Fractured Reservoir Modeling

96
Fractured Reservoir Modeling SS 2014 Dr. Rainer Müller

description

Fractured Reservoir Modeling

Transcript of Fractured Reservoir Modeling

  • FracturedReservoirModeling

    SS2014Dr.RainerMller

  • Whatisafracturedreservoir?Thebehavior,capabilityofstorageandmovementoffluidsandgasesinrocksisgenerallycontrolledbytheproportionofopenspaces(pores,interstices)intherockmatrix.Thisattributeofrocksisdescribedasporosity.Theporesmaybeinterconnectedorisolated.

    absolute porosity Pt =(bulkvolume solidvolume)/bulkvolumex100effectiveporosityPe =interconnectedporevolume/bulkvolumex100

    Aswell,thematrixpermeability thecapabilitytotransmitfluidsorgases iscontrolledbytheeffectiveporosity.

  • Primaryporosityisdevelopedduringsedimentation.Inclasticrocks,theprimaryporositycorrespondsatalargeextendtotheintersticesbetweengrains,andiscontrolledbythegrainsize,theroundnessandthepackageofthegrains.

    TypesofPorosity

    Secondaryporosityorinducedporosityistheresultofgeologicalprocessesactingafter theformationofrocks.Possiblecausesare: Fundamentaljointpatternbylossofwater), thedissolutionofsoluteprimarycomponents (pressuresolution,stylolites)or

    dolomitization inlimestones and thetectonical formationoffractures.

    Porositymaybedistinguishedintoeffective(open)andineffective(closed)porosity.

    Vuggy porosityisaspecialtypeofsecondaryporosity,duetotheirregual dissolutionofof largercomponents,suchasfossilsincarbonaterocks.

  • Whatisafracturedreservoir?Fracturesmayincreasetheeffectiveporosityofrocksbyinterconnectingtheprimary(matrix)porosityand(inconsequence)thepermeability(fracturepermeability).So,theymaysupporttheflowofhydrocarbonsreservoirs,thus,theproductionrate.Insomehydrocarbondepositsfractureassemblagesaretheleadingfactorsofthedeposits.Thesedepositsarecalledfracturedreservoirs.

    Therefore,theknowledgeoftypesoffractures,theirbehaviorandtheiroriginisofmajorimportancefortheexplorationandproductionofhydrocarbons.

    Ontheotherhand,astheformationandopeningoffracturesdependonpressure,theclosureofopenfractureduringextractionofhydrocarbonscoulddowngradeflowrates.

  • TheUseofFracturesinPetroleumReservoirsFracturespresentbothproblemsandopportunitiesforexplorationandproductionfrompetroleumreservoirs.Manypetroleumreservoirsweregeneratedinhighlyfracturedrocks,wherefracturepropertiessuchasdensityandorientationarecrucialtoreservoireconomics.Thisaspectappliesespeciallytocarbonatereservoirs.Inmostcasesthefracturesareusuallyimportantofpermeabilityratherthanporosity.Matrixporositystoresthehydrocarbons,andfracturesprovidepermeablepathwaysfortheirtransport.Theobjectiveofhydrocarbonexplorationinfracturedreservoirsistofindareasofintensefracturing,orsweetspots.(CommitteeonFractureCharacterizationandFluidFlow1996)

  • Fracturedhydrocarbonreservoirsprovideover20%oftheworldoilreservesandproduction.Examplesoftheprolificfracturedpetroleumreservoirsare:

    1) theAsmari limestonereservoirsinIran,2) thevugular carbonatereservoirsinMexicoand3) thegroupofchalkreservoirsoftheNorthSea.

    Thesereservoirsproducemorethanfivemillionbarrelsofoilperday;theircommonfeatureisalonglifespan,whichcouldlastseveraldecades.

    Thereisalargenumberofotherfracturedhydrocarbonsreservoirsofverydifferentfeaturesfromtheabovereservoirs. TheAustinchalkfield, theKeystone(Ellenberger)fieldinTexa,and theTempa Rossa fieldinItalyThosedepositshaveverylowporosities.

    Ontheotherhand,theaveragematrixporosityoftheEkofisk chalkfieldintheNorthSeaisaround35%.

    FracturesinPetroleumReservoirs:Examples

  • UnconventionalGasReservoirs

    Inthelastyears,majoreffortshavebeentargetedonunconventionalgasreservoirs,suchasshalegasortightgasorcoalbedmethane.Thesedepositsarecharacterizedbyverylowpermeabilitiesandadsorptionofgasintotherockmatrix.Inthiscase,fracturesarenotonlyusedfortheproductionofgasbutalsoartificiallygeneratedbythetechniqueofhydraulicfracturing(orabbreviatedasfracking).

  • Tectonicfracturesarenotrandomlydistributedintheearthscrustbutrigidlycontrolledby

    typesofrocks,theircomposition,rheologyandthickness, typesoffractures, locationanddepth, density, filling(aretheyopenornot)andtypeoffilling orientationsand the(originalandactual)stressfield.

    Theyareconcentratedatdistinctzones(zonesofweakness,fracturezones).Theirorientation(strike,dip)isstrictlycontrolledbyorientationandtypeoftheactingstressfieldduringthetimeofformationofthefractures.

    Whatshouldweknowaboutfractures?

  • Whatarewegoingtotalkabout?

