Frank Rathmann Polarisationcollaborations.fz-juelich.de/ikp/pax/public_files/... · 3/11/2004  ·...

40
Polarisation Polarisation Experiments Experiments in Storage Rings in Storage Rings Frank Rathmann Frank Rathmann IKP, Forschungszentrum Jülich IKP, Forschungszentrum Jülich Cologne, March 11, 2004 COSY EDDA ANKE PIT ANKE A y p

Transcript of Frank Rathmann Polarisationcollaborations.fz-juelich.de/ikp/pax/public_files/... · 3/11/2004  ·...

  • PolarisationPolarisation Experiments Experiments in Storage Ringsin Storage Rings

    Frank RathmannFrank RathmannIKP, Forschungszentrum JülichIKP, Forschungszentrum Jülich

    Cologne, March 11, 2004

    COSY

    EDDA

    ANKE

    PIT ANKE

    Ayp

  • Frank Rathmann Polarization Experiments in Storage Rings 2

    OutlineOutline

    •• IntroductionIntroduction•• Experiments with Hadronic ProbesExperiments with Hadronic Probes•• Methods and InstrumentationMethods and Instrumentation•• Far Future: Polarized AntiprotonsFar Future: Polarized Antiprotons•• SummarySummary

  • Frank Rathmann Polarization Experiments in Storage Rings 3

    IntroductionIntroduction

    • Hadronic Probes:–IUCF-PINTEX:

    • Proton-Proton Elastic• NN → NNπ• Proton-Deuteron Elastic

    –COSY-EDDA:• Proton-Proton Elastic• Time-Reversal Invariance

    –COSY-ANKE:• Proton-Deuteron Dynamics• Neutron-Proton Elastic

    –RHIC-SPIN• Electromagnetic Probes:

    –Bates-BLAST–Novosibirsk-VEPP-3–HERA-HERMES (Plenary Talk)

    Experimental and theoreticaldevelopments pave the way to

    Future Hadron PhysicsFuture Hadron Physics programs

    Near future exploitationat COSY

    Past ~10 years, tremendousprogress in spin-physics

    experiments with polarizedbeams on internal targets

  • Frank Rathmann Polarization Experiments in Storage Rings 4

    OutlineOutline

    •• IntroductionIntroduction•• Experiments with Hadronic ProbesExperiments with Hadronic Probes•• Methods and InstrumentationMethods and Instrumentation•• Far Future: Polarized AntiprotonsFar Future: Polarized Antiprotons•• SummarySummary

  • Frank Rathmann Polarization Experiments in Storage Rings 5

    11stst Example: Elastic Scattering (low energy)Example: Elastic Scattering (low energy)

    Relative statistical error of normalization

    δδδδk/k (%)

    0.31

    1.08

    0.89

    1.17

    1.01

    1.03

    0.86

    1.00

    Data base beginning of 90’s After IUCF measurements

    197

    250

    280

    294

    310

    350

    399

    449

    T(MeV)

    PINTEXPINTEX--IUCF:IUCF: Doubling the pp elastic world data base with highlyaccurate data ~ 6 weeks of data taking!

    π0threshold

  • Frank Rathmann Polarization Experiments in Storage Rings 6

    22ndnd Example: Elastic Scattering (higher energy)Example: Elastic Scattering (higher energy)

    Elastic pp scattering• Characterization of NN-interaction:

    – Large kinematical range:• 1.0 - 3.3 GeV/c, 30° - 90° [c.m.]

    – High precision data• Unpolarized, single, double polarized• Large impact on pp PSA >500 MeV

    • Further Results:– Search for dibaryons � excluded!– Polarimetry for the pp system

    T=2.1 GeVCharacterization of NN scattering

    EDDAEDDA--COSYCOSY

  • Frank Rathmann Polarization Experiments in Storage Rings 7

    33rdrd Example: Pion ProductionExample: Pion Production

    • simplest inelastic NN channelsystem of nontrivial complexity

    - NN → NNπ• pseudoscalar meson with spin 0

    - spin algebra ½ + ½ → ½ + ½• good clean experimental signature

    - pp→ppπ0 , pp→pnπ+• close to threshold

    - few partial waves involved- simple detection

    Prediction of Observables: (Jülich theory group)• energy dependence σ(η)• differential cross sections dσ/dΩ, d3σ/dΩdp, …• analyzing power Ay(θ,p,..)• spin correlation coeff. Cxx(θ,p,..), Czz(θ,p,..), ….

