FoxP3 scanning mutagenesis reveals functional variegation ...

17
FoxP3 scanning mutagenesis reveals functional variegation and mild mutations with atypical autoimmune phenotypes Ho-Keun Kwon a,b , Hui-Min Chen a,b , Diane Mathis a,b,1 , and Christophe Benoist a,b,1 a Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Brigham and Womens Hospital, Boston, MA 02115; and b Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Womens Hospital, Boston, MA 02115 Contributed by Christophe Benoist, November 15, 2017 (sent for review October 26, 2017; reviewed by Leslie J. Berg and Alain Fischer) FoxP3 + regulatory T cells (Tregs) are a central element of immuno- logical tolerance. FoxP3 is the key determining transcription factor of the Treg lineage, interacting with numerous cofactors and transcrip- tional targets to determine the many facets of Treg function. Its absence leads to devastating lymphoproliferation and autoimmunity in scurfy mutant mice and immunodysregulation polyendocrinop- athy enteropathy X-linked (IPEX) patients. To finely map transcrip- tionally active regions of the protein, with respect to disease-causing variation, we performed a systematic alanine-scan mutagenesis of FoxP3, assessing mutational impacts on DNA binding and transcrip- tional activation or repression. The mutations affected transcrip- tional activation and repression in a variegated manner involving multiple regions of the protein and varying between different tran- scriptional targets of FoxP3. There appeared to be different modal- ities for target genes related to classic immunosuppressive function vs. those related to atypical or tissue-Treg functions. Relevance to in vivo Treg biology was established by introducing some of the subtle Foxp3 mutations into the mouse germline by CRISPR-based genome editing. The resulting mice showed Treg populations in normal num- bers and exhibited no overt autoimmune manifestations. However, Treg functional defects were revealed upon competition or by sys- tem stress, manifest as a strikingly heightened susceptibility to pro- voked colitis, and conversely by greater resistance to tumors. These observations suggest that some of the missense mutations that seg- regate in human populations, but do not induce IPEX manifestations, may have unappreciated consequences in other diseases. autoimmunity | tolerance | Forkhead C D4 + regulatory T cells (Tregs) are of central importance in immunological tolerance to self and in the control of in- flammatory processes. They play versatile roles to balance ho- meostasis, regarding both immunological (autoimmunity, allergy, responses to pathogenic and commensal microbes, cancer) and nonimmunological (tissue regeneration, metabolic control) contexts (13). FoxP3, a winged-helix transcription factor (TF) of the Forkhead (FKH) family, is specifically expressed in Tregs, where it has pivotal roles for differentiation and function and is considered to be the defining factor of the lineage (2, 4). Treg cells have a core transcriptional signature, transcripts that are over- or under-represented relative to their naive CD4 + T cell counterparts (Tconv) (59). Much of this signature is controlled by FoxP3, although FoxP3 alone cannot drive the entire Treg signature (6, 7, 1012). Germline deletion of FoxP3 leads to Treg deficiency and to devastating multiorgan inflammation. In human immunodysre- gulation polyendocrinopathy enteropathy X-linked (IPEX) pa- tients, complete loss of FoxP3 function leads to the absence of Tregs, and there is also a spectrum of missense mutations that allow the differentiation and maintenance of some Tregs with partial function (1315). IPEX typically begins very early in life with a typical triad of enteropathy, endocrine autoimmunity (primarily type-1 diabetes and thyroiditis), and eczematous dermatitis. Of these features, gut pathology is essentially con- stant, while endocrinopathies are more variable. Other manifes- tations occur more sporadically, such as autoimmune hepatitis, nephropathy, and cytopenias (14, 1618). The root of this range of pathologies in IPEX patients is incompletely understood. On one hand, complete loss-of-function mutations (frameshifts, nonsense mutations, large deletions) with complete absence of FOXP3 protein are more deleterious than missense and small deletions (reviewed in ref. 15), and siblings carrying the same mutation tend to develop disease with comparable course and severity. But the range of manifestations and severity can also vary between pa- tients with the same mutation, suggesting that modifier loci in the genetic background and/or environmental exposures modify the course of disease. The FoxP3 protein contains several structural modules (Fig. 1): (i ) a short zinc finger (ZF); (ii ) a leucine zipper (LZ) domain implicated in homodimerization or heterodimer formation with other FoxP proteins (19, 20); and (iii ) the family-defining FKH domain at the C terminus, which is the primary DNA-binding site but also interfaces with transcriptional coregulators (21). The structure of the FKH domain has been determined (22, 23), showing that it adopts an unusual domain-swappedconfigu- ration, in which two FKH domains are intertwined and can bridge two distinct DNA molecules. In contrast, the proline-rich N-terminal region appears to be an intrinsically disordered protein region (24) in computational and structural analyses (25), suggesting that it can adopt different conformations upon binding to different partners. Indeed, FoxP3 interacts with many Significance The transcription factor FoxP3 defines and controls regulatory T cells (Tregs), themselves essential components of immuno- regulatory pathways. From a highly granular scanning muta- genesis, the results of our study point to very integrated functions of the proteins domains, quite different from pre- dictions of simple modular models. The phenotype of mutant mice carrying subtle mutations in Foxp3, which deviate from the acute lymphoproliferation and autoimmunity linked to Treg deficiency and become manifest only upon challenge, suggest that rare FOXP3 variants may contribute to a broader range of human diseases than previously recognized. Author contributions: H.-K.K., D.M., and C.B. designed research; H.-K.K. and H.-M.C. per- formed research; H.-K.K., H.-M.C., and C.B. analyzed data; and H.-K.K., D.M., and C.B. wrote the paper. Reviewers: L.J.B., University of Massachusetts Medical Center; and A.F., Institut Imagine. The authors declare no conflict of interest. Published under the PNAS license. Data deposition: The data reported in this paper have been deposited in the Gene Ex- pression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/geo (accession nos. GSE104344 and GSE104345). 1 To whom correspondence should be addressed. Email: [email protected]. This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1718599115/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1718599115 PNAS | Published online December 21, 2017 | E253E262 IMMUNOLOGY AND INFLAMMATION PNAS PLUS

Transcript of FoxP3 scanning mutagenesis reveals functional variegation ...

Page 1: FoxP3 scanning mutagenesis reveals functional variegation ...

