Frank MPF Validation 2010€¦ · CFX Model Validation MT-Loop & TOPFLOW Test Matrix • M01...

63
Development and Development and Development and Development and Validation of Validation of Eulerian Eulerian Multiphase Flow Multiphase Flow Models in ANSYS CFD Models in ANSYS CFD Validation of Validation of Eulerian Eulerian Multiphase Flow Multiphase Flow Models in ANSYS CFD Models in ANSYS CFD Models in ANSYS CFD Models in ANSYS CFD Models in ANSYS CFD Models in ANSYS CFD Thomas Frank Thomas Frank ANSYS Germany ANSYS Germany [email protected] [email protected] Thomas Frank Thomas Frank ANSYS Germany ANSYS Germany [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] © 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary © 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

Transcript of Frank MPF Validation 2010€¦ · CFX Model Validation MT-Loop & TOPFLOW Test Matrix • M01...

Development and Development and Development and Development and Validation of Validation of EulerianEulerian

Multiphase Flow Multiphase Flow Models in ANSYS CFDModels in ANSYS CFD

Validation of Validation of EulerianEulerianMultiphase Flow Multiphase Flow

Models in ANSYS CFDModels in ANSYS CFDModels in ANSYS CFDModels in ANSYS CFDModels in ANSYS CFDModels in ANSYS CFD

Thomas FrankThomas FrankANSYS GermanyANSYS Germany

[email protected]@ansys.com

Thomas FrankThomas FrankANSYS GermanyANSYS Germany

[email protected]@[email protected]@[email protected]@ansys.com

© 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary© 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

Outline

• IntroductionMPF d l lid ti f• MPF model validation for adiabatic air-water flows

• Polydisperse MPF model• Polydisperse MPF model validation – MUSIG model

• Validation of the RPI wall• Validation of the RPI wall boiling model

• The FRIGG testcase for• The FRIGG testcase for boiling flow in rod bundles

• RPI & MUSIG model

© 2010 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary

RPI & MUSIG model• Summary & Outlook

ANSYS as Part of the German CFD Network in Nuclear Reactor Safety

FZ Dresden- ANSYS FZ KarlsruheRossendorf /

TOPFLOWGermany

GRS

Becker Technologies International Guest

AREVA Univ. Applied Sciences

gThAI test facility Visitors

AREVA

TU München:TD N l E

Univ. Applied SciencesZittau-Görlitz: IPM

Univ. Stuttgart: N l E

© 2010 ANSYS, Inc. All rights reserved. 3 ANSYS, Inc. Proprietary

TD, Nucl. Energy Nuclear Energy

Methodology of CFD Model Development & Validation

ExperimentExperiment

phys.phys.--math.math.ModelModel

Complex Complex GeometryGeometry

3d CFD Model3d CFD Model Complex Flow Complex Flow ConditionsConditions

ValidationValidationCombination with Combination with other Modelsother Models

© 2010 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary

Eulerian MPF Modeling- The Particle ModelMass weighted averaged conservation equations• Mass, momentum, energy transport equations for each phase

1

N

k k k k k klll k

r rt

Ul k

kk k k k k k k k k k kr r r P r

t

U U U F I

secondary drag lift turbulentwall virtual mass

mom. transfer dispersionlubrication

L WL TD Mk D V FF F FI F F

• turbulence models for each phase (e.g. k- / k- SST model, 0-eq. disp. phase turb. model, Sato model)

• heat transfer equations for each phase with interfacial transfer closurei t f i l f d i i l l

© 2010 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary

• interfacial forces need empirical closure• high void fraction effects, bubble induced turbulence, etc.