    Basicdefinitionsandtypesofthedifferentfractures

    Measuringandreconstructionoffractures

    Methodsofrepresentationoffractures(roses,stereographicprojection)

    Factorscontrollingtheformationandpropagationoffractures

    (Stressfields,Mohrcircle)

  • TypesofGeometricalElementsinGeology

    Planes

    Lineations

  • TypesofPlanesinGeology1)PrimaryPlanes

    areplanes,whicharegeneratedduetotheprocessofformationoftherocks.Beddingplanes(stratificationplanes):

    areresultofsomekindofinterruptionorchangeofthesedimentationprocess areoriginallyorientatedparalleltotheearthsurface(horizontal) showawiderangeofdifferenttypes,combinations(beddingtypes)andgeometries areaffectedbylatertectonicalinfluences(fractures,folds,pressuresolution) maybedistinguishedfromotherplanesbyobservationofchangesofmaterial

  • TypesofPlanesinGeology1)Beddingplanes:Examples

    left:parallelbedding(flatbedding)ofsandstone siltstoneintercalations

    right:irregularbeddingplanesofthickbeddedlimestones

  • TypesofPlanesinGeology1)Beddingplanes:Examples

    left:ripplebeddinginsandstone

    right:laminationinmudstones

  • TypesofPlanesinGeology2)Metamorphicfoliation,cleavage

    Foliationissecondary,tectonicallycontrolledtypeofplanesinrocks,commonlydevelopedinfinegrainedshalesandleadingtorocks,whicharecalledschist.Foliationorschistosityorcleavageisareactionofrocks,whichwereexposedtoextremetectoniccompression.

    Penetrativeaxialplanecleavageinfoldedschists Complexfoldingofmetamorphicfoliationinamphibolites

  • TypesofPlanesinGeology3)Fractures

    Fracturesaresecondaryseparationplanesoftectonicorigininrocks,whichmaybesubdividedintothreetypes:

    a) Joints

    b) Fissures

    c) Faults

  • TypesofPlanesinGeology3a)Joints

    Jointsarecommonandfrequentfracturesinanytypesofrocks.

    Jointsareseparationplanes,cracks,inrockswithoutanyvisible(oremeasurable)verticalorhorizontaldisplacement.

    Inthesenseofviewoffracturemodelling,theyareofmayorimportance.Differenttypesanddifferentoriginsofjointsareknown.

    Plumosestructures:areindicatorsforcrackpropagationonjoints

    Differentintersectingsetsofjoints

  • TypesofPlanesinGeology3b)Fissures,tensiongashes

    Fissuresarejointlikefractureswithameasurablehorizontaldisplacementnormaltotheorientationoftheplane.Itmeans,thatfissuresare(originally)openstructures,whichareofmayorimportanceforthemigrationandthetransportofliquidsandgas.Inmanycasesfissuresare(secondarily)filledwithmineralprecipitationslikegypsum,calciteorquartzorevenraremineralslikeores(veins).Tensiongashesare(normallysmallscaled)structuresasaresultoftensionalstress.

  • TypesofPlanesinGeology3c)Faults

    Faultsareseparationplanesinrocksshowing(megascopically)visibleandmeasurabledisplacement.Thedisplacementmaybeobservedby:

    Setofthreenormalfaultsdisplacingalimestonelayer(Alps,fromRamsay)

    thedisplacementofmarkerbeds, by striations along the fault plane or by dragging of the nearby beds.

    Strikeslipfaultinlimestones (LeinetalRift,Mller)

  • Typesoflineationsingeology:(primary)sedimentarylineations

    Manynontectonical,primarytypesoflineations,especiallyinsedimentology,areknown,whichprovideuswithinformationabouttransportdirectionsandsourcesofsedimentarymaterial.

    Flutecasts,striationmarks,groovecastsarethebestknownstructuresofthistype.However,eveninigneousrockslinearalignmentofneedleshapedmineralsservesasindicatorofflowdirectionsandinfluxmechanismsofmelts.

    Flutecastsonadownsidedbeddingplaneofoverturnedgreywackesequences,Harz

  • Typesoflineationsingeology:FoldaxisFoldaxis(hingelines)aretheconnectinglinesoftheinflexionpointsofafold,atwhichtheconcavityofthelimbsreverses(eitheranticlineaxisorsynclineaxis).Foldaxisarethemostimportantgeometricalelementtodescribetheorientationandtypeoffolds.

  • Typesoflineationsingeology:Foldrelatedlineations

    Fishmouthstructurebetweenboudins inmarbles;Matreishearzone,Austria.

    Mullionstructureinaalternatingsequenceofgreywackes andslates,Eifel(RAMSAY)

  • Typesoflineationsingeology:Intersectionlines

    Infoldedrocks,theintersectionlineationsbetweenfoldrelatedplanescorrespondtotheorientationofthefoldaxis.Intersectionsofplanesofthesameorder(suchasbeddingplanes)arecalledlineations.Intersectionsofplanesofdifferenttype(andorigin),forinstancebeddingplanes(s0)andcleavage(s1)arecalledlineations.

    Pencileshapedpiecesofslates,formedbyaobtuseanglebetweenbeddingandcleavage(lineations).Thelongaxisofthepencilsrepresenttheorientationoffoldaxis.

  • Typesoflineationsingeology:Mineralstretching

  • Typesoflineationsingeology:Mineralgrowth

    Newformingorrecrystallized needleshapedmetamorphicmineralsoraggregatesofmineralsundercontinuouscompressional stressconditionsaregrowingparalleltotheminorstressaxis.