FoxP3 scanning mutagenesis reveals functionalvariegation and mild mutations with atypicalautoimmune phenotypesHo-Keun Kwona,b, Hui-Min Chena,b, Diane Mathisa,b,1, and Christophe Benoista,b,1

aDivision of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115;and bEvergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115

Contributed by Christophe Benoist, November 15, 2017 (sent for review October 26, 2017; reviewed by Leslie J. Berg and Alain Fischer)

FoxP3+ regulatory T cells (Tregs) are a central element of immuno-logical tolerance. FoxP3 is the key determining transcription factor ofthe Treg lineage, interacting with numerous cofactors and transcrip-tional targets to determine the many facets of Treg function. Itsabsence leads to devastating lymphoproliferation and autoimmunityin scurfy mutant mice and immunodysregulation polyendocrinop-athy enteropathy X-linked (IPEX) patients. To finely map transcrip-tionally active regions of the protein, with respect to disease-causingvariation, we performed a systematic alanine-scan mutagenesis ofFoxP3, assessing mutational impacts on DNA binding and transcrip-tional activation or repression. The mutations affected transcrip-tional activation and repression in a variegated manner involvingmultiple regions of the protein and varying between different tran-scriptional targets of FoxP3. There appeared to be different modal-ities for target genes related to classic immunosuppressive functionvs. those related to atypical or tissue-Treg functions. Relevance to invivo Treg biology was established by introducing some of the subtleFoxp3 mutations into the mouse germline by CRISPR-based genomeediting. The resulting mice showed Treg populations in normal num-bers and exhibited no overt autoimmune manifestations. However,Treg functional defects were revealed upon competition or by sys-tem stress, manifest as a strikingly heightened susceptibility to pro-voked colitis, and conversely by greater resistance to tumors. Theseobservations suggest that some of the missense mutations that seg-regate in human populations, but do not induce IPEX manifestations,may have unappreciated consequences in other diseases.

autoimmunity | tolerance | Forkhead

CD4+ regulatory T cells (Tregs) are of central importance inimmunological tolerance to self and in the control of in-

flammatory processes. They play versatile roles to balance ho-meostasis, regarding both immunological (autoimmunity, allergy,responses to pathogenic and commensal microbes, cancer) andnonimmunological (tissue regeneration, metabolic control)contexts (1–3). FoxP3, a winged-helix transcription factor (TF)of the Forkhead (FKH) family, is specifically expressed in Tregs,where it has pivotal roles for differentiation and function and isconsidered to be the defining factor of the lineage (2, 4). Tregcells have a core transcriptional signature, transcripts that areover- or under-represented relative to their naive CD4+ T cellcounterparts (Tconv) (5–9). Much of this signature is controlledby FoxP3, although FoxP3 alone cannot drive the entire Tregsignature (6, 7, 10–12).Germline deletion of FoxP3 leads to Treg deficiency and to

devastating multiorgan inflammation. In human immunodysre-gulation polyendocrinopathy enteropathy X-linked (IPEX) pa-tients, complete loss of FoxP3 function leads to the absence ofTregs, and there is also a spectrum of missense mutations thatallow the differentiation and maintenance of some Tregs withpartial function (13–15). IPEX typically begins very early in lifewith a typical triad of enteropathy, endocrine autoimmunity(primarily type-1 diabetes and thyroiditis), and eczematousdermatitis. Of these features, gut pathology is essentially con-

stant, while endocrinopathies are more variable. Other manifes-tations occur more sporadically, such as autoimmune hepatitis,nephropathy, and cytopenias (14, 16–18). The root of this range ofpathologies in IPEX patients is incompletely understood. On onehand, complete loss-of-function mutations (frameshifts, nonsensemutations, large deletions) with complete absence of FOXP3protein are more deleterious than missense and small deletions(reviewed in ref. 15), and siblings carrying the same mutation tendto develop disease with comparable course and severity. But therange of manifestations and severity can also vary between pa-tients with the same mutation, suggesting that modifier loci in thegenetic background and/or environmental exposures modify thecourse of disease.The FoxP3 protein contains several structural modules (Fig.

1): (i) a short zinc finger (ZF); (ii) a leucine zipper (LZ) domainimplicated in homodimerization or heterodimer formation withother FoxP proteins (19, 20); and (iii) the family-defining FKHdomain at the C terminus, which is the primary DNA-bindingsite but also interfaces with transcriptional coregulators (21).The structure of the FKH domain has been determined (22, 23),showing that it adopts an unusual “domain-swapped” configu-ration, in which two FKH domains are intertwined and canbridge two distinct DNA molecules. In contrast, the proline-richN-terminal region appears to be an intrinsically disorderedprotein region (24) in computational and structural analyses(25), suggesting that it can adopt different conformations uponbinding to different partners. Indeed, FoxP3 interacts with many

Significance

The transcription factor FoxP3 defines and controls regulatoryT cells (Tregs), themselves essential components of immuno-regulatory pathways. From a highly granular scanning muta-genesis, the results of our study point to very integratedfunctions of the protein’s domains, quite different from pre-dictions of simple modular models. The phenotype of mutantmice carrying subtle mutations in Foxp3, which deviate fromthe acute lymphoproliferation and autoimmunity linked toTreg deficiency and become manifest only upon challenge,suggest that rare FOXP3 variants may contribute to a broaderrange of human diseases than previously recognized.

Author contributions: H.-K.K., D.M., and C.B. designed research; H.-K.K. and H.-M.C. per-formed research; H.-K.K., H.-M.C., and C.B. analyzed data; and H.-K.K., D.M., and C.B.wrote the paper.

Reviewers: L.J.B., University of Massachusetts Medical Center; and A.F., Institut Imagine.

The authors declare no conflict of interest.

Published under the PNAS license.

Data deposition: The data reported in this paper have been deposited in the Gene Ex-pression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/geo (accession nos.GSE104344 and GSE104345).1To whom correspondence should be addressed. Email: [email protected].

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1718599115/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1718599115 PNAS | Published online December 21, 2017 | E253–E262

IMMUNOLO

GYAND

INFLAMMATION

PNASPL

US

Page 2: FoxP3 scanning mutagenesis reveals functional variegation ...

other TFs (reviewed in ref. 2). Many of these interactions arefunctionally relevant and modulate specific aspects of Tregfunction (26–29).Genetic variation at the human FOXP3 locus includes missense

variants identified in patients presenting with more or less severeIPEX, and these are preferentially represented in the FKH domain(Fig. 1). But a set of missense mutations have also been identified insystematic exome-sequencing programs among healthy donors orpatients with diseases other than IPEX [e.g., aggregated in gno-mAD (30)]. These non-IPEX variants are typically rare, and someare unique to one individual, but occur at a combined frequency of∼1/300 chromosomes, mapping uniformly throughout the protein(Fig. 1). Most are likely to be completely silent, but since exomesequence aggregation efforts include a surfeit of patients with anarray of diseases, their presence raises the possibility that FOXP3missense mutations might contribute to diseases other than IPEX.How these functional, structural, and variability aspects are in-

tegrated, and how FoxP3 operates as a transcription factor to reg-ulate its target genes, is incompletely understood. Several studieshave analyzed the functional impact of a few natural or engineeredmutations of FoxP3 and identified several important positions (20,25, 31–36). However, an integrated perspective of how FoxP3’sdomains collaborate is lacking. Are there discrete, modular, regionsof the protein to which specific functions can be uniquely ascribed(as would be suggested, for example, by schematic “repressor do-main” representations)? Or does FoxP3 function rather as a mal-leable globular entity, with functional interactions being determinedcombinatorially by several structural elements? In an attempt toprovide a wide perspective of FoxP3’s mode of operation, we per-formed a systematic alanine-scan of the protein. We constructed aset of 130 FoxP3 mutants and tested how this fine-grained array ofmutations affects its ability to bind DNA and to regulate tran-scription. The results brought about a nuanced and variegatedperspective on FoxP3’s structure–function relationship. Assessingthe impact of some mutations by germline editing in mice suggeststhat variation in FoxP3 may impact diseases beyond the confines ofthe IPEX syndrome.