Lift force, Wall lubrication force & turbulent dispersion

Lift force:• due to asymmetric wake and deformed asymmetric particle shapeTomiyama CL correlation

( )L G L LL G LrC F U U U (Re ,Re , )L L PC C EoWall lubrication force:• surface tension prevents bubbles from approaching solid wallsAntal, Tomiyama & Frank W.L.F. modelsAntal, Tomiyama & Frank W.L.F. models

T b l t di i f

2

WL G L rel rel W W WwallC r F U U n n n P(Eo, y/d )wall WC C

Turbulent dispersion force:• turbulent dispersion = action of turb. eddies via interphase drag

3 tFD P FC r rU U F FAD model by

© 2010 ANSYS, Inc. All rights reserved. 6 ANSYS, Inc. Proprietary

34

tFD P FTD F F P P

P rF P F

C r rU U rd r r

F FAD model by

Burns et al. (ICMF’04)

Bubbly Flow Model Validation FZR MT-Loop and TOPFLOW Database

TOPFLOW

MT Loop

© 2010 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary

MT-Loop

CFX Model Validation MT-Loop & TOPFLOW Test Matrix

• M01 experimental test series on MT-Loop• evaluation based on air volume fraction profiles at L/D=59,2

(z=3 03m) from the sparger system(z=3.03m) from the sparger system• - numerically investigated test case conditions

finely disperse bubbly flow

y J_

L [m

/s]

bubbly flow with near wallvoid fraction maximum

bubbly flow in the transition

wat

er v

eloc

ity regime

bubbly flow with void fraction maximum at pipe center

b bbl flo ith oid

supe

rfici

al bubbly flow with void

fraction maximum at pipe center, bimodal

slug flow

© 2010 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary

superficial air velocity J_G [m/s]

Validation: Bubbly FlowsTurbulent Dispersion Force

3 00

k-eps + RPI TD (0.5)

3,00

e Fr

actio

n

k-eps + FAD TD

SST + RPI TD (0.5)

SST + FAD TDModel improvement

2,00

. Air

Volu

me

Data

1,00

Nor

m.

0,000 5 10 15 20 25

Radius, mm

© 2010 ANSYS, Inc. All rights reserved. 9 ANSYS, Inc. Proprietary

Monodispersed Bubbly Flow MT-Loop Test Case FZR-019

3 5FZD 019

2.5

3.0

3.5

n [-

]Experiment FZR-019

Antal W.L.F., Grid 2

Tomiyama W.L.F., Grid 2

FZD-019:

JL=1.017 m/sJG=0.004 m/s

1.5

2.0

d vo

lum

e fr

actio

y ,

Frank W.L.F., Grid 2

JG 0.004 m/sdP=4.8 mm

Grace dragTomiyama lift

0.5

1.0

norm

aliz

eTomiyama liftT./A./F. Wall L. ForceFAD Turb. Disp.SST turb. modelS t d l

0.00.00 5.00 10.00 15.00 20.00 25.00

Radius [mm]

Sato modelt=0.002s2210 Iterations

© 2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary

Monodispersed Bubbly Flow MT-Loop Test Case FZR-052

FZD 052 5 5FZD-052:

JL=1.017 m/sJG=0.0151 m/s 4.0

4.5

5.0

5.5n

[-]

Experiment FZR-052

Antal W.L.F., Grid 2

Tomiyama W.L.F., Grid 2JG 0.0151 m/sdP=4.4 mm

Grace dragTomiyama lift

2.5

3.0

3.5

d vo

lum

e fr

actio

n Tomiyama W.L.F., Grid 2

Frank W.L.F., Grid 2

Tomiyama liftT./A./F. Wall L. ForceFAD Turb. Disp.SST turb. modelS t d l 0 5

1.0

1.5

2.0

norm

aliz

ed

Sato modelt=0.002s2400 Iterations

0.0

0.5

0.00 5.00 10.00 15.00 20.00 25.00Radius [mm]

© 2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary

TOPFLOW Test Facility @ FZDTOPFLOW Test Facility @ FZD

movable diaphragmwire mesh sensorwire-mesh sensor

movable diaphragm

i j ti

© 2010 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary

gas injection

TOPFLOW-074 Test Case Conditions from Test Matrix• Selection of test case conditions:

• TOPFLOW-074 test case was subject of validation in the past• TOPFLOW-074 test case was subject of validation in the past• Superficial velocities: JG=0.0368 m/s

