Frequency Limits of Bipolar Integrated Circuits [email protected] 805-893-3244, 805-893-5705 fax...

29
Frequency Limits of Bipolar Integrated Circuits [email protected] 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara Collaborators Z. Griffith, E. Lind, V. Paidi, N. Parthasarathy, U. Singisetti ECE Dept., University of California, Santa Barbara M. Urteaga, R. Pierson , P. Rowell, B. Brar Rockwell Scientific Company IEEE MTT-S Symposium, June 13, 2006 Sponsors J. Zolper, S. Pappert, M. Rosker DARPA (TFAST, ABCS, SMART) I. Mack, D. Purdy, Office of Naval Research

Transcript of Frequency Limits of Bipolar Integrated Circuits [email protected] 805-893-3244, 805-893-5705 fax...

Page 1: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

Frequency Limits of Bipolar Integrated Circuits

[email protected] 805-893-3244, 805-893-5705 fax

Mark Rodwell University of California, Santa Barbara

Collaborators

Z. Griffith, E. Lind, V. Paidi, N. Parthasarathy, U. SingisettiECE Dept., University of California, Santa Barbara

M. Urteaga, R. Pierson , P. Rowell, B. BrarRockwell Scientific Company

IEEE MTT-S Symposium, June 13, 2006

Sponsors

J. Zolper, S. Pappert, M. RoskerDARPA (TFAST, ABCS, SMART)

I. Mack, D. Purdy, Office of Naval Research

Page 2: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

THz Transistors:What does this mean ?What are they for ?How do we make them ?

Page 3: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

High-Resolution Microwave ADCs and DACs

What could we do with a THz Transistor ?

340 GHz imaging systems

mm-wave radio: 40+ Gb/s on 250 GHz carrier

320 Gb/s fiber optics

Why develop transistors for mm-wave & sub-mm-wave applications ? → compact ICs supporting complex high-frequency systems.

Page 4: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

THz Transistors: What does this mean ?

A 1 THz current-gain cutoff frequency (f) alone has little valuea transistor with 1000 GHz f and 100 GHz fmax

cannot amplify a 101 GHz signal

RF-ICs & MIMICs need high power-gain cutoff frequency (fmax )also need high breakdown & high safe operating area (power density)

100+ GHz digital also needslow (Cdepletion V / I ) and low (I*Rparasitic /V )

So, how do we make a transistor with>1 THz f>1 THz fmax

<50 fs CV / I charging delays and < 100 mV (I*Rparasitic) parasitic voltage drops ?

Page 5: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

THz Transistors:How do we make them ?

Page 6: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

Present Status of Fast III-V Transistors

)(

),/(

),/(

),/(

hence ,

:digital

gain, associated ,F

:amplifiers noise low

mW/

gain, associated PAE,

:amplifierspower

)11(

2/) (

alone or

min

1max

max

max

max

cb

cbb

cex

ccb

clock

ττ

VIR

VIR

IVC

f

m

ff

ff

ff

ff

:metrics better much

:metrics popular

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800

RSC

UIUC_SHBT

NTT_fmax

Fujitsu HEMT

SFU

UIUC_DHBT

UCSB 500 nm

NGST

Pohang

HRL

IBM SiGe

Vitesse

UCSB 250 nm

f ma

x (G

Hz)

ft (GHz)

500 GHz400 GHz300 GHz200 GHz maxff

Updated July 5 2006

250 nm

Red = manufacturable technology for 10,000- transistor ICs

500 nm

Page 7: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

Bipolar Transistor Scaling Laws

key device parameter required change

collector depletion layer thickness decrease 2:1

base thickness decrease 1.414:1

emitter junction width decrease 4:1

collector junction width decrease 4:1

emitter resistance per unit emitter area decrease 4:1

current density increase 4:1

base contact resistivity (if contacts lie above collector junction)

decrease 4:1

base contact resistivity (if contacts do not lie above collector junction)

unchanged

Design changes required to double transistor bandwidth

Page 8: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

InP HBT Scaling Roadmaps

Key scaling challengesemitter & base contact resistivitycurrent density→ device heatingcollector-base junction width scaling & Yield !