ResultsConstruction and Verification of the FoxP3 Alanine-Scan Library. Weconstructed by site-directed mutagenesis an alanine-scan librarywith 130 mutations in the coding region for mouse FoxP3, thepositions of which are outlined in Fig. 1. Amino acids in the es-sential FKH domain (P338 to P429) were replaced by alanine one-by-one, while in the less-charted N-terminal region (M1 to R337)replacements were by blocs of six alanines. Some of the alterationscorrespond to mutations in IPEX patients, but some also corre-spond to variants detected in large exome sequence projects inhealthy controls or non-IPEX pathologies (Fig. 1 and Dataset S1)(30). A subset of these mutant2s was reported recently in a studythat focused on the relationship between the interactions ofFoxP3 with chromatin or other cofactors and its transcriptionalactivity (37); these results are included here for completeness.After verification of sequence integrity, the mutants were

placed in the retroviral vector MSCV-IRES-THY1.1 (with an N-terminal FLAG-tag for identification), and high-titer viruses wereused to infect activated primary CD4+CD25− Tconv cells (10).This cellular setting was chosen as practical for a project on thisscale, and relevant to physiological activity, since FoxP3 operatesin CD4+ T cells (7, 38). Overall results are compiled in Dataset S1.Proper expression of the mutant FoxP3 proteins was first

assessed. Flow cytometric analysis of transduced cells, standardiz-ing FoxP3-staining intensity against the cotranscribed THY1.1 re-porter, showed for almost all mutants an expression similar to thatof wild-type (WT) FoxP3 (Fig. 2). These FoxP3 levels reach, forcells in the higher range of the Thy1.1 reporter, that of FoxP3 in exvivo Treg cells stained in parallel (Fig. 2, Bottom Right). A fewmutants (M350, M363, M385, M389, M395, and M406) did show asignificant reduction in FoxP3 expression. M350 is the positionof a complete loss-of-function mutation of FoxP3 uncovered inan ENU screen (MGI:3817855). M85 prevents recognition bythe anti-FoxP3 mAb used for detection. Immunoblotting ofextracts from transduced cells largely confirmed the flowcytometric data and also showed that all mutant proteins werefull length (Fig. S1).

MouseMonkeyHuman

Horse

U UUU

P PPPPPPPPPAcAc AcAc AcAcetylation

UbiquitinationProline

1 50 100 150 200 250 300 350 400 432

U

PPhosphorylation

Consensus

Proteindisorder

M331

M285

M278

M209 M338

196 221 239 260 425337ZF LZ FKH

M1

M203

M131M65

M59 M124M426

VariantsIPEX

M331

M338 M374M363M352 M407M396M386

M385M373M362 M416M406M395 M426

M417

M351

H1 S1 H5S3S2H3H2

Fig. 1. FOXP3 structure, variation, and the systematic set of mutants. From the Top: conservation of FOXP3 protein across mammals; protein disorder (fromD2P2 browser: d2p2.pro/); posttranslational modifications and proline positions; known protein domains; and missense variants in human FOXP3 found in IPEXpatients or in population surveys. The position of alanine-scan mutants is shown in relation to these maps, where the number refers to the position of the firstaltered amino acid.

E254 | www.pnas.org/cgi/doi/10.1073/pnas.1718599115 Kwon et al.

Page 3: FoxP3 scanning mutagenesis reveals functional variegation ...

FoxP3 localizes to the nucleus in Tregs and in transfected cells(5, 19, 39), and we verified the proper nuclear localization of themutants by immunofluorescence microscopy (Fig. S2A). The vastmajority of mutant proteins showed the correct pattern, withstrictly nuclear staining, but a few showed cytoplasmic staining aswell, with cell-to-cell variation in the nuclear:cytoplasmic ratios(M331, M345, M363, M385, and M389, in addition to mutantswith low total FoxP3) (Fig. S2A). When positioned with refer-ence to the 3D crystal structure of the FoxP3 FKH domain (22,23), several of these mutations mapped to a hydrophobic pocketwithin the domain-swapped FoxP3 dimer structure (Fig. S2B).The M331 result was consistent with one of the nuclear locali-zation domains previously mapped (40), but other reportedmotifs (19, 32) are more difficult to reconcile with our findings.Overall, these data suggest that most of the mutants in our li-brary were properly expressed and localized, with only a minorityleading to unstable or mislocalized FoxP3 (most of which werenot analyzed further).

Mapping DNA-Binding Activity.We then tested how the alanine-scanmutations affected DNA binding by FoxP3 in a solution assay witha biotinylated dimer of the canonical 5′-AAACA Forkhead Re-sponsive Element (FKRE) motif to capture epitope-tagged proteinfrom whole-cell extracts (Fig. 3A). Binding was detected relative tobackground levels observed with empty vector (EV), irrelevantrecombinant protein (EBNA), or a scrambled-sequence oligonu-cleotide (Fig. 3B). Overall, the set of mutants showed substantialvariation in the ability to bind FoxP3’s cognate motif (Fig. 3C,where results are normalized relative to binding by WT FoxP3, andDataset S2; position highlighted on the domain structure in Fig.3D). Several points are worth highlighting. The mutants with poornuclear localization showed the most severely affected DNA-binding activity in vitro, which suggests that DNA binding maybe important for nuclear retention of FoxP3. Aside from M350, nosingle mutation completely abolished binding to DNA, implying adegree of resilience. Most alterations at the very N terminus hadlittle effect, if anything slightly enhancing binding, while those inthe LZ domain were predictably deleterious. Less expected wasthat several mutations in the ZF also significantly decreased DNA-binding activity. Many mutations in the FKH domain had a dele-terious impact, as expected from the domain’s structure, in par-ticular those within the main DNA-contact helix (e.g., M383N383A,M386R386A, M390S390A, M397R397A) or the domain-swap coil (e.g.,

M340F340A, M345L345A, M348W348A, M381W381A). However, sev-eral FKH-domain mutants unexpectedly enhanced DNA binding(e.g., M369R369A, M370M370A, M377H377A, M378P378A, M380T380A).Similarly, the A384T mutation in H3 was recently reported to alsoincrease DNA binding (36). These enhancing mutations mapped tohelix H2 and to a loop immediately N-terminal to the main DNAcontacts in helix H3 (Fig. 3D). This nonbinding helix has previouslybeen shown to modulate DNA-binding specificity in other Fork-head family members and has been proposed to constitute a modeof determination and evolution of binding specificity (41, 42). In thislight, the enhancing mutations may be relieving H2 structural con-straints on DNA binding.