JL=1.017 m/sWi h t t l ti

© 2010 ANSYS, Inc. All rights reserved. 13 ANSYS, Inc. Proprietary

• Wire-mesh sensor measurements at locations:z=10, 15, 20, 40, 80, 160, 250, 520mm

3d Bubbly Flow Around ObstacleWater Velocity Comparisony

• ComparisonCFD Experiment

CFD Exp.CFD Experiment

• Absolute water velocity distribution in symmetry plane

• Import of exp. data into CFX Postinto CFX-Post

• Pre-interpolation of exp. data to pz=0.01m

© 2010 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary

3d Bubbly Flow Around ObstacleAir Void Fraction Comparison

• ComparisonCFD Experiment

CFD Exp.CFD Experiment

• Air void fraction distribution in symmetry plane

© 2010 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary

3d Bubbly Flow Around ObstacleAir Void Fraction Comparison

4) z=40mm 8) z=520mm

7)

8)

3) z=20mm 7) z=250mm

6)

5)

2)

3)

4)

2) z=15mm 6) z=160mm1)

2)

1) z=10mm 5) z=80mm

© 2010 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary

3d Bubbly Flow Around ObstacleCross-Sectional Air Void Fraction

5) z=80mm TOPFLOW ExperimentCFX Simulation

© 2010 ANSYS, Inc. All rights reserved. 17 ANSYS, Inc. Proprietary

ANSYS CFX Experimental Data Quantitative Comparison

• Quantitative data comparison @ cross sectionsz=±10 ±15 ±20 ±40 ±80 ±160 ±250 ±520mm:z ±10, ±15, ±20, ±40, ±80, ±160, ±250, ±520mm:– absolute water velocity– air volume fraction

z=520mm

x=-35mm x=+35mm

obstacle

© 2010 ANSYS, Inc. All rights reserved. 18 ANSYS, Inc. Proprietary

y=0mm z=-520mm

ANSYS CFX Experimental Data Quantitative Comparison

z=-80mmy=0mm

2.0

2.5

actio

n [-]

Experiment (z=-80mm)

CFX Simulation (z=-80mm)y=0mm

1.0

1.5A

ir Vo

lum

e Fr

a

0.0

0.5

-100 -75 -50 -25 0 25 50 75 100

[ ]

Nor

m. A

x [mm]

1.0

1.5

eloc

ity [m

/s]

0.5

olut

e W

ater

Ve

Experiment (z=-80mm)

CFX Simulation (z=-80mm)

© 2010 ANSYS, Inc. All rights reserved. 19 ANSYS, Inc. Proprietary

0.0-100 -75 -50 -25 0 25 50 75 100

x [mm]

Abs

o ( )

ANSYS CFX Experimental Data Quantitative Comparison

z=-20mmy=0mm

2.0

2.5

actio

n [-]

Experiment (z=-20mm)

CFX Simulation (z=-20mm)y=0mm

1.0

1.5A

ir Vo

lum

e Fr

a

0.0

0.5

-100 -75 -50 -25 0 25 50 75 100

[ ]

Nor

m. A

x [mm]

1.5

2.0

eloc

ity [m

/s]

0.5

1.0

olut

e W

ater

Ve

Experiment (z=-20mm)

© 2010 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary

0.0-100 -75 -50 -25 0 25 50 75 100

x [mm]

Abs

o

CFX Simulation (z=-20mm)

ANSYS CFX Experimental Data Quantitative Comparison

z=20mmy=0mm

2.0

2.5

actio

n [-]

Experiment (z=20mm)

CFX Simulation (z=20mm)

y=0mm

1.0

1.5A

ir Vo

lum

e Fr

a

0.0

0.5

-100 -75 -50 -25 0 25 50 75 100

[ ]

Nor

m. A

x [mm]

1 5

2.0

2.5

eloc

ity [m

/s]

Experiment (z=20mm)

CFX Simulation (z=20mm)

0.5

1.0

1.5

olut

e W

ater

Ve

© 2010 ANSYS, Inc. All rights reserved. 21 ANSYS, Inc. Proprietary

0.0-100 -75 -50 -25 0 25 50 75 100

x [mm]