    PINTEXPINTEX--IUCF:IUCF: Double polarized pion production

    N

    N

    PNN, LNN

    q, lπ

    π

    π=ηm

    )(qmax Near Threshold: η

  • Frank Rathmann Polarization Experiments in Storage Rings 8

    33rdrd Example: Pion ProductionExample: Pion Production

    )2(2)()(

    )(2)()(

    Pp*

    PpPsSsL

    Pp*

    SsPsT

    PpPsSstot

    σ−σ−σ−σ=→σ−→σ=σ∆

    σ+σ−σ=↑↑σ−↑↓σ=σ∆

    σ+σ+σ=σ

    Experiment• polarized beam on polarized target ±Py, ±Qx, ±Qy, ±Qz• identification of three-body reaction channel• integration over full phase space

    Interpretation (Partial Wave Analysis): pp→ppπ0

    Labels:(LNN, lπ)=0,1

    σσ∆+

    σσ∆+=

    σσ

    tot

    L

    tot

    T

    tot

    Ps

    211

    41

    Direct measurement of the Ps cross section

    Total SpinTotal Spin--dependent Cross Sectionsdependent Cross Sections

  • Frank Rathmann Polarization Experiments in Storage Rings 9

    33rdrd Example: Pion ProductionExample: Pion Production

    pp→ppπ00m

    )(q 0maxπ

    π=η

    Phase Space

    Jülich Model

    Measured Partial Wave Contributions

    Phenomenological Models unsatisfactory (finished)New approach to pion production using χPT underway (Jülich group)

  • Frank Rathmann Polarization Experiments in Storage Rings 10

    Ongoing Experiments: Deuteron BreakupOngoing Experiments: Deuteron Breakup

    Tp (GeV)

    pd dp

    pd (pp)+n

    ONESS

    0.3 0.4 0.5 0.6 0.65

    qNN (GeV/c)

    0.5 1 1.5 2 2.5 3

    10-2

    10-1

    1

    10

    102

    103

    dσ/

    dΩ

    cm pp (µ

    b/s

    r)

    Reid Soft Core

    Paris

    – Investigate pd dynamics at high momentum transfer:

    – pd � (pp)s n– Kinematics like pd backward

    elastic→ S-wave pp-pairs→ Suppression of ∆

    – Progress1. cross sections (�)2. Analyzing Power Ayp (�)3. Future: Polarized target

    – Analyzing Power T20 – Spin-Correlation Parameters

    (double polarized)

    Differential cross sectionANKEANKE--COSYCOSY:

    Epp < 3 MeV

    V. Komarov et al., PLB 562, 227 (2003)

  • Frank Rathmann Polarization Experiments in Storage Rings 11

    Ongoing Experiments: Deuteron BreakupOngoing Experiments: Deuteron Breakup

    ANKEANKE--COSYCOSYSurprisingly large Aypin pd � (pp)s n

    • Explanation?

    Effect shows strong energy dependence

    Epp < 3 MeV

    Epp < 3 MeV

    p d

    pp

    n

    θcm~166o?

  • Frank Rathmann Polarization Experiments in Storage Rings 12

    npddσσσσσσσσ/d/dΩΩΩΩΩΩΩΩ

    Future Experiments: NN Interaction (I=0)Future Experiments: NN Interaction (I=0)

    • pn elastic data base scarcely populated• Phase Shift Analysis needed• Both Isospin channels required

    0-101I3

    0npnnnp 1pp

    I

    Methods:– Charge-Exchange breakup

    •• dpdp→→((pp)pp)ssnn– Polarized deuteron target with

    spectator tagging•• pdpd→→ppsspnpn..

    Future:–– Similar data set for pn as produced Similar data set for pn as produced

    by EDDA for pp systemby EDDA for pp system

    COSYCOSY--ANKEANKE

    ppddσσσσσσσσ/d/dΩΩΩΩΩΩΩΩ

    symmetric

  • Frank Rathmann Polarization Experiments in Storage Rings 13

    Future Experiments: NN Interaction (I=0)Future Experiments: NN Interaction (I=0)

    COSYCOSY--ANKE:ANKE:Method: Charge-Exchange breakup

    sensitive to spin-dependent amplitudes

    Deuteron acts as a spin filter

    Direct reconstruction of spin-flip amplitudes in collinear kinematics (q=0)

    ( )( ) )cos(Re2IC

    ,2IT

    2I

    *y,y

    2220

    22

    βε ϕ−ϕ⇒εβ−=

    εβ⇒

    ε−β=

    ε+β=

    double polarized

    ( ) npppd0

    1S→�

    Method works

  • Frank Rathmann Polarization Experiments in Storage Rings 14

    Future Experiments: Time Reversal Invariance TestFuture Experiments: Time Reversal Invariance Test