Mapping Transactivation and Transrepression. We then used severalassays to evaluate how mutations in different regions of FoxP3affect its impact on transcriptional targets in transduced cells.Initially, we used two short-term reporter systems in which FoxP3has been shown to have repressive activity. One tested the in-hibition of the Il2 promoter (Il2pro), which is activated by NFAT1/AP1 but repressed by NFAT1/FoxP3 complexes (21); the secondassessed the inhibition of a minimal promoter by an eightfoldrepeat of the FKRE motif (8×FKRE) (43). Luciferase activitygenerated after transfection of these reporters and cell activationwas strongly repressed by cotransfection of WT FoxP3 (Fig. S3A).Introduction of the FoxP3 mutant panel in these systems (Fig. 4)revealed a range of effects. First, mutation effects were generallysimilar for the two reporters (Fig. 4), with significant correlation(Fig. S3B), although there were differences, such as the impact ofN-terminal mutations in the Il2pro but not the 8xFKRE assay.Second, the most severe effects tended to map to the FKH do-main. Third, and as already observed in our narrower study (37),there was only limited correlation between DNA-binding abilityand activity in these assays (Fig. S3C).For a broader perspective, we profiled the response of a panel

of FoxP3-responsive genes, using a nanostring codeset of 200transcripts (37). Activated CD4+CD25− Tconv cells were trans-duced with a selected set of 70 mutants and sorted after 72 hwithin a constant window of Thy1.1 reporter expression to ensurea level of FoxP3 equivalent to that of ex vivo Tregs to avoidoverexpression artifacts. We profiled the expression of a specificset of genes with a custom codeset for transcripts typical of theTreg signature and of tissue-Tregs and known FoxP3 targets (37).As previously reported (37), WT FoxP3 induced and repressed a

247 262 271 278 285 291 299 306 313 319 325 331 338 339 340 341

235 241

104

111 118 124 131 138 145 151 163 170 176 182 190 203 209 215 222 228

1 7 14 21 27 34 40 46 52 59 65 71 85 91 95 98WT EV

421 422 423 424 425 426

376 377 378 380 381 382367 368 369 370 371 373 374 375

364 365 366363

389 390 391 392 393 394 396 397 398 399 400 401395

346 347 348

383 386 387 388385

352 354 355 356 357 358 359 360 361 362351350

342 344 345

415 416 417 418 419 420409 410 411 412 413 414

407 408402 403 405 406

Thy1.1

FoxP

3

CD4

FoxP

3

Fig. 2. Expression of the mutant FoxP3 proteins in transduced CD4+ T cells. Flow cytometry plots of FoxP3 after retroviral transduction into activatedCD4+CD25− Tconv cells, displayed against the expression of the colinear Thy1.1 encoded in the same vector (red: mutants with significant loss of expression).(Inset, Bottom Right) Ex vivo Treg cells stained in the same experiment. Data are representative of three experiments.

Kwon et al. PNAS | Published online December 21, 2017 | E255

IMMUNOLO

GYAND

INFLAMMATION

PNASPL

US

Page 4: FoxP3 scanning mutagenesis reveals functional variegation ...

set of genes relative to EV-transduced controls, including manyof the Treg “usual suspects” (Icos, Lrrc32, Dusp4, Foxp3 up-regulated; Il2, Il4, Id2, Pde3b down-regulated). Complex pat-terns were revealed when we analyzed these induced or repressedgene sets after transduction with the selected mutants (resultsclustered in Fig. 5). The following observations merit bringingforth, as they have direct relevance to understanding FoxP3function and to Tregs physiology: (i) There are general trends,several mutants being generally less active than others, capturedby computing for every mutant an activation and a repressionindex (mean normalized expression of all FoxP3-induced orFoxP3-repressed transcripts, respectively), which are highly cor-related (Fig. S4A). The activation index also correlated with theresults of the reporter assay (Fig. S4B). However, we observed adiversity of effects with subtly different patterns. The heatmap(Fig. 5) groups the mutants into nine different blocs, membershipbeing highly consistent for independent duplicate transductions ofthe same construct. There were even further nuances; for exam-

ple, even though M14 and M276 mapped to the same bloc, theydiffered in the activation of Gpr83 and Lag3. Thus, varyingFoxP3’s conformation or interactions with cofactors modulatesdiversely the effects on any one target gene. (ii) For the most part,these groupings of mutants with similar footprints did not relate tothe positions of the mutations on the protein. For example, of thetwo mutants of bloc 4, the effects of which were quasi-identical,one mapped to the LZ and one to the FKH. This distributionsuggested that the variegated effects of the mutations did notreflect local perturbations of a given interaction, but more globalalterations, e.g., in multimolecular complexes. (iii) Several muta-tions had essentially no consequence and clustered with WTFoxP3 (bloc 6). Others appeared as gain-of-function but only forspecific targets (e.g., Izumo1r, Il1rl1, and Ccl5 by bloc 3 and Rorcby bloc 5 mutations). (iv) At the other end of the spectrum (bloc9), even the most severely affected mutants maintained some ac-tivity, including three mutants with poor or absent DNA binding(M331, M350, M406) that retained activity on some genes (e.g.,

H1 S1 H5S3S2H3H2

0

10

1

5

0.2Spe

cific

DN

A bi

ndin

g(F

oldC

hang

e fro

m W

T)

EV

WT +

FKRE2 olig

o

WT +

Ctrl oli

go

EBNA + FKRE2 o

ligo

0

0.2

0.4

0.6

A

B

C

M39

5

EV

M1

M59

M12

4

M20

3

M27

8

M33

9

M35

1

M36

2

M37

3

M38

5

M41

6

M42

6W

T

M35

0

M36

3

M40

6

FKR

E 2 b

indi

ng (O

.D.)

anti-mouseIgG-HRP

FKRE2

Flag

anti-Flag

BiotinStreptavidin

ZF LZ FKH

Domain swappingDNA binding

FoxP3

Contacts:

D

N-Term

C-Term

P338

I346

M370

R369

H377 P378

T380W381

R386L389

C394

V398V405

Fig. 3. DNA-binding activity of the FoxP3 mutants. (A) Schematic of the DNA-binding assay, involving a biotinylated oligonucleotide with two FKRE motifs,and luciferase-based detection of bound FoxP3 via an N-terminal flag tag. (B) Specificity controls, comparing binding of WT FoxP3, or irrelevant EBNA protein,to FKRE2 or control (scrambled sequence) oligonucleotides (mean of two experiments ± SD); (C) Effect of each mutation on binding to the FKRE2, oligo-nucleotide (per A), mean ± SD of two or more experiments. Black bars indicate the mutants with atypical localization (per Fig. S2). (D) The 3D positions of themutations with gain or loss of binding (colored shading) are shown on the structure of the FKH domain monomer (22) (structure of human FOXP3, butnumbered according to mouse sequence). Amino acids the side chains of which contact DNA or the homodimerized FoxP3 are shown (yellow and orange dots,respectively). SD and P values are shown in Dataset S2.

