Frequency Response of Transistor and MOS

download Frequency Response of Transistor and MOS

of 20

Transcript of Frequency Response of Transistor and MOS

  • 8/16/2019 Frequency Response of Transistor and MOS

    1/20

    1

    Frequency response I•  As the frequency of the processed signals increases,

    the effects of parasitic capacitance in (BJT/M!"transistors start to #anifest• The gain of the a#plifier circuits is frequency

    dependent, usually decrease $ith the frequencyincrease of the input signals

    • %o#puting &y hand the e'act frequency response ofan a#plifier circuits is a difficult and ti#econsu#ingtas), therefore appro'i#ate techniques for o&tainingthe *alues of critical frequencies is desira&le

    • The e'act frequency response can &e o&tained fro#

    co#puter si#ulations (e+g !I%-"+ .o$e*er, toopti#ie your circuit for #a'i#u# &and$idth and to)eep it sta&le one needs analytical e'pressions ofthe circuit para#eters or at least )no$ $hichpara#eter affects the required specification and ho$

  • 8/16/2019 Frequency Response of Transistor and MOS

    2/20

    0

    • The transfer function gi*es us the infor#ation a&out the

    &eha*ior of a linearti#ein*ariant (TI" circuit/syste# fora sinusoidal e'citation $ith angular frequency

    • This transfer function is nothing &ut the ratio &et$een theFourier transfor#s of the output and input signals and itis also called the frequency response of the TI circuit+

    •   represents the gain #agnitude of the frequencyresponse of the circuit, $hereas is the phase offrequency response+ ften, it is #ore con*enient to

    e'press gain #agnitude in deci&els+• To a#plify a signal $ithout distortion, the a#plifier gain

    #agnitude #ust &e the sa#e for all of the frequencyco#ponents

    Frequency response II

    ω ))(exp(|)(|))(exp(|)(|)(   ω θ ω ω ω ω    jT T  jT T    =∠=

    |)(|   ω T )(ω θ 

  • 8/16/2019 Frequency Response of Transistor and MOS

    3/20

    2

    Frequency response of a#plifers•  A bode plot   sho$s the the gain #agnitude and phase in deci&les *ersus

    frequency on logarith#ic scale

    •  A fe$ prerequisites for &ode plot3 aplace transfor# and net$or) transfer function oles and eros of transfer function Brea) frequencies

    • !o#e useful rules for dra$ing highorder &ode plots3 4eco#pose transfer function into first order ter#s+

    Mar) the &rea) frequencies and represent the# on the frequency a'is thecritical *alues for changes Ma)e &ode plot for each of the first order ter# For each first order ter#, )eep the 4% to the &rea) frequency constant

    equal to the gain at 4%  After the &rea) frequency, the gain #agnitude starts to increase or

    decrease $ith a slope of 05d&/decade if the ter# is in the nu#erator or

    deno#inator  For phase plot, each first order ter# induces a 67 degrees of increase or

    decrease at the &rea) frequency if the ter# is in the nu#erator ordeno#inator 

    %onsider frequencies li)e onetenth and ten ti#es the &rea) frequency andappro'i#ate the phase &y 5 and 85 degrees if the frequency is $ith thenu#erator (or 5 and 85 degrees if in the deno#inator"

     Add all the first order ter#s for #agnitude and phase response

  • 8/16/2019 Frequency Response of Transistor and MOS

    4/20

    6

    Frequency response of 9% circuits

    -+g+ 1

    -+g+ 2

    )/arctan()/arctan()(

    )/(1log20)/(1log20|)(|

    )(2

    1,2

    1,)(21

    21)(

    21

    2

    2

    2

    1

    21

    2

    2

    1

    21

    2

    bb

    bbdbv

    bbv

     f   f   f   f   f  

     f   f   f   f   f   A

    C  R R f  C  R f  C  R R f   j

    C  fR j f   A

    −=

    +−+=

    +==

    ++

    +

    =

    θ 

    π π π 

    π 

    )/arctan()(

    2)/(1log20)|(|

    2

    1,

    21

    1)(

    b f   f   f  

    b f   f  

    db f  v A

     RC b f  

     RCf   j f  v A

    −=

    +−=

    =+

    =

    θ 

    π π 

    -+g+ 0

    )/arctan(90)(

    )/(1log20)/log(2012|)(|

    )(2

    1,

    )/(1

    )/(

    )(21

    2)(

    2

    2121

    2

    21

    2

    b

    bbdbv

    b

    b

    bv

     f   f   f  

     f   f   f   f   f   A

    C  R R f   f   f   j

     f   f   j

     R R

     R

    C  R R f   j

    C  fR j f   A

    −=

    +−+−=

    +

    =

    +

    ×

    +

    =

    ++

    =

    θ 

    π π 

    π 

  • 8/16/2019 Frequency Response of Transistor and MOS

    5/20

    7

    The M! Transistor 

    Polysilicon Aluminum

  • 8/16/2019 Frequency Response of Transistor and MOS

    6/20

    :