    COSYCOSY--TRIC: PTRIC: P--even, Teven, T--oddodd

    Total polarization correlation coefficient Ay,xz leads to relative difference of current slopes

    – Milestone: Operation of Precision BCT

    IBeam

    time

    COSY used as acceleratorand detector:

  • Frank Rathmann Polarization Experiments in Storage Rings 15

    Future Experiments: Future Experiments: Parity of Parity of θθ+ + PentaquarkPentaquark

    Double polarization fixes parity of θ+ free of any model!Spin-correlation coefficient Axx in pp ����θ+ΣΣΣΣ+

    +1

    -1

    50 Q [MeV]0

    neg. Parity

    pos. Parity

    Axx

    appears s

    oon in PL

    B

    WASAWASA--COSYCOSYwith a polarized

    jet target

  • Frank Rathmann Polarization Experiments in Storage Rings 16

    OutlineOutline

    •• IntroductionIntroduction•• Experiments with Hadronic ProbesExperiments with Hadronic Probes•• Methods and InstrumentationMethods and Instrumentation•• Far Future: Polarized AntiprotonsFar Future: Polarized Antiprotons•• SummarySummary

  • Frank Rathmann Polarization Experiments in Storage Rings 17

    Methods and InstrumentationMethods and Instrumentation

    • Polarized Beams– Conservation of hadron beam polarization in a ring routinely done– Export of a calibrated beam polarization to other energies– Spin manipulation of stored beams

    • flipping the beam spin• transverse and/or longitudinal polarizations possible

    • Polarized Targets– Polarized gas targets are routinely used at many storage rings

    • New Instrumentation– Polarized Target for ANKE– Spectator Detector (pn physics at ANKE)

  • Frank Rathmann Polarization Experiments in Storage Rings 18

    11stst Example: Polarization ExportExample: Polarization Export

    Possible only with a stored beam

    Export polarization from a beam energy, where it is calibrated

    COSYCOSY--ANKEANKEMethod employed for pd-breakup

    calibrated

    unknown

    time

  • Frank Rathmann Polarization Experiments in Storage Rings 19

    22ndnd Example: Polarized Internal Gas TargetExample: Polarized Internal Gas Target

    Spectrometer magnet

    Lamb-Shift Polarimeter

    Atomic Beam Source

    COSYCOSY--ANKE goes double polarized ANKE goes double polarized

    TalkR. Engels

    Features of polarized internal targets1. rapid reversal of target spin (x,y,z): 2. isotopically purity3. low background (absence of container walls)4. no radiation damage (gas replenished every few ms)

  • Frank Rathmann Polarization Experiments in Storage Rings 20

    33rdrd Example: SpectatorExample: Spectator--Proton DetectionProton Detection

    Features:– Three layers (double sided)

    – 1st: 60 µm– 2nd:300 µm– 3rd: 5000 µm

    – Ekin~2-40 MeV– 800 Channels– Self-triggering– On-board electronics– UHV compatible– Large Acceptance

    - 10% per telescope- 30 mm from the beam

  • Frank Rathmann Polarization Experiments in Storage Rings 21

    OutlineOutline

    •• IntroductionIntroduction•• Experiments with Hadronic ProbesExperiments with Hadronic Probes•• Methods and InstrumentationMethods and Instrumentation•• Far Future: Polarized AntiprotonsFar Future: Polarized Antiprotons•• SummarySummary

  • Frank Rathmann Polarization Experiments in Storage Rings 22

    HESR

    HESR: High Energy Storage Ring• Energy: 0.8- 15 GeV• Length 442 m• N = 5 x 1010 antiprotons• High luminosity

    - 2 x 1032 cm-2s-1

    • High resolution- ∆p/p ~ 10-5 (8 MV HE e-cooling)

    • Development of Cooling methods– electron and/or stochastic– 2MV prototype e-cooler at COSY

    PANDA: Internal Detector

    Far Future: Polarized AntiprotonsFar Future: Polarized Antiprotons

    Production Target Production rate 107/sec at

    30 GeV

    Future Facility at GSIFacility at GSI

    Letter of Intent: PAXPolarized Antiproton EXperiments(www.fz-juelich.de/ikp/pax)

    NESR

    CR

    SuperFRS

  • Frank Rathmann Polarization Experiments in Storage Rings 23

    PPolarized olarized AAntiproton ntiproton EEXXperimentsperiments at HESRat HESR

    Central physics issue

    Transversity distribution of the nucleon– last leading-twist missing piece of the QCD

    description of the partonic nucleon structure– directly accessible uniquely via the double

    transverse spin asymmetry ATT in Drell-Yan– h1q (x,Q2) of the proton for valence quarks