    Needles Platyshapedminerals

  • Typesoflineationsingeology:Striation

    Vertical striations and crescentlike edges indicate, that the (upper) hanging-wall block was displaced vertically downwards, resulting in a normal fault.Jurassic limestones, French Jura, (diameter of the picture: 1m), Photo: Mller

    Striationsarescratchmarksonfaultplanes,formedbythetectonicaldisplacementprocessofthetworigidblocksalongthefaultplane.Theyareofmajorimportance,astheydemonstrateustherelativeandabsolutedisplacementdirection.

  • Wheredoesstructuralinformationcomefrom?

    a) superficialoutcrops:

    Advantages: easilyaccessible,lowcostsexposedin3dimensionsatlargeextensionslargenumbersofdatamaybecollectedrelativetemporalandspatialrelationsofdifferentelementsandgenerationsmaybedistinguished

    Problems: transferofsuperficialinformationtothedepth

  • b) Drillings:informationonfracturesmaybeobtaineddirectlyfromcores,fromvideorecordingsofthedrillholeorfromspeciallyprocessedlogsorcombinationsoflogs,producing3Dimages.

    Advantages: informationmaybeobtaineddirectlyfromthelocationofinterest

    Problems: highcost,verylimitedrageofinformationinspace,limitednumberofdataorientationandmeasurementofelementsisdifficult

    Wheredoesstructuralinformationcomefrom?

  • b) Seismics:interpretationsofresultsofseismicexplorationin2Dand3D

    Advantages: informationmaybeobtainedregionalscaleundgreatdepth

    Problems: highcost,limiteddetaileddissolution,minorstructuresdifficulttoanalyse,orientationandmeasurementofelementsisdifficulttoanalyse,

    Wheredoesstructuralinformationcomefrom?

  • Typesofstructuraldata,tobecollected

    Spatialorientationofthefractures: eachkindofstructuralmodelingdependsbasicaly ontheorientationofthefracturepatterninastatisticalpointofview.Forrepresentationandanalysisofthedataspecialmethodsasrosediagramsandstereographicrepresentationareneeded.

    Analysisoftype,relationsandoriginofthefractures: usingjoints:observationofgenetically,temporallyandspatiallyrelatedjoints(setsofjoints).usingfaults:observationofthetypeoffaults,kinematicsanddimensionofdisplacement.

    Spatialrelation,densityofthefractures: veryimportantfortheinterpretationoftheroleofaspecialsetofjointsaspathwayforthemigrationoffluids.Thenumberofjointsofaspecialorientationhastobecountedandbereferredtoanormalizeddistance.

    Openingandfillingoffissures

  • MeasuringtheOrientationofPlanes

    StrikeN

    Dip direction

    horizontal plane

    Dip angle

    Strikedescribestheorientationofan(imaginary)horizontallineonaninclinedplane(tothenorthdirection).Strikeisspecifiedbetween0and180.

    Dipdirectionistheorientationofthelineofsteepestpossibledipangleonaninclinedplane(tothenorthdirection),normaltostrike.

    Dipangleistheanglebetweentheplaneinquestionandan(imaginary)horizontalplaneindipdirection.Dipangleisspecifiedbetween0and90.

  • GeologicalCompass

    Brunton compass

  • GeologicalCompass

    GermanMiners Compass

  • GeologicalCompass

    GermanClar Compass

  • Notationof structural data:planes070/40SE 160/40 N070E,40SE125/10NE

    010/80W

    170/05W

    30/10NW

    160/80W110/50NE

    140/10SW

    050/15NW

    000/40W090/50N

    180/90

    035/10

    280/80

    260/05

    300/10

    250/8020/50

    230/10

    320/15

    270/40

    000/50

    090/90

    N055E,10NE

    N010E,80W

    N010W,05SW

    N030E,10NW

    N020W,80W

    N070W,50NE

    N050W,10SW

    N050E,15NW

    N000,40W

    N090E,50N

    N000,90

  • MeasuringtheOrientationofLineations

    N

    Trenddescribestheorientationofan(imaginary)horizontalprojectionofthelineationtothenorthdirection).Trendisspecifiedbetween0and180.

    Plungedirectionisthedirectionoftheinclinationofthelineation(tothenorthdirection),paralleltothetrend.

    Plunge(angle)istheanglebetweenthelineationinquestionandthe(imaginary)projectionofthelineationtoanhorizontalplaneinplungedirection.Plungeisspecifiedbetween0and90.

    horizontal plane

    Plunge (angle)

  • Notationofstructuraldata:lineations

    130/40SE 130/40 S050E,40015/80NE

    15/10NE

    140/42NW

    050/30SW

    100/54NW170/80N

    010/20N

    030/13SW

    014/50S140/00

    065/14SW

    015/80

    015/10

    320/42

    230/30

    280/54350/80

    010/20

    240/13

    194/50

    140/00

    245/14

    N015E,80

    N015E,10

    N040W,42

    50,S030W

    80,N54W

    10,N80N

    10,N020E

    60,S13SW

    S014W,50

    N040W,00

    S65W,14

  • ClassificationofFaults

  • ClassificationofFaults

    Normalfaults

    Reversefaults

    Strikeslipfaults:G:sinistralI:dextral

  • CombinationsofNormalFaults

  • TypesofReverseFaults

    Reversefault:dip>45 (~65)

    Thrustfault:dip

  • Exercise:Determinationoftypeanddisplacementoffaults

  • Quantitativedeterminationofdisplacementratesoffaults(1)

    Todeterminethedisplacementrateof(verticallydisplaced)faultsingeologicalmaps,twotriangularrelationsmaybeused.Thefirstgeometricalconstructionisexecutedalongasectionverticallytothefaultplanewiththecomponents:

    s =(apparent)horizontalwidthofdisplacement(=horizontalcomponentofw)(heave),t =verticalwidthofdisplacement(=verticalcomponentofw)(throw),w =(real)widthofdisplacement(slip)

  • Quantitativedeterminationofdisplacementratesoffaults(2)

    Usingthethrowt,theformertrianglemaybecombinedwithasecondtrianglearrangedverticallytothebeddingofdisplacedrocks,whichusesanapparenthorizontalrateofdisplacementsh (strikeseparation).Thestrikeseparationsh canbemeasuredalongalineofstrikebetweenthesameplaneofadisplacedlayer.