E256 | www.pnas.org/cgi/doi/10.1073/pnas.1718599115 Kwon et al.

Page 5: FoxP3 scanning mutagenesis reveals functional variegation ...

Tnfrsf4/18, Eomes) and paradoxically gained induction of un-expected targets like Il4 and Il5. This remaining activity echoed aprevious report of FoxP3 regulation as independent of directDNA binding (44). However, the DNA-binding–independent ac-tivity observed here was quite specific and restricted to a small setof targets, contrary to this report (44). (v) Il1rl1 represents aninteresting divergence from most other targets of FoxP3 trans-activation. It encodes the receptor for the alarmin IL33 and isexpressed by several tissue Treg populations (3). It was moderatelyactivated by WT FoxP3, but markedly more so by several mutants.To capture such differences, we computed a “normalcy index”(how the expression pattern of each transcript correlated with thegeneric FoxP3 induction index above) (Fig. S4C). Il1rl1 was clearlyan outlier, along with Rorc, Ccl5, and Il5. This observation sug-gests that FoxP3 may have an inherent ability to activate Il1rl1,which is normally inhibited, but can be relieved when cofactorsvary in response to tissue localization or activation cues. Rorc wasalso an outlier among FoxP3-induced genes, but was clearly dif-ferent from Il1rl1 (Fig. 5), which is of interest considering theinteractions between FoxP3 and RORγ during T cell differentia-tion and in the control of tissue-Tregs. (vi) The Th2 cytokines Il5and Il4 were repressed by WT FoxP3, as expected, but were ac-tually induced by several severe FoxP3 mutations (especially thepoor DNA-binding mutants of bloc 9). Il2, on the other hand, wasrepressed by almost all mutants, except for those of bloc 8, whichslightly induced it.Overall, these data denote specificity in the involvement of

FoxP3 relative to its transcriptional targets, with a diversity thatdoes not fit with simple domains of the protein being involved ineither activation or repression, and suggests that the control ofdifferent targets involves an array of mechanisms and cofactors.

In Vivo Effects of Mild FoxP3 Mutations. The alanine-scan muta-genesis thus brought forth a highly nuanced perspective onstructure–function relationships within FoxP3, with variegatedeffects across the range of FoxP3 targets. Many of these muta-tions mapped to regions of the protein that are also affected bygenetic variation in humans, some with recognized effects in thecase of IPEX mutations, some unnoticed in the case of mutationsuncovered in large exome-sequencing projects. Thus, it seemedimportant to assess the mutations’ effects in vivo at the tran-scriptional level to verify that the patterns observed in transduced

CD4+ T cells also applied in true Tregs and at the phenotypic levelto ascertain their consequence on Treg function. We chose twomutations, one with very mild effects (M176, mapping to the N-terminal region, bloc 5) and one transcriptionally more severe(M354, in the FKH domain, bloc 2). Mutant mouse lines weregenerated through CRISPR-based homologous recombination infertilized oocytes (45). After screening and verification by se-quencing, we obtained faithful replicas of the mutations (at 5%efficiency). Young mice homozygous for the two mutations wereinitially healthy and fertile with no overt phenotype. Tregs werepresent in essentially normal numbers and proportions in lymphoidorgans and, in the colonic lamina propria, if anything slightly moreabundant in the periphery (Fig. 6A). The mutant mice showed noindication of the widespread lymphoproliferation typical of scurfyor other Treg-deficient mice, histologically or from weight loss(Fig. 6B), and their Tconv cells remained mainly unactivated,judging from the CD44 and CD62l markers (Fig. 6C).On the other hand, Tregs from the mutant mice did present

transcriptomic variations. First, FoxP3 levels in Tregs from bothmutant lines were reduced by 40–50% relative to WT littermates(Fig. 6D). Since there was no notable difference in CD4+ T cellstransduced in vitro with these mutants, when expression was drivenby the vector’s retroviral promoter, these lower levels of FoxP3suggest that the feedback that locks in Foxp3 expression may not befully operative in the mutant Treg cells. Cell-surface markers onthose Tregs (Fig. 6E, Right) mimicked changes observed in trans-duced cells in vitro (Fig. 6E, Left): Tregs from M354 mice displayedlower CD25, GITR, and CTLA4 but higher PD1. The M176 Tregsshared the altered CD25 and PD1 expression, but had more normalGITR and CTLA4. In gene expression profiles of Tregs from thesemice, transcripts earlier seen to be overexpressed in mutant-trans-duced relative to WT-transduced CD4+ T cells in vitro were mostlyoverexpressed in mutant Tregs ex vivo, with the converse for in vitrounderexpressed transcripts (Fig. 6F).There were also marked shifts in expression of some Treg-

associated signatures, but these were different in the two mutantlines. The canonical Treg signature (7) was strongly biased, butonly in M176 Tregs, with underexpression of transcripts normallyoverexpressed in Tregs (and vice versa) (Fig. 6G). We noted anup-regulation of the signature associated with “activated Tregs”[also known as eTregs or aTregs (46)] in M354 Tregs, but theopposite in M176 Tregs (Fig. 6H). Similarly, a signature that

H1 S1 H5S3S2H3H2

ZF LZ FKH

0.1

1

10

Rel

ativ

e su

ppre

ssio

n (F

oldC

hang

e fro

m W

T) 8xFKRE

Il2pro

M39

5

EV

M1

M59

M12

4

M20

3

M27

8

M33

9

M35

1

M36

2

M37

3

M38

5

M41

6

M42

6

WT

M40

6

0.1

1

10

M36

7

M27

1

M37

4

M17

6

M35

4

Fig. 4. Reporter-based transcriptional activity of the FoxP3 mutants. EL4 T cells were transfected with EV, mutant, or WT FoxP3 together with the luciferasereporter plasmids described in Fig. S3 (8xFKRE, Top; Il2pro, Bottom). Data from two independent experiments are shown as mean ± SD (numeric values are inDataset S3).

Kwon et al. PNAS | Published online December 21, 2017 | E257

IMMUNOLO

GYAND

INFLAMMATION

PNASPL

US

Page 6: FoxP3 scanning mutagenesis reveals functional variegation ...

generally distinguishes tissue from lymphoid Tregs was stronglyshifted in M176, but in the opposite direction for M354 (Fig. 6I).These results indicate that the subtle transcriptional consequences

of the mutations observed in vitro were also present in Tregs invivo, each mutation differently affecting specific segments of theTreg transcriptome.