Abs

o

ANSYS CFX Experimental Data Quantitative Comparison

z=80mmy=0mm 2.5

3.0

3.5

actio

n [-]

y=0mm

1.0

1.5

2.0

2.5

Air

Volu

me

Fra

0.0

0.5

0

-100 -75 -50 -25 0 25 50 75 100

[ ]

Nor

m. A Experiment (z=80mm)

CFX Simulation (z=80mm)

x [mm]

1 5

2.0

2.5

eloc

ity [m

/s]

Experiment (z=80mm)

CFX Simulation (z=80mm)

0.5

1.0

1.5

olut

e W

ater

Ve

© 2010 ANSYS, Inc. All rights reserved. 22 ANSYS, Inc. Proprietary

0.0-100 -75 -50 -25 0 25 50 75 100

x [mm]

Abs

o

ANSYS CFX Experimental Data Quantitative Comparison

z=250mmy=0mm

2.0

2.5

actio

n [-]

y=0mm

1.0

1.5A

ir Vo

lum

e Fr

a

0.0

0.5

-100 -75 -50 -25 0 25 50 75 100

[ ]

Nor

m. A Experiment (z=250mm)

CFX Simulation (z=250mm)

x [mm]

1 5

2.0

2.5

eloc

ity [m

/s]

Experiment (z=250mm)

CFX Simulation (z=250mm)

0.5

1.0

1.5

olut

e W

ater

Ve

© 2010 ANSYS, Inc. All rights reserved. 23 ANSYS, Inc. Proprietary

0.0-100 -75 -50 -25 0 25 50 75 100

x [mm]

Abs

o

Polydispersed Bubbly Flow Caused by Breakup & Coalescence

Transition from disperse bubbly flow to slug flow:

Balance between:• coalescence of bubbles• turbulent bubble breakup• turbulent bubble breakup

bubble size distribution;l di b bbl flpolydisperse bubbly flow

counter-current radial motion of small and large bubbles;

th l it fi ldmore than one velocity field

new population balance model (i h MUSIG)

© 2010 ANSYS, Inc. All rights reserved. 24 ANSYS, Inc. Proprietary

(inhomogeneous MUSIG)

Inhomogeneous MUSIG Model

• momentum equations are solved for N gas phases (vel. groups)• size fraction equations for Mi bubble size classes in each vel. group

bubble coalescence and break up over all M MUSIG groups• bubble coalescence and break-up over all Mi MUSIG groups

N(dP)breakup/

coalescence/evaporation d

1

d3

d4

d5

d6

d7

d8

d2

breakup/conden-sation

v1 v2 v3

Velocity group mass transfer

© 2010 ANSYS, Inc. All rights reserved. 25 ANSYS, Inc. Proprietary

dPdP,krit Break up Coalescence

Validation of 3x7 Inhomogeneous MUSIG Model on TOPFLOW-074

• good agreement at levels A, L through R• too fast spreading of the bubble plume from inlet due to too

intensive turbulent dispersionintensive turbulent dispersion

20 0

25.0Exp. FZR-074, level AExp. FZR-074, level CExp. FZR-074, level FE FZR 074 l l I

15.0

20.0

fract

ion

[-]

Exp. FZR-074, level IExp. FZR-074, level LExp. FZR-074, level OExp. FZR-074, level RCFX 074-A, Inlet level (z=0.0m)CFX 074-A, level C

10.0

Air

volu

me

,CFX 074-A, level FCFX 074-A, level ICFX 074-A, level LCFX 074-A, level OCFX 074-A, level R

0.0

5.0

0 0 25 0 50 0 75 0 100 0

A

© 2010 ANSYS, Inc. All rights reserved. 26 ANSYS, Inc. Proprietary

0.0 25.0 50.0 75.0 100.0

x [mm]