  • tan(bedding)=t/sh;t=sh *tan(bedding)

    sin(fault)=t/w;t=w*sin(fault);w=t/sin(fault)

    cos(fault)=s/w;s=w*cos(fault);w=s/cos (fault)

    tan(fault)=t/s;t=s*tan(fault);s=t/tan(fault)

    Quantitativedeterminationofdisplacementratesoffaults(3)usingtrigonometricfunctions

  • Exercise:QuantitativedeterminationofdisplacementratesoffaultsCalculatedisplacementratesandcompletethesketchesofmaps,assumingpureverticaldisplacement

    Scale1:10000

  • Joints

    Definitions: Jointtrace:intersectionlinebetweenajointplaneandanyotherplane. Jointset:isasetof(moreorless)parallelorientatedandgeneticallyrelatedjoints. Jointzone:section,inwhichajointsetofspecificorientationareconcentrated

    (comparedtoitssurroundings). Jointsystem:theentiretyofthejointsetsofdifferentorientationsinaregion,

    whichmaybeconsideredasgeneticallyrelatedtothesamestressconditions.Thosejointsetsmaybesymmetricallyorientated,forexampleorthogonallyorientatedjointsorconjugatesetsofjoints.

    Jointpattern:theentiretyofalljointsofareregion,whichmaybecomprisedofseveraljointsystemswithgeneticallyandtemporarydifferentorigin.

    Jointsarefractureswithoutvisibleormeasurabledisplacementinrocks

  • SystematicjointsJoints,whicharegeometricallyregular(parallel,orthogonal)(jointsystems)intheirarrangementarecalledsystematicjoints.

  • Lessregularjointsarecallednonsystematicjoints.Theyarenormallyofaminorscaleandofirregular,randomorientations.Nonsystematicjointsmaybeoriginatedbylocalvariationsofrheologicalparameters.Theycanhardlybepredicted.

    NonsystematicJoints

  • Joints

    Manyjointsystemsexhibitregionallyconsistentpatternsoforientations,whichareobservedtopersisteventhroughoutthestratigraphicsection.

    Insedimentaryrocksasystematicperpendicularorientationofjointstothebeddingplanesiscommonlyobserved,frequentlyshowinganorthogonalarrangement oftwosetsofjoints.Thissocalledfundamentaljointsystemseemstobegeneratedalreadyduringearlydiagenesis.Sometimes,theorientationofthesystemcorrespondstotheaxisofthebasin.

    Therefore,thearrangementofjointsinsedimentsfrequentlyshowsrelationstotheshapeofthesedimentarybasin.

  • Mostobservationsonjointsimply,thattheyhavebeenformedundertensilestressconditions.Nevertheless,compressiveregimenisthecommonstateofstressintheearthscrust(load!),therefore,effectivestress,controlledbyfluidpressure,playsanimportantroleinjointformation.

    Joints

    Thespacingofjointsinsedimentarylayersiscontrolledbytheelasticbehaviorandthicknessofthebeds.Therefore,spacingdiffersinmanysequencesfromlayertolayer.TheelasticbehaviorofrocksisdescribedbytheYoungmodulus,whichisameasureoftheirstiffnessanddescribestherelationbetweentensilestressandstrain.

  • Fissures,tensiongashes

    Fissuresareopenstructures,combinedwithextensionalstressconditions.Theyarearrangedintypicalorientationstotheappliedstressfieldandthecorrespondingmajorstructures(faults).

    Mineralfibers(gypsum,calcite,quartz)infissurescrystallizeparalleltotheminorstressaxis3Photo:RODRIGUES etal.(2009):J.Geol.Soc.;166:.695709

  • Representationofstructuraldata

    Structural datasets normally involve the following features: they represent the 3-dimensional orientation of planes or lineations, they include normally a large number (several tens or hundreds) of samples, they include different types of structural elements (bedding, faults, joints),

    whose geometrical relations are known and must be verified.

    Please note: Directional data, expressed by strike and dip, can not be treated statistically as two independent values, but are 3-D vectorial data ! For statistical analysis of gravity centers of orientation and their variation, special complex methods of vector analysis are required.

    These large and complex directional datasets must be interpreted and represented in a 3-dimensional system.Two methods are in use: Rose diagrams and stereographic projection (Schmidt Net)

  • RosediagramsInrosediagrams(only)thetrendofstructuralelementsisusedfortheconstructionofadirectionalhistogramshowingthefrequencyofdataofcertaindirectionalclasses,representedina360 or180 circle(rose).Itisfrequentlyusedforsteeplydippingjointsetsorotherdatainwhichthedipangleisnotimportant.