    The ;ate %apacitance

    t ox 

    n< n<

    Cross section view

    L

    ;ate o'ide

     x d   x d 

    L d 

    olysilicon gate

    Top view

    ;ate&ul)o*erlap

    !ource

    n<

    4rain

    n<W 

  • 8/16/2019 Frequency Response of Transistor and MOS

    7/20

    =

    ;ate %apacitance

    S   D

    G

    C GC 

    S   D

    G

    C GC 

    S   D

    G

    C GC 

    Cut-of    Resistive Saturation

  • 8/16/2019 Frequency Response of Transistor and MOS

    8/20

  • 8/16/2019 Frequency Response of Transistor and MOS

    9/20

    8

    Frequency response of co##on source M! a#plifer 

    .ighfrequency M! !#allsignal

    equi*alent circuit

    M!F-T co##on !ource a#plifier 

    !#allsignal equi*alent circuit for the M! co##on source a#plifier Frequency response analysis shows that there are three break frequencies, and mainly

    the lowest one determines the upper half-power frequency, thus the -3db bandwidth

  • 8/16/2019 Frequency Response of Transistor and MOS

    10/20

    15

    • -'act frequency analysis of a#plifier

    circuits is possi&le follo$ing the steps34ra$ s#allsignal equi*alent circuit (replace

    each co#ponent in the a#plifier $ith its s#allsignal circuit"

    ?rite equations using *oltage and current la$s

    Find the *oltage gain as a ratio of polyno#ial oflaplace *aria&le s

    Factor nu#erator and deno#inator of thepolyno#ial to deter#ine &rea) frequencies

    4ra$ &ode plot to appro'i#ate the frequencyresponse

    -'act frequency response of a#plifiers

  • 8/16/2019 Frequency Response of Transistor and MOS

    11/20

    11

    The Miller -ffect• %onsider the situation that an i#pedance is connected

    &et$een input  and output  of an a#plifier 

    The sa#e current flo$s fro# (out" the top input ter#inal if ani#pedance is connected across the input ter#inals

    The sa#e current flo$s to (in" the top output ter#inal if ani#pedance is connected across the output ter#inal

    This is )no$ as Miller -ffect T$o i#portant notes to apply Miller -ffect3

    There should &e a co##on ter#inal for input and output The gain in the Miller -ffect is the gain after connecting feed&ac)

    i#pedance

     Miller in Z  ,

     Miller out  Z  ,

     f  

     Z 

    Graphs from Prentice Hall 

  • 8/16/2019 Frequency Response of Transistor and MOS

    12/20

  • 8/16/2019 Frequency Response of Transistor and MOS

    13/20

    12

    • If the feed&ac) i#pedance is a capacitor ,then

    the Miller capacitance reflected across the inputter#inal is +

    • Therefore, connecting a capacitance fro# the

    input to output is equi*alent to connecting a

    capacitance

    • 4ue to Miller effect, a s#all feed&ac)

    capacitance appears across the input ter#inals

    as a #uch larger equi*alent capacitance $ith alarge gain (e+g+ "+ At high frequencies,

    this large capacitance has a lo$ i#pedance that

    tends to short out the input signal

     f  C 

     Application of Miller -ffect

    )1(

    1,

    v f  

     Miller in AC  j

     Z −

    =

    ω 

     f  C 

    )1(   v f     AC    −

    80||   >v A

  • 8/16/2019 Frequency Response of Transistor and MOS

    14/20

    16

    BJT s#allsignal #odels (for BJT a#plifiers"

    The #odel for  high-frequency  analysisπ − Hybrid 

    The #odel for  low-frequency  analysisβ π   −r 

    The &asespreading resistance for the &ase region (*ery s#all"

    The dyna#ic resistance of the &ase e#itter region

    The feed&ac) resistance fro# collector to &ase (*ery large"