MUSIG Model Extension

• Basic population balance equationsNew terms

dn(m, r, t) n(m, r, t) U(m, r, t)n(m, n(m, r, t) m(r, t)dt

r, t)m tt r

B D B D

• Size fraction equations

B B C CB D B D Bubble number density

Breakup/Coalescence terms

Size fraction equations

B B C C

ji d i i d i i B D B Dj i( r f ) ( r U f ) S S S S

t xS

i ii i 1

i i 1 i 1 i

m mm m m m

Si=

for evaporation

≈≈© 2010 ANSYS, Inc. All rights reserved. 27 ANSYS, Inc. Proprietary

i ii 1 i

i i 1 i 1 i

m mm m m m

Si

for condensation iii

i

ii ≈≈

TOPFLOW Test Facility @ FZD8m

L~ 8

D=195mm

© 2010 ANSYS, Inc. All rights reserved. 28 ANSYS, Inc. Proprietary

Courtesy of FZD

Condensation Test Case

• P=2 [MPa]• Jw=1.0 [m/s]• Js=0.54 [m/s]s [ ]• Ts=214.4 [C]• Tw=210.5 [C] ∆Tw=3.9 [K]Tw 210.5 [ C] ∆Tw 3.9 [K]• Dinj = 1 [mm]• Detailed experimental data:Detailed experimental data:

– Bubble size distribution– Radial steam volume fraction distribution

© 2010 ANSYS, Inc. All rights reserved. 29 ANSYS, Inc. Proprietary

Dirk Lucas, Horst-Michael Prasser: “Steam bubble condensation in sub-cooled water in case of co-current vertical pipe flow”,Nuclear Engineering and Design, Volume 237, Issue 5, March 2007, Pages 497-508

Physical Model Setup

• Standard MUSIG & Extended MUSIG– 25 bubble size classes– 3 velocity groups:

03 [ ] 36 [ ] 630 [ ]03 [mm],36 [mm], 630 [mm]– Arranged in accordance with critical Tomiyama bubble

diameter for bubble size dependent lift forcediameter for bubble size dependent lift force– Break up model: Luo & Svendsen (FB=0.025)– Coalescence model: Prince & Blanch (FC=0.05)

© 2010 ANSYS, Inc. All rights reserved. 30 ANSYS, Inc. Proprietary

TOPFLOW Condensation Testcase

Inlet BC Inlet Position WLF TD Force Heat Transfer

Config 1 Dinj = 4mm Source point @ Wall - CTD=1.0 Nu=2+0.6Rep

0.5Pr0.3

Config 2 Dinj= 4 mm Source point @ 75 mm FWLF CTD=1.5 Nu=2+0.15Rep

0.8Pr0.5

C fi 3 D 1 Source point @ F CTD 1 N 2 0 1 R 0 8P 0 5Config 3 Dinj= 1 mm Source point @ 75 mm FWLF CTD=1.5 Nu=2+0.15Rep

0.8Pr0.5

© 2010 ANSYS, Inc. All rights reserved. 31 ANSYS, Inc. Proprietary

Results: Vapor Volume Fraction

© 2010 ANSYS, Inc. All rights reserved. 32 ANSYS, Inc. ProprietaryConfig 2 Config 3Config 1

Results: Vertical Averaged Steam Distribution

© 2010 ANSYS, Inc. All rights reserved. 33 ANSYS, Inc. Proprietary

Results: Radial Steam Distribution

© 2010 ANSYS, Inc. All rights reserved. 34 ANSYS, Inc. Proprietary

Results: Radial Steam Distribution

© 2010 ANSYS, Inc. All rights reserved. 35 ANSYS, Inc. Proprietary

Results: Bubble Size Distribution

© 2010 ANSYS, Inc. All rights reserved. 36 ANSYS, Inc. Proprietary

Results: Bubble Size Distribution

© 2010 ANSYS, Inc. All rights reserved. 37 ANSYS, Inc. Proprietary

CFD Simulation for Fuel Assemblies in Nuclear Reactors

Material PropertiesMaterial Properties Wall Boiling Wall Boiling & & Bulk CondensationBulk Condensationpp Bulk CondensationBulk Condensation

Conjugate Heat Conjugate Heat Transfer (CHT)Transfer (CHT)TurbulenceTurbulence

Multiphase FlowMultiphase Flow FSI: Stresses &FSI: Stresses &Multiphase Flow Multiphase Flow ModelingModeling