  • Rosediagrams:ExampleData: Orientations of 64 joints

    10/48 E 94/80 S 63/74 NW 154/68 SW 14/68 ESE 07/56 E 149/70SW 59/80NW12/68 E 109/88 N 163/67 NE 17/81 ESE 90/80 S 12/66 E 94/73 S 13/83 E01/81 W 06/78 E 62/85 NW 149/70SW 16/77 E 04/68 E 150/75SW 80/59N06/60E 91/81 S 64/75/NW 155/69/SW 15/68 ESE 08/77W 148/76SW 60/60 SE12/49 E 93/80 S 69/74 NW 151/68 SW 13/68 ESE 06/56 E 147/70SW 61/80NW12/83 E 111/88 N 161/67 NE 20/81 ESE 89/80 S 15/66 E 91/73 S 09/83 E03/84 W 10/78 E 65/85 NW 151/70SW 19/77 E 02/68 E 152/75SW 79/59N07/66E 94/81 S 59/75/NW 148/69/SW 13/68 ESE 11/77W 146/76SW 66/66 SE

  • Rosediagrams:Differenttypes

  • Rosediagrams:Resultsoftheexample

  • max = 26.98%

    0

    90

    180

    270

    90

    0

    bung Kluftrosen.pln Datasets: 63

    Interval: 10

    Interval: 10

    max = 33.33%

    Rosediagrams:Resultsoftheexample

    Analysis of the example data using TectonicsFP

  • Applicationofjointdiagrams

  • Stereographicprojection(SchmidtNet)

    Theintersectionoftheelementwiththespheressurfaceleavesatraceinformofacirclesegment(plane)orapoint(line).

    Thesecondmethodofrepresentationofdirectionaldataismuchmoremeaningful,howevermoredifficulttounderstand,touseandtointerpret.

    Inthiscase,planesorlines,areconsideredtobearrangedwithinina(imaginary)sphere,passingthroughthecenterofthesphere.

    Thepositionofthetraceorthepointoneithertheupperorthelowerhemisphereisprojectedtoaplanepassingthroughthecenterofthesphere.

  • Polar(normal)or azimuthal Projektion

    The projection may be polar (a) or azimuthal (b).

    Polar projection is applied as the so called polar net.Longitudes are represented as straight lines; latitudes as circles with differing radii.

    For the Schmidt net azimuthal projection is used.Latitudes and longitudes are +/- curvilinear segments of a circle; equator and N-S-axis are represented as straight lines.

  • TypesofProjection

    Spherical surfaces may be projected as: equal angle (Wulf net, Mercator), equal length or equal area (Schmidt net).

    Equal angle projection is used for the correct representation of angular relations, for example the angles between crystal planes in crystallography.

    The Schmidt net projection is of equal area type. Equal area relations are needed for a statistical analysis of the population density of representing point on the surface of a sphere.Equal angle relations are represented without distortion along great circles.

  • Stereographicprojection(SchmidtNet)

    Model Projection

    SchmidtNettop:polar(normal)projectionbottom:azimuthalprojection equalareaprojection

    Net

  • SchmidtNetN

    S

    EW

    NW NE

    SESW

    Equator

    greatcircles(meridians)

    smallcircles

    1020

    3040

  • Transparency Layer

    PreparationoftheNet:

    Fixapinfromthebacksidethroughthecenterofthenet

    Fixatransparencylayer

    Orientatelayersparallel

    Markcenter(cross)

    Markoutercircle

    MarkNPosition

    N

  • Representationofaplane(70/20NW)asgreatcircle

    Preparethetransparencylayer

    Rotatethelayerwith70 counterclockwise

    Count20 onequatorfromoutsidetocenter

    Markthecorrespondinggreatcircle

    Rotatethelayerbacktoorigin

    N

  • Representation of lineations Example: (70/20NE)

    Preparethetransparencylayer

    Rotatethelayerwith70 counterclockwise

    Count20 alongNScenterlinefromNtocentertocenter

    Markthecorrespondingpoint

    Rotatethelayerbacktoorigin

    N

  • Inthepetroleumprospectionfield1highflowrateshavebeendetectedintheverticaldrillhole DH1atadepthof1000m,obviouslycontrolledbytheintersectionoftwonormalfaultzones.Theirorientationsare:Fault1:125/35Fault2:156/551)Locatethepossiblecorridor,inwhichthisintersectionzonecouldcrosstheprospectoffield2andselectapossibledrillinglocation.2)Atwhichdepththefavorableflowratesaretobeexpected?

    Exercise:Determinationofahighpermeabilitypathwaybytwointersectingfaults

  • Point counting: Statistical evaluation of structural data

    One of the most typical applications of stereographical projection of structural data is their statistical evaluation. The scope of these procedures is the determination of the center(s) of gravity of a cloud of poles.The mathematical calculation of those parameters is complex. Orientational data in a 3-D space are vectors; their evaluation requires methods of vector analysis.Actually, some of those operations can be performed using special tectonic programs.A manual analysis is quite simple but time consuming.It is performed using a so called counting net (see next slides).