key figures of merit

for logic speed

Page 9: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

2005: InP DHBTs @ 500 nm Scaling Generation

Target Performance:400 GHz f 500 GHz fmax

150 GHz digital clock rate (static dividers)250 GHz power amplifiers

collector: 150 nm thick, 5 mA/m2 current density10 mW/m2 power density @ 2V

InGaAs base

BC grade

collector

N+ sub collector

S.I. InP substrate

emitter

emitter contact

base contact

N- drift collector

emitter: 500 nm width, 15 m2 contact resistivity

base contact: 300 nm width, 20 m2 contact resistivity

Page 10: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

2006: 250 nm Scaling Generation, 1.414:1 faster

Target Performance:500 GHz f 700 GHz fmax

230 GHz digital clock rate (static dividers)400 GHz power amplifiers

collector: 100 nm thick, 10 mA/m2 current density20 mW/m2 power density @ 2V

InGaAs base

BC grade

collector

N+ sub collector

S.I. InP substrate

emitter

emitter contact

base contact

N- drift collector

emitter: 250 nm width, 7.5 m2 contact resistivity

base contact: 150 nm width, 10 m2 contact resistivity

Page 11: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

125 nm Scaling Generation→ almost-THz HBT

Target Performance:700 GHz f ~1000 GHz fmax

330 GHz digital clock rate (static dividers)600 GHz power amplifiers

collector: 75 nm thick, 20 mA/m2 current density40 mW/m2 power density @ 2V

~3-4 V breakdown (BVCEO)

InGaAs base

BC grade

collector

N+ sub collector

S.I. InP substrate

emitter

emitter contact

base contact

N- drift collector

emitter: 125 nm width, 5 m2 contact resistivity

base contact: 75 nm width, 5 m2 contact resistivity

Page 12: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

65 nm Scaling Generation→beyond 1-THz HBT

Target Performance:1.0 THz f 1.7 GHz fmax

450 GHz digital clock rate (static dividers)1 THz power amplifiers

collector: 53 nm thick, 35 mA/m2 current density70 mW/m2 power density @ 2V→ 2-3 V breakdown (BVCEO)

InGaAs base

BC grade

collector

N+ sub collector

S.I. InP substrate

emitter

emitter contact

base contact

N- drift collector

emitter: 62.5 nm width, 2.5 m2 contact resistivity

base contact: 70 nm width, 5 m2 contact resistivity

Page 13: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

THz Transistors:addressing the keyscaling challenges

Page 14: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

Wafer first cleaned in reducing

Pd & Pt react with III-V semiconductor

Penetrate surface oxide

Today provide 5 -m2 resistivity (base)

→ investigate better cleaning, alternative

reaction metals

Our HBT Base Contacts Today Use Pd or Pt to Penetrate Oxides

Reacted region

Pt

InGaAs

Au

Pt

Reacted region

InGaAs

Pt Contact after 4hr 260C Anneal

Pt/Au Contact after 4hr 260C Anneal

TEM : Lysczek, Robinson, & Mohney, Penn State Sample: Urteaga, RSC

Chor, E.F.; Zhang, D.; Gong, H.; Chong, W.K.; Ong, S.Y. Electrical characterization, metallurgical investigation, and thermal stability studies of (Pd, Ti, Au)-based ohmic contacts. Journal of Applied Physics, vol.87, (no.5), AIP, 1 March 2000. p.2437-44.

Page 15: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

Reducing Emitter Resistance: ErAs Emitter Contacts

Epitaxial semimetal similar crystal structure to III-V semiconductors can be grown by MBE

Material Lattice constant

mismatch to ErAs

mismatch to ErSb

ErAs 5.7427Å

ErSb 6.108Å

GaAs 5.6532Å -1.6% -8.0%

InP 5.8687Å 2.1% -4.0%

GaSb 6.0959Å 5.8% -0.2%

III Er AsQ. G. Sheng, J. Appl. Phys. (1993)

A Guivarc’h, J. Appl. Phys. (1994)

ErAs: Rocksalt structure

III-V: Zinc blend structure

*A. Guivarc’h, Electron. Lett.(1989)**C.J.Palmstrøm Appl. Phys. Lett. (1990)

Zimmerman, Gossard & Brown, UCSB

In-situ contacts → no oxides, no contaminants Lattice matched → few defect states → no surface Fermi pinningThermodynamically stable → little intermixingWell-controlled (atomic precision) interface