FSI: Stresses & FSI: Stresses & DeformationsDeformations

© 2010 ANSYS, Inc. All rights reserved. 38 ANSYS, Inc. Proprietary

Validation againstValidation againstExperimentsExperiments

CFD Simulation for Fuel Assemblies in Nuclear Reactors

Material PropertiesMaterial Properties Wall Boiling Wall Boiling & & Bulk CondensationBulk Condensationpp Bulk CondensationBulk Condensation

Conjugate Heat Conjugate Heat Transfer (CHT)Transfer (CHT)TurbulenceTurbulence

Multiphase FlowMultiphase Flow FSI: Stresses &FSI: Stresses &Multiphase Flow Multiphase Flow ModelingModeling

FSI: Stresses & FSI: Stresses & DeformationsDeformations

© 2010 ANSYS, Inc. All rights reserved. 39 ANSYS, Inc. Proprietary

Validation againstValidation againstExperimentsExperiments

Multiphase Flow Regimes for Boiling Water Flowg

subcooled flow

bubbly flow slug flow

annular flow

spray flow

ONB OSB

Tsat

T wall temperature

mean fluid temperature

x

temperature

subcooled nucleate boiling

© 2010 ANSYS, Inc. All rights reserved. 40 ANSYS, Inc. Proprietary

boiling (saturated boiling)

Flows with Subcooled Boiling (DNB) –RPI-Wall Boiling Model

qqqq Mechanistic wall heat partioning model:

EQFWall qqqq

convective heat flux1 ( )F F W Lq A h T T

evaporation heat fluxE G Lq m (h h )

quenching heat flux2 ( )Q Q W Lq A h T T

y

1A 2A2A

uQuenching heat

flux

Convective heat

flux

© 2010 ANSYS, Inc. All rights reserved. 41 ANSYS, Inc. Proprietary

t*m *m *m

RPI-Wall Boiling Model –Submodels for Model Closure

Submodels for closure of RPI wall boiling model:– Nucleation site density: Lemmert & Chawla , User Defined– Bubble departure diameter:

Tolubinski & Kostanchuk, Unal, Fritz, User Defined– Bubble detachment frequency:q y

Terminal rise velocity over Departure Diameter, User Defined– Bubble waiting time:

Proportional to Detachment Period, User Definedp– Quenching heat transfer: Del Valle & Kenning, User Defined– Turbulent Wall Function for liquid convective heat transfer coefficient

• Correlation for bulk flow mean bubble diameter required:• Correlation for bulk flow mean bubble diameter required: e.g. Kurul & Podowski correlation via CCL

• Supported combination of wall boiling & CHT in the solid

© 2010 ANSYS, Inc. All rights reserved. 42 ANSYS, Inc. Proprietary

pp g– GGI & 1:1 solid-fluid interfaces

RPI Wall Boiling Model in the ANSYS CFX-Pre 12.0 GUI

© 2010 ANSYS, Inc. All rights reserved. 43 ANSYS, Inc. Proprietary

Investigated Boiling Testcases

• Bartolomei et al. (1967,1982) • Bartolomei with recondensation(1980)R = 7.7

mm

Z= 2

m

q=0.

57M

W/

m2

Gin=900 kg/(s m2)

• Lee et al. (ICONE-16, 2008) • OECD NEA PSBT subchannelbenchmark (1987-1995, 2009)

© 2010 ANSYS, Inc. All rights reserved. 44 ANSYS, Inc. Proprietary

FRIGGFRIGG--6a Test Case6a Test CaseFRIGGFRIGG--6a Test Case6a Test Case((AnglartAnglart & & NylundNylund, , 1967, 1996 & 1997)1967, 1996 & 1997)((AnglartAnglart & & NylundNylund, , 1967, 1996 & 1997)1967, 1996 & 1997)

© 2010 ANSYS, Inc. All rights reserved. 45 ANSYS, Inc. Proprietary© 2010 ANSYS, Inc. All rights reserved. 45 ANSYS, Inc. Proprietary