  • Frank Rathmann Polarization Experiments in Storage Rings 24

    Antiproton Polarizer: Antiproton Polarizer: SpinfilterSpinfilter

    Expected Buildup

    1 10 100 1 .103 1 .104 1 .1050.01

    0.1

    1

    10

    100

    1 .103181.621

    0.022

    σ etr T( )

    1.5 104×5 T10 100 1000 T (MeV)

    σ e⊥

    (mba

    rn) 100

    10

    1

    0 5 10 15 20 25 300

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    beam lifetime [h]

    Pola

    rizat

    ion

    0.08

    4.72 10 8−×

    P2 t 800,( )

    P2 t 500,( )

    I t 10 3600⋅,( )

    302.778 10 5−× t3600 t (h)5 10 15 20

    antip

    roto

    nP

    olar

    izat

    ion

    (%) 8

    6

    4

    2

    T=500 MeV

    T=800 MeV

    Target thickness 5·1014 atoms/cm2Electron Polarization 0.9

    Goal

    Spin-Transfer Cross Section(Electrons to Antiprotons)

    unpolarizedbeam

    polarized target

    polarized beam

  • Frank Rathmann Polarization Experiments in Storage Rings 25

    Method: Method: TransversityTransversity in in DrellDrell--YanYan processesprocesses

    )M,x(q)M,x(qe

    )M,x(h)M,x(heâ

    ddddA 2

    2q

    21

    2q

    22

    q1

    q

    21

    q1

    2q

    TTTT∑

    ∑=

    σ+σσ−σ≡

    ↑↓↑↑

    ↑↓↑↑

    p pqL

    q

    l+

    l-q2=M2

    qT

    PAX: Polarized antiproton beam → polarized proton target (both transverse)

    ,...d,d,u,uq =

    M invariant Massof lepton pair

    φθ+

    θ= 2coscos1

    sinâ 22

    TT

    Elementary QED process−+→ llqq

    θ: polar angle of leptonin l+l- rest frame

    ϕ: azimuthal angle with respectto proton polarization

  • Frank Rathmann Polarization Experiments in Storage Rings 26

    Measurement of ATT also planned at RHIC, but τ=x1x2=M2/s~10-3→ Exploration of the sea quark

    content ATT very small (< 1%)

    Main contribution to Drell-Yan events at PAX from x1~x2~√τ→ deduce x-dependence of h1u(x,M2)

    xF=x1-x20 0.2 0.4 0.6

    0.15

    0.20

    0.25TT

    TT

    âA

    Anselmino, Drago, Nikolaev

    T=22 GeV

    T=15 GeV

    0.3

    PAX typical kinematics M2~10 GeV2, s~30-50 GeV2 → τ=x1x2=M2/s~0.2-0.3

    only valence quarks quarks withlarge x contribute → h1q(x,Q2) large

    Predictions: Predictions: TransversityTransversity

    Models predict |h1u|>>|h1d|

    )M,x(u)M,x(u)M,x(h)M,x(hâA 2

    22

    1

    22

    u1

    21

    u1

    TTTT =

    )qqqwhere( pp ==

  • Frank Rathmann Polarization Experiments in Storage Rings 27

    Detector ConceptDetector Concept

    Large Acceptance Detector for PAXLarge Acceptance Detector for PAX

  • Frank Rathmann Polarization Experiments in Storage Rings 28

    OutlineOutline

    •• IntroductionIntroduction•• Experiments with Hadronic ProbesExperiments with Hadronic Probes•• Methods and InstrumentationMethods and Instrumentation•• Far Future: Polarized AntiprotonsFar Future: Polarized Antiprotons•• SummarySummary

  • Frank Rathmann Polarization Experiments in Storage Rings 29

    SummarySummary

    New methods and instrumentation allow for a broad strong spin-physics program at COSY1. NN studies

    – pn system– Time Reversal Invariance Test

    2. Deuteron breakup3. Double polarized Heavy Meson Production

    – Parity of Pentaquark with WASA-COSY– η and η‘ studies

    Future GSI offers unique oportunities for spin physics– Polarized Antiprotons– Measure Transversity distribution of the nucleon