Page 16: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

Temperature Rise Within Transistor & Substrate

e

e

EInPInP W

L

LK

PT ln

increase re temperatulogarithic scaling HBT

1,

1:2 decreases spacing HBT

1:4 decreases dth emitter wi

rateclock digitalin doublingeach For

D

We

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700

tem

pe

ratu

re r

ise

in s

ub

stra

te, K

elvi

n

master-slave D-Flip-Flop clock frequency, GHz

clocksub fT GHz/ 160 m 15

rateclock digital GHz 300at even

rise re temperatusubstrate acceptable

allowsly aggressive substrate theThinning

Page 17: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

Temperature Rise Within Package

chipCu

chippackage WK

PT

2

2

Rise eTemperatur Package Total

0

50

100

150

200

100 200 300 400 500 600

pa

cka

ge t

em

pe

ratu

re r

ise

, K

elv

in

fclock,

GHz

12 mA per transistor (25 logic load resistor)

3 mA per transistor (100 logic load resistor)

n)dissipatior transisto( 1.5 power IC

rs/IC transisto1000

bias V 2

)GHz/ (150 m 20 :spacing Transistor

:sAssumption

ce

clock

V

f

rate.clock digital GHz 300at even

IC / rs transisto1000 with

rise re temperatupackage acceptable

loading) (100stor per transi mA 3At

1:2 decrease dimensions chip

1:2 decreases spacing HBT

1:4 decreases dth emitter wi

rateclock digitalin doublingeach For

chip

e

W

D

W

Page 18: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

UCSB DHBTs: 500-600 nm Scaling Generation

1.3 m base-collector mesa1.7 m base-collector mesa

Zach Griffith

600 nm emitter width

Page 19: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

40, VBR,CEO = 3.9 V.

Emitter contact Rcont < 10 m2

Base : Rsheet = 610 /sq, Rcont = 4.6 m2

Collector : Rsheet = 12.1 /sq, Rcont = 8.4 m2

Vcb

= -0.3 V

0

2

4

6

8

10

0 2.5 5 7.5 10 12.50

5

10

15

20

25

Ccb

/Ae (

fF/

m2 )

Je (mA/m2)

Ccb (fF

)

-0.2 V

0.0 V

0.2 V

Vcb

= 0.6 V

Ajbc

= 1.3 x 6.5 m2

Ccb

/Ic=0.2 ps/V

0.4 ps/V

0.6 ps/V

0.8 ps/V

1.0 ps/V1.5ps/V

Ajbe

= 0.6 x 4.3 m2

Zach Griffith

0

5

10

15

20

25

30

35

109 1010 1011 1012

Gai

ns (

dB

)

Frequency (Hz)

U

Ajbe

= 0.6 x 4.3 um2

Ic = 20.6 mA, V

ce = 1.53 V

Je = 8.0 mA/um2, V

cb= 0.6 V

ft = 450 GHz, f

max = 490 GHz

h21

10-12

10-10

10-8

10-6

10-4

0.01

0 0.25 0.5 0.75 1

I b, Ic (

A)

Vbe

(V)

VCB

= 0.0 V (dashed)

VCB

= 0.3 V (solid)

Ic

Ib

nc = 1.12

nb = 1.41

Gummel characteristics

InP DHBT: 600 nm lithography, 120 nm thick collector, 30 nm thick base

Page 20: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

Average 50, BVCEO = 3.2 V, BVCBO = 3.4 V (Ic = 50 A)

Emitter contact (from RF extraction), Rcont 8.6 m2

Base (from TLM) : Rsheet = 805 /sq, Rcont = 16 m2

Collector (from TLM) : Rsheet = 12.0 /sq, Rcont = 4.7 m2

InP DHBT: 600 nm lithography, 75 nm collector, 20 nm base

Peak f

Peak fmax

DC characteristics

RF characteristics

Aje = 0.65 4.3 m2 , Ib,step = 175 A

Page 21: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

unitsdata

current steering

data emitter

followers

clock current steering

clock emitter

followerssize m2 0.5 x 3.5 0.5 x 4.5 0.5 x 4.5 0.5 x 5.5

currentdensity

mA/m2 6.9 4.4 4.4 4.4

Ccb/Ic psec / V 0.59 0.99 0.74 0.86

Vcb V 0.6 0 0.6 1.7

f GHz 301 260 301 280

fmax GHz 358 268 358 280

UCSB / RSC / GCS 150 GHz Static Frequency Dividers

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100 120 140 160

Min

imu

m in

put

pow

er (

dBm

)

frequency (GHz)