  • AnalysisofSchmidtnetdata

  • AnalysisofSchmidtnetdata

  • 4Klassierung: 1 Punkt2 - 3 Punkte4 - 5 Punkte5-10 Punkte

    0 00

    00000 0

    00

    0

    0

    0 0

    0

    0

    0

    0

    0

    0

    0 0

    0

    0

    0

    0

    0

    0

    0

    0

    0 0 0 0 0

    0

    0

    0

    0

    0

    00

    0

    0

    0

    0

    0

    00 00

    0

    0

    0 0

    0 0

    0

    0 0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    1

    1

    1

    1

    1 1

    13

    32

    2 3

    1

    1

    1

    1

    1

    1

    1

    2

    1

    1

    43

    3

    2

    910

    109

    3

    4 4

    4

    4

    8

    56

    33 12

    4

    AnalysisofSchmidtnetdata

  • bung Kluftrosen.plnDatasets: 63

    Max. value: 15.6%at : 101 / 69

    Contours at:1.00 3.00 6.00 9.00 12.0

    AnalysisofSchmidtnetdata:ExampleTectonicsFP

  • RepresentationofFaultsusingStereographicProjection.

    .usingtheANGELIER method Example:reversefaultplane:200/80striation:270/60

  • StressandtheDeformationofRocks

    Inacoordinatesystem,thestateofstressofasinglepointinasolidcanbeexpressedbythreeprinciplestressaxis,whichareorientatednormaltoeachother:

    1 =inthedirectionofthemajorstress,2 =inthedirectionoftheintermediatestress,3 =inthedirectionoftheminorstress,

    Stress isameasureoftheintensityandorientationoftheforcesperunitareaonadeformablebodyonwhichinternalforcesact.Deformationorstrainisthereactionofrockstostressandisdescribedbytherelationbetweenaninitialandfinalplacementofasolidexposedtostress.

  • StateofStressonaPlane

    Thestateofstressonasinglepointonaplanewithinthesolidcanbedescribedby anormalstresscomponentn and two(perpendicular)shearstresscomponents1 and2

    Onplanesperpendiculartooneofthethreeprinciplestressaxis,theshearstresscomponentsarezero.

    Themaximumshearstressactsonaplane,thatbisectstheanglebetweenmaximumandminimumprinciplestress:

    max =(1 3);

    Thecorrespondingmaximumnormalstressequalsto:

    n max =(1+3);

  • ANDERSONS TheoremofFaulting.

    states,thatonahorizontalearthssurface,thereisnoshearstress,whichcouldcausemassdisplacement.Asaconsequence,oneoftheprincipalstressaxesmustbearrangednormaltotheearthssurface,thetwootheraxeshavetobeparalleltothesurface.Thisconceptleadstothreeprinciplestateofstresssituationsintheearthcrust:

    1vertical:dilatation,normalfaults

    3vertical:compression,reverse,thrustfaults

    2vertical:compression,strikeslipfaults

    Case1:

    Case2:

    Case3:

  • Stress:DefinitionsandUnits

    Thestresstensormaybedecomposedintotwocomponents:MeanStress..

    isthemeanvalueofthestressstate:m =(1+2 + 3)/3;

    andrepresentstheisotropicpartofthestress

    DeviatoricStress.isthedifferencebetweenaprinciplestressandthemeanstress:

    i=i m;whichisresponsibleforalmostallcompressivedeformationalfeatures.

    TheunitforstressisPa(Pascal)=N/mCompressivestressesareconsideredtobepositive!

    1bar=105 Pa10bar=1MPa (megaPascal)=106 Pa

    Pressureat5kmoceandepth:500bar=50MPa100MPa =1Kb(Kilobar)=1000bar

    Pressureat30kmdepthofthecrust:approx.10kbar=1Gpa =109 Pa1atm (atmosphere)=1,0133x105 Pa

    1kg/cm2 =0,9807bar

  • Lithostaticpressure..(orLoad)actsnormaltotheearthssurfaceandiscontrolledbytheloadoftherockpile,whichisdepth(inm)bydensity(atanaverageof2,5g/cm)bygravitationalconstantof9,82msec.LithostaticpressureisalsoexpressedasverticalstressvExample:Rockpileof5000m,density:2,5g/cm500000cmx2,5g/cm=1250000g/cm=1250kg/cm1250kg/cmx0,9807=1225bar=1,225Kb1,225KB=122,5MPa

    HydrostaticPressure..(confining,geostatic,fluidpressure)isthehydrostaticpressureofawatercolumninaspecificdepthduetotheforceofgravity:pfluid =depth[m]x0,1[g/cm](1000mx0,1=100bar=10MPa)Hydrostaticpressurehasthesamemagnitudeinthreedirections(confining).Internalporefluidpressurereducestheeffectivestrengthactingonthesolid.

    EffectiveStress.isthedifferencebetweenmeanstressandfluidpressure:

    3)3(

    3321

    *3

    *2

    *1* fluid

    m

    P

    Stress:DefinitionsandUnits

  • TheMohrDiagramTheMohrdiagramisaveryimportanttoolforrepresenting,analyzingand,aboveall,understandingthestateofstress,actingonaplaneofanyorientationinastressedsolidmaterial(givenbytheprincipalstressaxes1,2,3).WewillconsiderMohrdiagramoperationsintwodimensionsonly.

    Example:Aplaneinahomogeneouslystressedcube.Itsnormalincludesanangle (=shearangletheta)with1.