FRIGG-6a Test CaseDescription

• Geometry (FT-6a)Adiabatic Wall

– Six electrically heated rods placed in a vertical adiabatic pipeadiabatic pipe

• Flow Parameters

LH=4.2 m

– Upward directed subcooled water flowM fl @I l

Heated Rod

f– Mass flux @Inlet Gin = 1163 kg m-2 s-1

– Pressure @Inlet

– Rod wall heat flux qRod = 0.522 MW m-2

– Liquid subcooling @Inlet

© 2010 ANSYS, Inc. All rights reserved. 46 ANSYS, Inc. Proprietary

Pressure @Inlet pin = 5 MPa

Liquid subcooling @Inlet Tsub= 4.5 K

FRIGG-6a Test Case Experimental Data

• Determination of Zone1

experimental data by gamma ray attenuation method:

Zone2

r

– Measurements of area averaged gas volume f ti i diff t

Zone3

fraction in different cross-sectional zones along the test section

Defintion of Zones:Defintion of Zones:• Zone1 (r < 14.6 mm)• Zone2 (14.6 mm < r < 28.6 mm)

Z 3 ( 28 6 )

© 2010 ANSYS, Inc. All rights reserved. 47 ANSYS, Inc. Proprietary

• Zone3 (r > 28.6 mm)

FRIGG-6a Test CaseMesh Refinement Hierarchyy

Mesh01 Mesh02 Mesh03

No. Elements699 x 150(104 850)

2796 x 300(838 800)

11184 x 600(6 710 800)

No. Nodes 116 421 884 639 6 892 869

Max y+ 180 94 51

Min Angle [deg] 51.9 50.4 49.64

Min Determinant 0.84 0.91 0.98

© 2010 ANSYS, Inc. All rights reserved. 48 ANSYS, Inc. Proprietary

Numerical Effort

~ 90 minutes@ 6 CPU’s

~ 17 hours@ 16 CPU’s

~ 6 days@ 40 CPU’s

FRIGG-6a Test CaseBaseline Setup: SST Steam VFp

Outlet OutletOutlet Outlet

T ti l di t ib ti f tPl t f t l f ti (M h03 SST)

© 2010 ANSYS, Inc. All rights reserved. 49 ANSYS, Inc. Proprietary

Two cross-sectional distributions of steam volume fraction (Mesh03,SST)

Plot of steam volume fraction (Mesh03, SST)

FRIGG-6a Test CaseBaseline Setup: SST TLp L

Outlet OutletOutlet Outlet

T ti l di t ib ti f li idPl t f li id t t (M h03 SST)

© 2010 ANSYS, Inc. All rights reserved. 50 ANSYS, Inc. Proprietary

Two cross-sectional distributions of liquid temperature (Mesh03,SST)

Plot of liquid temperature (Mesh03,SST)

FRIGG-6a Test CaseMesh Comparison

© 2010 ANSYS, Inc. All rights reserved. 51 ANSYS, Inc. Proprietary

Turbulence Modeling in Rod Bundles

• So far good comparison, but…– Wall friction in rod bundles leads to secondary flows– Anisotropic turbulence– SST BSL RSM – Does not influence so much cross-sectional averaged

flow propertiesflow properties– Secondary flows affect steam & temperature distributions

on heated wall surfaces Can be relevant for safety!

© 2010 ANSYS, Inc. All rights reserved. 52 ANSYS, Inc. Proprietary

FRIGG-6a Test CaseTurbulence Model Comparison

© 2010 ANSYS, Inc. All rights reserved. 53 ANSYS, Inc. Proprietary

FRIGG-6a Test CaseTurbulence Model Comparison

SST model BSL RSM model

Outlet Outlet

© 2010 ANSYS, Inc. All rights reserved. 54 ANSYS, Inc. Proprietary

Steam volume fraction

FRIGG-6a Test CaseTurbulence Model Comparison

• SST model NO secondary flows

© 2010 ANSYS, Inc. All rights reserved. 55 ANSYS, Inc. Proprietary

Contour plot of steam volume fraction (Outlet)Liquid velocity in cross section (Outlet)

FRIGG-6a Test CaseTurbulence Model Comparison

• BSL RSM model secondary flows

© 2010 ANSYS, Inc. All rights reserved. 56 ANSYS, Inc. Proprietary

Contour plot of steam volume fraction (Outlet)Liquid velocity in cross section (Outlet)

New R&D Consortium

ANSYS Germany

R&D Initiative:“Modeling Simulation & Germany

TUD, Dept. Fluid

Mechanics

Karlsruhe Inst. of

Technology (KIT)

Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR”

FZ Dresden/ TUD, Dept.TUM, Dept.