Gata3Slc2a3Xbp1Entpd1Fosl2PpargLtb4r1Ccr1Ccl3Ikzf2Ccl5Xcl1Nr4a3Pdcd1Slco4a1LdhaGapdhSlc16a3Lgals1AnlnEzh2Txn1PoleIl4Il5Gen1Cxcr4Egr1Ptpn22Cd226Pde3bMettl9Igfbp4Ccr8Fgl2Lgals3Tbx21Cxcr6Id2GzmaIl18rapGzmbIl12rb2EomesIl2Ctla2a

DNAbinding

IPEX

M1

M1

M21

M11

1M

111

M15

1M

151

M41

8M

359

M35

9M

378

M41

8M

21M

356

M37

8M

424

M42

4M

354

M35

4M

356

M38

8M

388

M21

5M

215

M32

5M

325

M71

M35

2M

71M

352

M95

M95

M42

5M

365

M36

5M

271

M40

2M

344

M34

4M

271

M42

5M

402

M24

1M

241

M40

9M

409

M34

M27

8M

278

M14

M14

M35

1M

351

M22

2M

34M

176

M22

2M

319

M31

9M

176

M34

7M

347

M39

4M

394

M46

M30

6M

393

M39

3M

415

M30

6M

46M

59M

7M

7M

59M

377

WT

WT

M20

3M

203

WT

WT

M42

1M

421

M39

6M

400

M40

0M

415

M41

2M

412

M37

7M

369

M36

9M

131

M39

0M

390

M39

6M

131

M23

5M

235

M24

7M

247

M36

0M

360

M41

0M

410

M42

6M

426

M33

9M

364

M33

8M

386

M33

8M

374

M36

7M

367

M37

4M

364

M38

6M

341

M34

1M

373

M36

6M

366

M37

1M

371

M39

2M

392

M37

3M

339

M39

7M

397

M34

2M

342

M33

1M

331

M35

0M

350

M40

6M

406

EV

EV

EV

EV

FoxP

3-re

pres

sed

FoxP

3-in

duce

d

BC005685Csf1Nrp1Sdc4Foxp3Cd80Arhgap31Tgm2Gpr83Ccr4Lrrc32Socs2Izumo1rCtla4P2ry10Il10raIl2raTnfrsf4Tnfrsf18IcosNebItgaeGbp2Gbp3Nt5eIgf1rPglyrp1GnaqCd200r1Il6raJunCcr7Tnfsf8Ikzf4TnfLtaIl2rbCd69Dusp4CapgPrdm1Lag3TigitMafSwap70Pcyt1aTgfbr1Ccr2Klrg1Il1rl1FosIfngr2Zscan29Ifgga2Vipr1RorcNrn1Nr4a1

0-1 1

Log10 FoldChange from EV mean

1 3 4 72 5 6 8 9

Fig. 5. Transcriptional activity of the FoxP3 mutants on endogenous genes. Activated CD4+ Tconv cells were transduced with empty vector (yellow shading) orWT (green) or mutant FoxP3; after 72 h, cells were sorted for matched expression of FoxP3 (based on colinearly expressed Thy1.1) and Nanostring-profiled inbiological duplicate for a set of FoxP3-induced or -repressed genes (Right). Results are shown as FoldChange (FC) relative to the mean of EV controls. Mutants areclustered into nine blocs (Bottom; note that duplicates of the samemutant mostly cluster together). The position of known IPEXmutations (black circles, Top) andDNA-binding data are shown for reference. Mutants or genes discussed in the text are shown in red or boldface type. Numeric values are listed in Dataset S4.

E258 | www.pnas.org/cgi/doi/10.1073/pnas.1718599115 Kwon et al.

Page 7: FoxP3 scanning mutagenesis reveals functional variegation ...

Steady-state Treg pools seemed normal in young mutant mice, butwe tested their behavior in conditions of competition or challenge.First, to sensitize the Treg population analysis, we constructed ra-

diation bone-marrow chimeras with a 50/50 mutant/WT mix of do-nor cells. In this context, mutant Tregs were markedly outcompetedby WT Tregs in the same mice, unlike other lineages (Fig. S5A).

AFo

xP3+

(% o

f CD

4+TC

Rβ+

)

2

4

6

8

0

10

20

0

20

40

60

Thymus Spleen Colon

D

WT

WT

M176

M354

CD25

FoxP

3

Spleen

0.53±0.03

0.55±0.06

Gated onCD4+ cells

MFI=

MFI=

8.31 12.6

2.49 3.33

CD44

CD

62l

Gated onCD4+FoxP3- cells

WT

WT

M176

M354

C Spleen

E

Cd25 Gitr Pd1 Ctla40

1

2

WT M176 M354

Rel

ativ

e ex

pres

sion

In vitro

CD25 GITR PD1 CTLA4

FC=0.84

FC=0.99

FC=1.48

FC=1.1

FC=0.55

FC=0.71

FC=1.89

FC=0.7

In vivo

FoldChange (mutant vs WT) Tregs

P=10-92

Mutant upMutant down

P=10-81

F

1

10-2

10-4

p-va

lue

(mut

ant v

s W

T Tr

egs)

1

10-2

10-4

10.25 4 16P=0.011

10.25 4 16P=10-4510-6

M176

M354

178 665

659 188

p<10-26p<10-119

18 35

97 32

p=0.02

423 368

414 485

p=0.23p=0.002

p<10-7

All tissues signature

58 13

57 54

p=0.67p<10-6

180127

32492

p<10-8p=0.11

36637

139 182

p<10-21p<10-27

G

WTM17

60

4

8

WTM35

40

10

20

H I

WTM17

6M35

40

10

20

30

Bod

y W

eigh

t (gm

)

B

6 weeks old

CD

44+ C

D62

L- (%

)***

******

****

***** ***

***

* *** ***

**

*

M176

M354

In vitro

1 40.25

1

10-4

1 40.25

1

10-4

1 40.25

1

10-4

1

10-4

1

10-4

1

10-4

FoldChange(mutant vs WT)

p-va

lue

(mut

ant v

s W

T Tr

egs)

FoldChange(mutant vs WT)

FoldChange(mutant vs WT)

CD44hi vs CD62lhiTreg signature

p-va

lue

(mut

ant v

s W

T)

p-va

lue

(mut

ant v

s W

T)

WTM17

6M35

4 WTM17

6M35

4 WTM17

6M35

4

WT M176 M354

Treg signature

Fig. 6. Transcriptional scars of FoxP3 mutations are recapitulated in vivo. Analysis of FoxP3 mutant mice carrying two of the above mutations. (A) Pro-portions of CD4+TCRb+FoxP3+ Tregs in lymphoid organs of homozygous mutant male mice or control littermates (both sets of littermate controls merged).*P < 0.05, **P < 0.005, and ***P < 0.001 (Student’s t test). (B) Body weight of 8-wk-old WT, M176, and M354 mice (average of five mice). (C) CD44 vs. CD62lexpression in gated splenic Tconv from WT, M176, or M354 mice. Representative of three independent experiments. (D) FoxP3 vs. CD25 expression in CD4+

