maroc, pp. 251–256.

Lallam, S., Sahnoun, E., El Hatimi, N., Hervouet, Y., De Leon, J.T., 1997. Mise en évidence dela dynamique de la marge téthysienne de 1'Hettangien à l'Aalénien dans la DorsaleCalcaire (Tétouan, Rif, Maroc). C. R. Acad. Sci. Paris 324 (II), 923–930.

Laubscher, H.P., 1976. Geometrical adjustment during rotation of a Jura fold limb.Tectonophysics 36, 347–365.

Leblanc, D., 1980. L'accident du Nekor et la structure du Rif oriental (Maroc). Rev. Géol.Dynam. Géog. Phys. 22, 267–277.

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

Mattauer, M., 1960. Nouvelles données sur la « Dorsale calcaire » du Rif. C. R. Acad. Sci.Paris 250, 374–376.

Michard, A., Chalouan, A., 1991. The Ghomarides nappes, Rif Coastal range, Morocco:an African terrane in the West Mediterranean Alpine belt. Bull. Geol. Soc. GreeceXXV/1, 117–129.

Michard, A., Goffé, B., Bouybaouene, M., Saddiqi, O., 1997. Late Hercynian-Mesozoicthinning in the Alboran domain: metamorphic data from northern Rif, Morocco.Terra Nova 9, 1–8.

Michard, A., Chalouan, A., Feinberg, H., Goffé, B., Montigny, R., 2002. How does the Alpinebelt end between Spain and Morocco? Bull. Soc. Geol. Fr. 173, 3–15.

Michard, A., Negro, F., Saddiqi, O., Bouybaouene, M.L., Chalouan, A., Montigny, R., Goffé, B.,2006. Pressure–temperature–time constraints on the Maghrebide mountain building:evidence from the Rif–Betic transect (Morocco, Spain), Algerian correlations, andgeodynamic implications. Compt. Rendus Geosci. 338, 92–114.

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028

Page 14: From Jurassic extension to Miocene shortening: An example of polyphasic deformation in the External Dorsale Calcaire Unit (Chefchaouen, Morocco)

14 S. Vitale et al. / Tectonophysics xxx (2014) xxx–xxx

Michard, A., Negro, F., Frizon de Lamotte, D., Saddiqi, O., 2007. Serpentinite slivers andmetamorphism in the external maghrebides: arguments for an intracontinentalsuture in the African paleomargin (Morocco, Algeria). Rev. Soc. Geol. Esp. 20 (3–4).

Mouhssine, M., Hervouet, Y., Benyaich, A., 1990. Les Mégabréches et turbidites calcaires àsilex de la Dorsale externe des Bokoya (Rif interne, Maroc) témoins du rifting liasiquede la Téthys. C. R. Acad. Sci. Paris 310, 1279–1284.

Olivier, P., 1984. Évolution de la limite entre Zones Internes et Zones Externes dans l'Arcde Gibraltar (Maroc-Espagne)(Phd thesis) Univ. Paul Sabatier, Toulouse (229 pp.).

Platzman, E.S., Platt, J.P., Olivier, P., 1993. Paleomagnetic rotations and fault kinematics inthe Rif arc of Morocco. J. Geol. Soc. 150, 707–718.

Quintà, A., Tavani, S., 2012. The foreland deformation in the south-westernBasque–Cantabrian Belt (Spain). Tectonophysics 576–577, 4–19.

Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill Book Company, NewYork (568 pp.).

Reiter, F., Acs, P., 1996-2003. Tectonics FP. Software for Structural GeologyInnsbruckUniversity, Austria (http://www.tectonicsfp.com/).

Saddiqi, O., Feinberg, H., Elazzab, D., Michard, A., 1995. Paléomagnètisme des Pèridotitesdes Beni Boussera (Rif interne, Maroc): Consèquences pour l'évolution Miocene del'Arc de Gibraltar. C. R. Acad. Sci. Paris 321, 361–368.

Schettino, A., Turco, E., 2011. Tectonic history of the western Tethys since the late Triassic.Geol. Soc. Am. Bull. 123, 89–105.

Scisciani, V., Tavarnelli, E., Calamita, F., 2002. The interaction of extensional and contrac-tional deformations in the outer zones of the Central Apennines, Italy. J. Struct.Geol. 24, 1647–1658.

Sibson, R.H., 2004. Controls on maximum fluid overpressure defining conditions formesozonal mineralization. J. Struct. Geol. 26, 1127–1136.

Soria, J.M., Viseras, C., Fernández, J., 1998. Late Miocene–Pleistocene tectono-sedimentaryevolution and subsidence history of the central Betic Cordillera (Spain): a case studyin the Guadix intramontane basin. Geol. Mag. 135, 565–574.

Suter, G., 1965. La région du Moyen Ouerrha (Rif, Maroc): étude préliminaire sur latectonique et la stratigraphie. Notes et Mémoires du Service géologique du Maroc,24, pp. 7–17.