Th

Assemblies of PWR

Dresden/Rossen-

dorf

TUD, Dept. Nucl. Eng.Thermo-

dynamics

TUD Medical Faculty

Univ. Appl.

Univ.Bochum,

Dept. Energy

Systems

© 2010 ANSYS, Inc. All rights reserved. 57 ANSYS, Inc. Proprietary

Univ. Appl. Sciences

Zittau/ Görlitz

Coupling of RPI Wall Boiling Model with Homog./Inhomg. MUSIGg g

Bubble breakup & coalescenceCondensation

CFX 12.1Cust. Solv. v1

& coalescence(MUSIG Model)(MUSIG model

extension)

Cust.

oupl

ing

Cust. Solv. v3

Co

Cust. Solv v2

Bubble departureWall Boiling Model (RPI)

Future model extensions:• Bubble departure diameter

computed from equilibrium

Solv. v2

© 2010 ANSYS, Inc. All rights reserved. 58 ANSYS, Inc. Proprietary

computed from equilibrium of forces

• Include further phenomenaCFX 12.1

DEBORA Testcase: RPI & MUSIG

0.6

ExpCFX 12

3.5UGAS ExpUGAS1 CFX-12

Volume Fraction

Velocity

dashed lines – dB=f(Tsat-TL) ; solid lines – dB as mean Sauter diam. from MUSIG group

0 2

0.4

[-]

CFX-12Gas1Gas2

2.5

3.0

[m/s

]

GAS1

UGAS2 CFX-12ULIQUID CFX-12

• Inhomog.MUSIG

Fraction

0 0.002 0.004 0.006 0.008 0.01R [ ]

0.0

0.2

0 0.002 0.004 0.006 0.008 0.01R [ ]

1.5

2.0MUSIG

• Phasechange

R [m] R [m]

365

370ExpCFX-12TSAT

0.0004

0.0006 • Breakup &• Coales-

cenceTemperature

355

360[K]

0.0002

[m]

ExpCFX-12

cence• RPI

Mean Sauter

© 2010 ANSYS, Inc. All rights reserved. 59 ANSYS, Inc. Proprietary

0 0.002 0.004 0.006 0.008 0.01R [m]

3500 0.002 0.004 0.006 0.008 0.01

R [m]

0.0000

diam.

By courtesy of E. Krepper, FZD

Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR

• Ultrafast electron beam X-ray CT of fuel rod bundle in titanium pipe on TOPFLOW @ FZD:

© 2010 ANSYS, Inc. All rights reserved. 60 ANSYS, Inc. Proprietary

Images by courtesy of U. Hampel, FZD

Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR

Wall boiling simulation insimulation in 3x3 rod bundle with

idspacer grid:

WallWall superheat TW-TSat

© 2010 ANSYS, Inc. All rights reserved. 61 ANSYS, Inc. Proprietary

Summary & Outlook

• Overview on ANSYS CFD multiphase flow model development and validation

• Continuous effort in model improvement, R&D• Emphasis in validation on BPG, comparison to data,

geometry & grid independent modeling• High interoperability of physical models

O tl k• Outlook:– Ongoing & customer driven CFD model development– Research cooperation with Industry & AcademiaResearch cooperation with Industry & Academia– More & more complex MPF phenomena– Coupling of wall boiling model to inhomogeneous MUSIG

© 2010 ANSYS, Inc. All rights reserved. 62 ANSYS, Inc. Proprietary

p g g g– Extension of the wall heat partitioning in wall boiling model

Th k Y !Thank You!© 2010 ANSYS, Inc. All rights reserved. 63 ANSYS, Inc. Proprietary