    Thestateofstressactingonthegivensurface,definedbytheshearangle,canbydividedintotwocomponents:Thenormalstressn isactingnormaltotheplaneTheshearstress isactingparalleltotheplane,resultinginasheardisplacementalongtheplane

  • 1 n A

    A= ( cos+ sin)cos

    3 n B

    B = ( sin+ cos)sin

    2321 sincos n

    cossin)( 31

    ;2cos)2

    ()2

    ( 3131 n

    ;2sin)2

    ( 31

    Trigonometricrelationsdeductedfromthediagram

    solved for n:

    solved for :

    converted into:

  • PlottingtheMohrDiagramTheMohrdiagramrepresentsthestateofstressofamaterialusingn asxaxisand asyaxis.Thestressonasinglepointonaplaneplotsasapoint(n ,).Compressivestressplotsontheright,tensilestressontheleftsideofthediagram.Thestatesofstressofallpossibleplanesofagivenstressfieldarearrangedonacirclewithacenterofthemeanstress andaradiusofthedeviatoricstress.1 and3 plotonthecircleintersectionwiththexaxis.Theshearangle(2)isrepresentedbytheangleofalinebetweenthecenterandtherepresentingpointofaplane.Planesperpendicularto1 and3 (with=90)havenoshearstress.Maximumshearstressoccursat=45.Thelargerthedifferencebetween1 and3 (deviatoricstress)thelargeristheshearstressonagivenplane.

  • TheMohrDiagram:Exercises

    1) Theprinciplestresses1 and3 aregivenwith80Mpaand45Mparespectively.1 isorientatedhorizontallyinEWdirection,3 vertically.Whatisthestateofstress(n, )onafractureplanestrikingNSanddippingwith30 totheE?

    Solution:=60,2=120max=17,5Mpaat =45nmax =62,5MPan =53,75MPa =15,15MPa

    2) Thestateofstressismeasuredin2slotsofamine.Thefirstdips32Eandhasanormalcompressivestressn of57Mpaandashearstressof12Mpadowndip.Theseconddips84Eandhasanormalcompressivestressnof40Mpaandashearstressof3Mpa.Whatisthestateofprinciplestressesandtheirorientationinthisregion?

    Solution: Constructthetworepresentingstresspoints,Bisectorlineinterferingthexaxisresultsinthecenter ofthecircle:1=66,5MPa,3=40MPa

  • TheMohrEnvelope:GatheringExperimentalData

    Triaxial testingapparatus(fromSUPPE 1985:152)

    Piston

    Resultofatriaxial testofacylindricalshalesample(Inst.ofGeology,TUClausthal)

  • TheMohrEnvelope:ResultofanExperiment

    Mohrdiagramofthefractureexperimentataconfiningpressureof50Mpa.Thediagramrepresentsthreedifferentstatesofdeformation.Therockprobefailedataloada of750(800load 50confiningpressure)Mpa (fromSUPPE 1985:152).

    longitudinalstrain:

    Stressstraindiagramofthetests(fromSUPPE 1985:152).Thenearlylineartrendisaresultoftheelasticbehaviorofthesample.

    0

    0 )(l

    lll

    common confining pressure c

  • TheMohrEnvelope

    Mohrdiagramfordiabase sampleswithincreasingconfiningpressuresatroomtemperature.Eachcirclerepresentsthestateofstressatfailureatadifferentmeanstress.Therockstrengthincreaseswithmeanstress,dependingondifferentconfiningpressures.Thelocusofstressstates,thatboundsthefieldsofstableandunstablestresses,iscalledtheMohrenvelope(fromSUPPE 1985:153)

  • TheMohrEnvelope

    ThreefieldsoffracturedevelopmentarerepresentedintheMohrenvelope. Thetensilefieldisrepresentedbyafixedtensilestrength T0.Onlyonedirectionofpossible

    fractures,perpendiculartothedirectionofmaximumtensilestress,exist.Typicalvaluesoftensilestrengthare5to20Mpa.

  • TheMohrEnvelope

    ThetransitionaltensilefieldislocatedbetweenT0 and1 >|5T0|andischaracterizedbyarapidnonlinearincreaseinmeanstrengthwithincreasingconfiningpressure.Mohrcirclesaretangenttotheenvelopeattwopoint;twoconjugateddirectionsoffracturesmayexist.Mostjointsareformedinthetensiledomain.

  • TheMohrEnvelope

    TheCoulombfracturebehaviorrepresentsthelinearincreaseofshearstrengthcorrespondingtoincreasingconfiningpressure,characterizedbyaslopeoftan.

    Theangleiscalledangleofinternalfriction. Itstangentiscalledcoefficientofinternalfriction,whichisamatterconstant. Athighconfiningpressureandincreasingtemperatures,strengthincreaseonlyslowlyat

    ductilebehavior.

  • 2)Ina6000mdeepdrillhole,thefollowingparametershavebeendetermined: Averagedensityoftherocks:2,7g/cm Densityoffluids:1,1g/cm Directionofh (usingbreakouts):150/00 h =0,5v H =0,8v Jointset1:330/60 Jointset2:60/60

    Problems:a) Calculatetheprinciplestressesb) ConstructtheMohrdiagramrepresentingthestateofstressatthebottomofthedrillhole.c) Determinemeanstressanddifferentialstressd) Determinemeanstressandeffectivestresse) Drawasketchofthestateofstress,itsorientationandthesituationofthejointinthe

    boreholef) Bytriaxialtestingexperiments,theMohrenvelopeoftherocksintheboreholehavebeen

    determined.Willthejointsfailornotbythegivenparameters.g) Ifthejointwillnotfail,howcouldwetriggerthefracturegeneration?