     Account for the up$ard slope of the output characteristic

    The depletion capacitance of the collectorto&ase region

    The diffusion capacitance of the &asetoe#itter @unction π 

     µ 

     µ 

    π    β 

    C  I V r 

     I V r r 

    CQ Ao

    CQT 

     x

    /

    /

    =

    =

    ote3 in the follo$ing analysis of the %-, -F and %B a#plifier in the ne't three slides, $e $ill

    assu#e for si#plicity (though they still appear in the s#all signal #odels"+∞==  µ r r  x   ,0

  • 8/16/2019 Frequency Response of Transistor and MOS

    15/20

    17

    Miller -ffect3 co##on e#itter a#plifier I

  • 8/16/2019 Frequency Response of Transistor and MOS

    16/20

    1:

    Miller -ffect3 co##on e#itter a#plifier II

     Assu#e the current flo$ing through is *ery s#all co#pared to , then

    the gain $ill &e considering the input ter#inal of the a#plifier at

    b’ to ground.

     Applying the #iller effect for the a#plifier, the follo$ing si#plified circuit can &e

    o&tained3

    Thus, the total capacitance fro# ter#inal b’ to ground   is gi*en as follo$s

    (neglect the #iller capacitance fro# output ter#inal c to ground"3

    The &rea) frequency, thus the 2d& frequency is set &y the 9% lo$pass filter

    (other *oltage controlled current source, resistance does not contri&ute to the

    &rea) frequency"+ is a main limiting factor for -3db bandwidth+

    π v g m   µ C 

    '

    '   Lmvb   R g  A   −=

    )1(   ' LmT    R g C C C    ++=  µ π 

    T  s

    bC  R

     f  '2

    1

    π =

     µ C    π v g m

     µ C 

    π r  R R R R  s s   |||||| 21'=

  • 8/16/2019 Frequency Response of Transistor and MOS

    17/20

    1=

    -#itterfollo$er a#plifier 

    • sing Miller -ffect, $eo&tain the a&o*eequi*alent circuit+ If

    neglecting , Itsho$s that the &rea)frequency is 

     µ r r  x ,

     L  o L

     ! s s

     Lm sT 

     Lm

    T T 

    b

     R Rr  R

     R R R

     R g r  R R

     R g C C C 

    C  R f  

    ||||

    ||

    )]1([||

    1

     2

    1

    '

    '

    ''

    '

    =

    =

    +=

    +

    +=

    =

    π 

    π  µ 

    π 

  • 8/16/2019 Frequency Response of Transistor and MOS

    18/20

    1>

    For appro'i#ate analysis, $e can neglect the si#plified

    equi*alent circuit can &e sho$n in (c"+ 4eri*e the transfer function for this circuit, it sho$s t$o

    &rea) frequencies ($ith typical *alues, is appro'i#ately 2d& &and$idth"

    )(,),(   "ir"uit o#enr r "ir"uit  s$ort r  o x   µ 

     L" Lm   s s L

    b s

    b   R R R g r  R R R RC  f   RC  f     ||),/1(||||||, 2

    1

     , 2

    1   '''2'1

      ====π 

     µ π    π π 

    1b f  

    %o##on &ase a#plifier 

    • ?hat a&out a#plifier thatdo not ha*e capacitanceconnected directly fro#

    output to the inputC

  • 8/16/2019 Frequency Response of Transistor and MOS

    19/20

    18

    Fullydifferential a#plifier

    To esti#ate the 2dB &and$idth of this one, note that the circuit if fully sy##etric,

    so only the half circuit needs to &e analyed+ The node *oltage at D is 5 in

    s#allsignal analysis+ Therefore $e only need to analye the righthand side

    circuit, $hich is actually a co##one#itter a#plifier analyed &efore+ !o the

    2dB &and$idth of a co##one#itter a#plifier applies here+

    D

    D

  • 8/16/2019 Frequency Response of Transistor and MOS

    20/20

    05

    %ascode a#plifier and differential a#plifier 

    • The cascode a#plifier can &e*ie$ed as a common-emitter  a#plifier $ith a common-base 

    a#plifier+• 4ue to lo$ input i#pedance of

    E0, the *oltage gain of E1 iss#all+ !o, Miller effect on E1 iss#all+

    • The -#ittercoupled differentiala#plifier can &e *ie$ed as aemitter-follower   a#plifiercascaded $ith a common-base a#plifier (&oth ha*e $ider&and$idth than co##one#itter

    a#plifier"+Graphs from Prentice Hall