T cells; numbers: FoxP3 mean fluorescence intensity (MFI) in mutants relative to WT littermate Tregs (mean ± SD, n = 9 mice). (E) Comparison of distinguishingFoxP3 target gene expression in mutant Treg cells in vivo by flow cytometry (numbers are FoldChange relative to controls, averaged from five mice pergroup); for reference, mRNA expression of the same target genes in transduced CD4+ T cells (from Fig. 5) is shown at Left. *P < 0.05, **P < 0.005 and ***P <0.001 (Student’s t test). (F) Volcano plots of microarray gene expression profiles of sorted CD4+CD25high Tregs from mutant and WT littermates (mutant/WTFoldChange vs. P value). Red and green highlights are transcripts over- or underexpressed (at FC > 1.5) when comparing mutant and WT FoxP3 in transducedCD4+ T cells in vitro (P values from a χ2 test). (G–I) Mutant vs. WT volcano plots (as in F) overlaid with (G) the canonical Treg signature (7). (H) CD44+ vs. Cd62l+

Treg signature (46). (I) All-tissue Treg signature (53); all-signature P values from a χ2 test).

Kwon et al. PNAS | Published online December 21, 2017 | E259

IMMUNOLO

GYAND

INFLAMMATION

PNASPL

US

Page 8: FoxP3 scanning mutagenesis reveals functional variegation ...

Mutant Tregs showed the same reduction in FoxP3 levels notedabove, indicating that this is a cell-autonomous phenomenon, aswas the lower CD25 in M354 (Fig. S5B).Second, we aged the mice. Older M354 mice failed to thrive

after ∼35 wk and uniformly lost weight, while M176 mice stayedhealthy (Fig. 7A). Even though Treg numbers and frequencyremained normal in aged mice (Fig. 7B), CD4+ Tconv cellsshifted to an activated CD44hiCD62Llo phenotype, as did CD8+

T cells, particularly in M354 (Fig. 7C). Widespread inflammation

was detected in the skin of aged M354 mice, but not in anyother tissues usually affected in fully deficient scurfy mice,pointing to a specific autoimmune or inflammatory attack (Fig.7D). Third, we challenged M176 and M354 mice in the trini-trobenzenesulfonic acid (TNBS)-induced colitis model. At thenormal dose, mutant mice of both lines succumbed within a fewdays of recall (Fig. 7E). At a lower dose of TNBS, which elicitedonly limited colitis in WT littermates, both M176 andM354 showed severe disease (Fig. 7F).

0

80

WT M176 M3540

80

% o

f CD

44+ C

D62

L-

WT M176 M354

CD44

CD

62l

FoxP3

CD

4

WT M176 M3540

50

% o

f Tre

g (F

oxP

3+)

WT M176 M354

0 1 2 30

50

100

WT (n=12)M176 (n=9)M354 (n=7)

Time (days)

Surv

ival

(%)

WT M176 M3540

5

10

15

0

10

20

30

Clin

ical

sco

re(m

ax =

15)

Wei

ght l

oss

(%)

WT M176 M354

WT M176 M354

****** *

***

WT M176 M354

FoxP3

Tcrβ

0

40

WT M176 M3540

15

0

30

WT M176 M3540

15

30

WT M176 M3540

1

2

WT M176 M3540

40

80

Tum

or-in

filtra

ted

Treg

s (%

of C

D4+

)

0 20 40 600

20

40

60

WTM176M354

Bod

y W

eigh

t (gm

)A 40 weeks old40 weeks old

0 9 18 270

1600

3200

Tum

or v

olum

n (m

m3 )

29.0 68.0 54.9 41.4 79.3 14.1

Gated on CD4+

***

H

68.3 28.7 57.5 35.1 50.9 39.7

B

Age (weeks)

G

Gated on CD8+

Gated on Tconv

**

***

12.7 18.0

29.2 43.1 62.1

53.4

C

ED F40 weeks old

WT M176 M354

L.I.

Skin

Liver

10μm

0

TNFα

+ (%

)

CD8+ T cells CD4+ Tconvs FoxP3+ Tregs** **

**

I

*

**

IFNγ+

TNFα

+ (%

)

WTM176M354

Time (days)

Fig. 7. Physiological consequences of nonscurfy FoxP3 mutations. (A) Late body weight of WT, M176, and M354 mice up to 60 wk. (B) CD4+TCRb+FoxP3+ Tregproportions in 40-wk-old WT, M176, and M354 mice. (C) CD44 vs. CD62l expression in CD8+ or Tconv (Bottom) from 40-wk-old WT and M176 or M354 mice(plots representative of three experiments). (D) Tissue histopathology from the same aged mice (representative pictures from three independent experi-ments). (E) Survival rate of WT and mutant mice upon challenge with the standard 200-μg dose of TNBS (results pooled from two independent experiments).(F) Representative histology, clinical score, and weight loss after challenge with low dose (40 μg) of TNBS; each point is an individual mouse, pooled fromthree independent experiments. (G) Growth of MC38 tumors transplanted s.c. into mutant mice or WT littermates (results combined from three independentexperiments; each line represents an individual mouse). (H) Representative cytometry plots for CD4+TCRβ+FoxP3+ Tregs in tumor tissue. (I) Proportion ofTNFα+ or IFNγ+TNFα+ cells among tumor-infiltrating CD8+ T (Left), Tconv (Middle), and Treg cells (Right). Data are from three independent experiments;P values are from a paired Student’s t test (*P < 0.05, **P < 0.005, and ***P < 0.001).

E260 | www.pnas.org/cgi/doi/10.1073/pnas.1718599115 Kwon et al.

Page 9: FoxP3 scanning mutagenesis reveals functional variegation ...

As a further evaluation of Treg function, we tested the sus-ceptibility of the FoxP3 mutant mice to tumor growth by s.c. in-jection of MC38 colon tumor cells. M176 and M354 mice showedstrikingly delayed tumor progression (Fig. 7G), suggesting a moreeffective antitumor response. Tregs normally form the majority ofinfiltrating CD4+ T cells in MC38 tumors, but these Tregs were farless abundant in mutant hosts, especially for M354 (Fig. 7H). Thisdeficiency was accompanied by heightened production of TNFαand IFNγ by tumor-infiltrating CD4+ Tconv and CD8+ T cells(Fig. 7I), especially in M354 hosts, confirming that the functionalTreg deficiency allowed stronger activation of T-effector pathwaysin the tumor microenvironment. This phenotype is similar to thepoor Treg function described for Nrp1-deficient Tregs in the tu-mor environment (47). Overall, these missense mutations inFoxP3 led to Tregs with reduced fitness and function, the deficit ofwhich became manifest only upon challenge. These subtle defectsmarkedly influenced immune response in disease contexts, but in amanner that bore little or no relation to known pathology ofFoxP3 deficiency.