Suter, G., 1980. Carte structurale de la chaîne rifaine au 1:500,000. Notes et Mémoires duService géologique du Maroc 245p.

Tavani, S., Quintá, A., Granado, P., 2011. Cenozoic right-lateral wrench tectonics in theWestern Pyrenees (Spain): the Ubierna Fault System. Tectonophysics 509, 238–253.

Tavarnelli, E., 1996. The effects of pre-existing normal faults on thrust ramp development:an example from the northern Apennines, Italy. Geol. Rundsch. 85, 363–371.

Uzkeda, H., Bulnes, M., Poblet, J., García-Ramos, J.C., Piñuela, L., 2013. Buttressing andreverse reactivation of a normal fault in the Jurassic rocks of the Asturian Basin,NW Iberian Peninsula. Tectonophysics 599, 117–134.

Please cite this article as: Vitale, S., et al., From Jurassic extension to MioceDorsale Calcaire Unit (Chefchaouen, Morocco), Tectonophysics (2014), ht

Vitale, S., Ciarcia, S., 2013. Tectono-stratigraphic and kinematic evolution of the southernApennines/Calabria–Peloritani Terrane system (Italy). Tectonophysics 583, 164–182.

Vitale, S., Dati, F., Mazzoli, S., Ciarcia, S., Guerriero, V., Iannace, A., 2012. Modes and timingof fracture network development in poly-deformed carbonate reservoir analogues,Mt. Chianello, southern Italy. J. Struct. Geol. 37, 223–235.

Vitale, S., Ciarcia, S., Tramparulo, F.D.A., 2013a. Deformation and stratigraphic evolution ofthe Ligurian Accretionary Complex in the southern Apennines (Italy). J. Geodyn. 66,120–133.

Vitale, S., Fedele, L., Tramparulo, F.D.A., Ciarcia, S., Mazzoli, S., Novellino, A., 2013b.Structural and petrological analyses of the Frido Unit (southern Italy): new insightsinto the early tectonic evolution of the southern Apennines–Calabrian Arc system.Lithos 168–169, 219–235.

Vitale, S., Zaghloul, M.N., Tramparulo, F.D.A., El Ouaragli, B., 2014. Deformation character-ization of a regional thrust zone in the northern Rif (Chefchaouen, Morocco). J.Geodyn. 77, 22–38.

Wildi, W., 1983. La chaîne tello-rifaine (Algérie, Maroc, Tunisie): structure, stratigraphieet évolution du Trias au Miocéne. Rev. Géol. Dynam. Géog. Phys. 24, 201–297.

Wildi, W., Nold, M., Uttinger, J., 1977. La Dorsale Calcaire entre Tetouan et Assifane(Rif interne, Maroc). Eclogae Geol. Helv. 70, 371–415.

Wiltschko, D.V., Eastman, D.B., 1982. Role of basement warps and faults in localizingthrust-fault ramps. Geol. Soc. Am. Mem. 158, 177–190.

Zaghloul, M.N., 1994. Les Unités Federico septentrionales (Rif interne, Maroc): Inventairedes deformations et leur contexte géodynamique dans la cha ne Bético–Rifaine(MSc Thesis) Mohammed V University, Rabat, Morocco (218 pp.).

Zaghloul, M.N., Di Staso, A., El Moutchou, B., Gigliuto, L.G., Puglisi, D., 2005. Sedimentology,provenance and biostratigraphy of the Upper Oligocene-Lower Miocene terrigenousdeposits of the internal “Dorsale Calcaire” (Rif, Morocco): palaeogeographic andgeodynamic implications. Boll. Soc. Geol. Ital. 124, 437–454.

Zaghloul, M.N., Di Staso, A., De Capoa, P., Perrone, V., 2007. Occurrence of upperBurdigalian silexite beds within the Beni Ider Flysch Fm. in the Ksar-es-Sghir area(Maghrebian Flysch Basin, Northern Rif, Morocco): stratigraphic correlations andgeodynamic implications. Ital. J. Geosci. 2, 223–239.

Zaghloul, M.N., Staso, A.D., Hlila, R., Perrone, V., Perrotta, S., 2010a. The Oued Dayr formation:first evidence of a new Miocene late-orogenic cycle on the Ghomaride Complex(Internal domains of the RifianMaghrebian Chain, Morocco). Geodin. Acta 23, 185–194.

Zaghloul, M.N., Critelli, S., Perri, F., Mongelli, G., Perrone, V., Sonnino, M., Tucker, M., Aiello,M., Ventimiglia, C., 2010b. Depositional systems, composition and geochemistry ofTriassic rifted-continental margin redbeds of the Internal Rif Chain, Morocco.Sedimentology 57, 312–350.

Ziegler, P.A., Cloetingh, S., Van Wees, J.D., 1995. Dynamics of intra-plate compressionaldeformation: the Alpine foreland and other examples. Tectonophysics 252, 7–59.

ne shortening: An example of polyphasic deformation in the Externaltp://dx.doi.org/10.1016/j.tecto.2014.06.028