IC design: Z. Griffith, UCSBHBT design: RSC / UCSB / GCSIC Process / Fabrication: GCSTest: UCSB / RSC / Mayo

-80

-70

-60

-50

-40

-30

74.9975 74.9987 75.0000 75.0012 75.0025

Out

put

Pow

er (

dB

m)

frequency (GHz)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0.00 19.00 38.00 57.00 76.00

Out

put

Pow

er (

dB

m)

frequency (GHz)

probe station chuck @ 25C

PDC,total = 659.8 mWdivider core without output buffer 594.7 mW

Page 22: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

7.5 mW output power

175 GHz Amplifiers with 300 GHz fmax Mesa DHBTs

7 dB gain measured @ 175 GHz

2 fingers x 0.8 um x 12 um, ~250 GHz f, 300 GHz fmax , Vbr ~ 7V, ~ 3 mA/um2 current density

V. Paidi, Z. Griffith, M. Dahlström

-10

-5

0

5

10

15

140 150 160 170 180 190 200

S2

1, S1

1, S

22 d

B

Frequency, GHz

S21

S11

S22

7-dB small-signal gain at 176 GHz8.1 dBm output power at 6.3 dB gain

Page 23: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

250 nm scaling generation DHBTs

• 100 % I-line lithography

• Emitter contact resistance reduced 40%: from 8.5 to 5 m2

• Base contact resistance is < 5 m2 --hard to measure

• Recall, 1/8 m scaling generation needs 5 m2 emitter c

Page 24: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

0.30 µm emitter junction, Wc/We ~ 1.6

Page 25: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

First mm-wave results with 250 nm InP DHBTs

150 nm material

250 nm emitter width

f = 420 GHzfmax = 650 GHz~6 V breakdown30 mW/um2 power handling

results submitted postdeadline to 2006 DRC, E. Lind et al

Page 26: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

330 GHz Cascode Power Amplifiers In Design

Thin-film microstrip lines Output Psat = 50 mW (17 dBm) 10-dB associated power gain use the 650 GHz fmax transistors

-5

0

5

10

15

20

0

0.05

0.1

0.15

0.2

0.25

-15 -10 -5 0 5 10

Gai

n (d

B),

Out

put P

ower

(dB

m)

PA

E (%

)

Input Power, dBm

PAE

Gain

Output Power

-10

-5

0

5

10

15

260 280 300 320 340 360

S21

, S

11,

S22

( d

B )

Frequency, GHz

S21

S11

S22

Page 27: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

Frequency Limits of Bipolar Integrated Ciruits

Done: ~475 GHz ft & fmax 150 GHz static dividers 160 Gb/s MUX & DMUX (Chalmers/Vitesse)

250 nm results coming very soon. expect ~200 GHz digital clock rate, 340 GHz amplifiers

THz transistors will come The approach is scaling. The limits are contact and thermal resistance.

Page 28: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

Performance Parameters for Fast Logic & Mixed-Signal

clock clock clock clock

inin

out

out

cexLOGIC

LOGIC

Ccb

becbi

becbC

LOGIC

IRq

kTV

V

IR

CCR

CCI

V

4

leastat bemust swing logic The

resistance base the through

charge stored

collector base Supplying

resistance base the through

charging ecapacitanc on Depleti

swing logic the through

charging ecapacitanc on Depleti

:by ermined Delay DetGate

bb

depletion,bb

depletion,

JVR

CI

CCIV

f

ex

cbC

becbCLOGIC

cb

high at lowfor low very bemust

objective.design HBTkey a is /High

total.of 80%-55% is

with correlated not wellDelay

delay; totalof 25%-10y typicall)(

logic

depl,

Design HBTs for fast logic, not for high ft & fmax

Page 29: Frequency Limits of Bipolar Integrated Circuits rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Mark Rodwell University of California, Santa Barbara.

Performance Parameters for mm-wave Power

0

5

10

15

20

25

30

10 100

MS

G/M

AG

, dB

Frequency, GHz

Common base

Common Collector

Common emitter

U

Gain.....under large-signal conditions

...gain is less than MAG/MSG...

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8

J e (m

A/

m2 )

Vce

(V)

6.8 V BVCEO

10 mW/um2

20 mW/um2

maxminmaxmax 81 IVVP

Breakdown AND power density