    TheMohrEnvelope:Exercise

  • Solution:

    v =1 =159MPaH=0,8V =2 =127MPah =0,5V =3 =79,5MPaCenter=(1+ 3)/2=119,25MPapfluid =66MPa =38,06MPamax=40,5MPaMeanstress:121,8MPaEffectiveStress:55,8MPa

  • Onthebaseofexperimentaldataofthestateofstressandstraininrocksestimationstothefollowingproblemsmaybefound:

    Themagnitudesofn and atthemomentoffailureoftherocksarerelatedtoeachother.TherelationisdescribedbyBYERLEEs law:Withincreasingnormalstressincreasescriticalshearstress:

    crit =0,6 n to0,85 n inregionsofmoderatestress.

    Thereare3possibilitiesintheearthscrust:1. 1 =2 =3 : thereisnoshearstressT2. 1 >2 >3: therearetwoplanesofmaximumshearstress

    intersectingparallelto2 .Shearstressesachievetheirmaximumsymmetricallyto1 and3 withashearangleof45,resultingin(potentially)conjugatedfractures.

    3. 1 =2 or2 =3: resultsinaninfinitenumberofplanesofmaximumshearstress

    TheMohrDiagram:Consequences

  • Determinationofdifferentialstresses(1 3) DeterminationoftensilestrengthT0 ofrocks Determinationoftheangleofinternalfriction,whichiscontrolledbythegradientofthe

    Mohrenvelope(mostly30) Determinationofthecoefficientofinternalfriction =tan(mostly0,55 0,85,inclays0,3

    0,4) Estimationoftheinfluenceoffluidpressurepfluid anditsrelationtolithostaticpressurev,

    whichismoreorless0,4inrespecttothedensitiesof1,0g/cmofwaterand2,7g/cmofrocksinopensystemsintheuppercrust.

    Estimationaboutthepossiblestrainregimeandbehaviorofrocks(tensile,compressive,ductile)

    Estimationaboutpossibleorientationsoffracturesinrocksaccordingtoanexistingorpreexistingstateofstress

    Reconstructionofapreexistingorientationofstateofstressandthepositionofstressaxisusingaexistingfracturesystem

    Simulationofconditions,underwhichtheformationoffracturescouldbesupported(hydrofracking)orimpeded,i.e.bycontrollingfluidpressure.

    TheMohrDiagramWhatkindofinformationcanbederivedfromit?

  • TheOriginofJoints(fromSUPPE 1985)IntheMohrdiagramtheprincipledomainofjointgeneratingconditionsisthetensileortransitionaltensileregimen.Tensilefracturesformperpendiculartothedirectionofthemaximumtensilestress(between5and20Mpa).Transitionaltensilebehaviorisexhibitedabovetheleasttensilestrength.

    Theequationforjointformationis: 0*3

    *1 24)( T

    0*3

    *1 4)( T

    0*1 3T

    Forjointformation,themaximumdeviatoricstressequals:

    whichisthelimitofthemaximumdeviatoricstressforatensileeffectivenormalstresstangentbytheshapeoftheMohrenvelope.

    Fortruetensilejoints,themaximumeffectivestressislimitedto3timesthetensilestrength

    Problem:Verticalstressisduetothegravitationalloadcompressive.Therefore,therequirementsfordeepformationofjointsare:

    smalldeviatoricstressesand highfluidpressurerations

  • TheDepthofJointFormation(fromSUPPE 1985)

    )1(3 0

    gT

    z

    Usingtheaboveequationandtheequationforlithostaticpressure,maximumdepthofformationofjointcanbecalculatedas:

    Forrockswithnormaltensilestrengthbetween2to10MPa,theformationofjointsislimitedto1or2kmofdepth,assuminglowfluidpressures(lowsalinities).

    with: =meanrockdensityg=gravitationalconstant=fluidpressureratio

  • TheSpacingofJoints(from SUPPE 1985)Jointsperpendiculartobeddingisanimportantstructuralfeatureinsediments.Jointspacingiscontrolledby: rocktype:jointsaremuchmorecloselyspacedincoalthaninsandstones thicknessofthebeds:jointsaremorenumerousinthinbedsthanininterlayeredthickbeds

    ofthesamerocktype. somejointsmaybelimitedtosinglebeds,otherspassthroughmanybeds.Considerapileofsedimentaryrocks,eachwiththicknessesd1,d2dn.andeachwithdifferentelasticconstantsE1,E2 En.anddifferenttensilestrengthT1,T2Tn,whereEistheYoungsmodule:

    1 1 2 2 n nE E .......E

    l

    E

    Thebedshaveundergonecompactionandareinthesamestateofstress.Thehorizontalstressandstraininalayeristhen:

    Ifthesebedsareuniformlystretchedbyastrainx ,thenewhorizontalstress,generatedineachofthenlayerswillbedifferent: 1 1 1 xE

    2 2 2 xE Asaconsequence,uniformstrainwillgeneratebedparallelnormalstress,whichwillbedifferentineachlayerofcontrastingelasticproperties.

    and soon.

  • TheSpacingofJoints(fromSUPPE 1985)

    Inthefieldweobserve,thatthespacingofjointscorrespondstothelayerthickness.ThesocalledGRIFFITH theory,states,thatthestressreleasearoundanewformedjointaffectsonlyaradiusofaboutonecracklength.Inconsequence,stressreleaseaffectsonlyashortdistancearoundthenewformedcrack,therestofthebedwillremaininanearfailuretensilestresscondition.Smallincreasesofstrainwillformnewjoints,sothatalayerwillbejointedin(moreorless)uniformdistancesequaltoitsthickness.Furthermore,stressreleaseinonedirectionmayinfluencethemagnitudesof 2 and3.Asaconsequence,theorientationofthenewformedjointschangeorthogonally.