  • Frank Rathmann Polarization Experiments in Storage Rings 30

    Final RemarkFinal Remark

    Polarization data has often been the graveyard of fashionable theories. If theorists had their way, they might just ban such

    measurements altogether out of self-protection.J.D. Bjorken

    St. Croix, 1987

  • Frank Rathmann Polarization Experiments in Storage Rings 31

    PINTEXPINTEX--IUCF: NN ScatteringIUCF: NN Scattering

    Atomstrahl: 2 HFS 6.7⋅1016 H/s1 HFS 3.6 ⋅1016 H/s

    Polarization: Pmax= 0.87Dissoziator

    SextupolmagneteMFT

    ProjektilStrahl

    Speicherzelle und Rückstoßdetektoren schwaches Führungsfeld (∼∼∼∼ 3 G)

  • Frank Rathmann Polarization Experiments in Storage Rings 32

    Methods: Conservation of Beam PolarizationMethods: Conservation of Beam Polarization

    Indiana Cooler

    H.O. Meyer et al., PRE 56, 3578 (1997)T=200-450 MeV

  • Frank Rathmann Polarization Experiments in Storage Rings 33

    Instrumentation: Polarized Beam Sources Instrumentation: Polarized Beam Sources

    I=7.5⋅1016 H/s

    Tremendous progress since 1956 ~ 106 more atoms/s

    Luminosity (double polarized)Electron machines: ~1031 cm-2s-1Proton machines: ~1030 cm-2s-1

  • Frank Rathmann Polarization Experiments in Storage Rings 34

    MethodMethod: Spin Manipulation: Spin Manipulation

    SPIN@COSY (A. Krisch et al.)– Frequent spin-flips reduce

    systematic errors– Spin-Flipping of protons and

    deuterons by artifical resonance • RF-Dipole

    – Applicable at High Energy Storage Rings (RHIC, HESR)

    Stored protons:P(n)=Pi(η)n

    ⇒ η=(99.3±0.1)%

    New Ferrite Rf-dipole– higher ∫Bdl=0.58 T mm– stored deuterons flipped

    also• efficiency η>0.9

  • Frank Rathmann Polarization Experiments in Storage Rings 35

    WASAWASA--COSY: Parity of COSY: Parity of θθ++ PentaquarkPentaquark

    Rate Estimate:• Polarized proton beam on polarized atomic jet in WASA

    – L = Np·frev·dt =5·1010·1.6·106·1012 = 8·1028 cm-2s-1 ~ 1028 cm-2s-1

    – N = L·400 nb = 4/day with 10% detection efficiency– δAxx = 1/(P·Q) ·1/sqrt(N) = 0.1

    [achievable after 100 days (400 evts)]

    pp → Σ+θ+ → pπ0

    pK0

    Ks0→π0 π0 (0.5·0.31=0.15)pπ0 (0.52) BR=0.08

  • Frank Rathmann Polarization Experiments in Storage Rings 36

    Instrumentation: HighInstrumentation: High--Energy Electron CoolingEnergy Electron Cooling

    • Luminosity (“1032”): intense beams and dense targets• Internal beam heating � need High Energy Electron Cooler (2 MV) • “Toroidal Racetrack”

    Cooling Section (3m)

    HV Terminal

    COSYBeam

    �First step to HESR Cooler: (2 MV � 8 MV)

  • Frank Rathmann Polarization Experiments in Storage Rings 37

    Instrumentation: Photon DetectorInstrumentation: Photon Detector

    • Detection of multi-photon final states: new physics window• “Photon-blind” � necessitates an electromagnetic calorimeter

    – Unique opportunity: WASA COSY in 2005

    1.5 m

    Pellet Target

    Forward DetectorElectromagnetic Calorimeter

    Large acceptanceneutral and charged

    particle detector

    WASA at TSL / CELSIUS

    (Uppsala)

  • Frank Rathmann Polarization Experiments in Storage Rings 38

    ANKEANKE--COSYCOSY: Deuteron Breakup– new theoretical calculation

    using CD Bonn Potential

    Deuteron BreakupDeuteron Breakup

    J. Haidenbauer and Yu.N. UzikovPLB 562 (2003) 227

    Improvement:• relative softness of the CD Bonn

    wave functions compared to RSC Paris potentials:

    • 3S1–3D1 and 1S0

  • Frank Rathmann Polarization Experiments in Storage Rings 39

    Deuteron BreakupDeuteron Breakup

    Paris

    CD-Bonn

  • Frank Rathmann Polarization Experiments in Storage Rings 40

    HERA e+/- ring: •45 mA•27.5 GeV•P ≈ 55 %

    HERMES spectrometer

    HERMES experiment at DESYHERMES experiment at DESY--HERAHERA

    Electromagnetic Probes: HERMESElectromagnetic Probes: HERMES