DiscussionThe level of resolution provided by this set of 130 FoxP3 mutantssheds a light on the operation of this transcription factor. Thecomplexity of FoxP3 structure–function relationships operated attwo levels. First, the mutations diversely affected the trans-activation of different FoxP3 target blocs, some with subtle dif-ference within the general axis of activity, others very distinctly.Second, these functions could not be ascribed to simple modulararchitectures, but implicated the whole molecule to some extent.These variegated mutational effects translated into in vivo phe-notypes distinct from the usual IPEX/scurfy pathology.Our recent mutagenesis study, involving a much smaller number

of alterations, showed that FoxP3’s transactivation ability gener-ally correlated with the potential to bind with multimolecularcomplexes that include RelA and Ikzf2 (37). In keeping with thisnotion, we found here that a generic “activation index” can effec-tively summarize the ability of the mutants to activate FoxP3 targets(and inversely for the overall repression index). However, the resultswere also more nuanced than these dominant effects. First, theresponse of individual genes showed subtle differences, reflected inthe finely resolved ability of mutants of any one bloc to affect aparticular target (e.g., Il2ra and Tnfrsf18 responded similarly, butdistinctly from Dusp4 or Lag3). Second, some targets showed rad-ically different patterns, objectivized by the “normalcy index” of Fig.S4C, which brought out the very different sensitivity to mutations ofIl5, Rorc, or Il1rl1. Interestingly, the expression of the latter two isfound predominantly in tissue-Tregs (3), implying that the adapta-tion of FoxP3 to functioning in these particular environments har-nesses functional facets different from those characteristic of itsmore usual function in lymphoid tissues.Transactivation and transrepression of particular targets in-

volved several structural regions identifiable by sequence compo-sition, with convergent mutational effects of mutations in either theN-terminal moiety or the FKH domain. This spread was observedwith profiling as well as reporter assays. There was no evidence fora simple repressor domain or for any region with a dominant ac-tivating role. This integrated view, in which the entire moleculetakes part in different functions, is at odds with the simpler inter-pretations of modular TF structure (48), in which well-demarcateddomains are ascribed distinct functions, which can be shuffledevolutionarily (in fairness, however, the modular model had al-ready been shown to be an oversimplification; see, e.g., ref. 49). Inthe same vein, our study of FoxP3 interactions with transcrip-tional cofactors also found that the regions of FoxP3 thatconditioned the interactions with specific cofactors encom-passed multiple domains (37). As a consequence, we cannotascribe the different transcriptomes of M176 and M354 Tregcells to perturbed interactions between FoxP3 and any given

cofactor. These results are consistent with the notion ofFoxP3 assembled into multicomponent “molecular machines”for transcriptional control, such that many facets of the proteincontribute to assembly of one such complex.The variegation of mutational effects across the spectrum of

FoxP3 targets and across the phenotypes of M176 and M354 miceopens perspectives on pathologies associated with FoxP3 deficiencyin humans. First, the phenotype of mutants with more severe mu-tations suggests that the high IgE levels of many IPEX patients maybe connected to the paradoxical induction of Il5 and Il4 observedhere, in addition to the defective control of Th2 cells. More gen-erally, the range of transcriptional effects observed here is consistentwith the wide heterogeneity of severity and symptoms that resultfrom missense mutations in IPEX patients (13–15). Some IPEXmutations with milder phenotypes (F324L, R347H, V408M) affectthe same position as some of our less dramatic mutants. Similarly, arecent report also showed a partial scurfy phenotype after in-troduction of the IPEXA384T mutation (36). Even more divergent,however, is the absence of an overt phenotype in the M176 andM354 mutant mice in which Treg defects, clearly apparent bytranscriptional analysis, were revealed only in a competitive contextin response to inflammatory stress or after aging. Had these defectsappeared spontaneously, they would likely not have been ascribedto Foxp3. This observation suggests the possibility that humans withcomparable rare missense variants in FOXP3 may exist. Thesevariants would not be recognized because of the marked departurefrom the IPEX syndrome, but may contribute to exacerbated sus-ceptibility to insults in the gut or to isolated skin pathology such asaged M354 mice. Indeed, a survey of rare missense mutations ofFOXP3 in the Inflammatory Bowel Disease Exomes Browser(https://ibd.broadinstitute.org) shows 13 such mutations in irritablebowel disease patients. One might question why FOXP3 does notappear in genome-wide association study data; the answer may bein the rare nature of the mutations, which are likely subject torapid purifying selection, which cannot be detected by associ-ation studies that track more frequently distributed variants.In conclusion, this refined structure–function dissection has

brought a very different perspective on FoxP3 and its integrationinto flexible molecular machines and the particular dysfunctionof which may affect human disease in unexpected ways.

Materials and MethodsAll experimental procedures are described in detail in SI Materials and Methods.

Mice. The C57BL/6J mice (Jackson Laboratory) and mutants were bred in anspecific pathogen-free (SPF) facility at Harvard Medical School (IACUC protocol02954). The M176 and 354 mutations were introduced by Cas9-targeted mu-tagenesis with oligonucleotide-directed resealing and direct injection intomouse zygotes (45). For BM radiation chimeras, recombination-activatinggenes (RAG)-deficient recipients were injected 6 h after 6 Gy irradiationwith a 50/50 mix of bone marrow (BM) cells from WT B6.CD45.1 congenicand M176 or M354 (CD45.2) donors and analyzed 10 wk later. Experimentswere performed under protocol IS00001257 approved by the HarvardMedical School Institutional Animal Care and Use Committee.

Antibodies and Plasmids. N-terminal FLAG-tagged FoxP3 was cloned into theMSCV-IRES-THY1.1 retroviral vector, and alanine replacements were gener-ated by site-directed mutagenesis; the entirety of the coding sequence wasverified by Sanger sequencing.

Retroviral Infection and Expression Analysis. CD4+CD25− Tconv were isolatedby negative magnetic selection and activated with anti-CD3/CD28 beads for36 h before infection. Cells were spin-infected for 2 h and flow-sorted 72 hlater within a window of Thy1.1 expression determined to correspond tonormal levels of FoxP3 in Tregs.

DNA-Binding Assay. Nuclear extract from EV, WT, or mutant transduced CD4+

T cells was induced with 25-bp double-stranded biotinylated oligo with twocopies of canonical FoxP3-binding motif. FoxP3 binding was measured withan Episeeker DNA-protein–binding assay kit (ab117139; Abcam).

Kwon et al. PNAS | Published online December 21, 2017 | E261

IMMUNOLO

GYAND

INFLAMMATION

PNASPL

US

Page 10: FoxP3 scanning mutagenesis reveals functional variegation ...

Luciferase Reporter Assay. EV, WT, or each mutant FoxP3 plasmid wascotransfected with luciferase reporter plasmids driven by 8XFKRE (50) orIL2 promoter with pRL-tk renilla vector in EL4 T cells. Forty-eight hours aftertransfection, cells were stimulated with phorbol myristate acetate/ionomycinfor 2 h, and reporter activity was measured.

Tumor and Colitis Challenge.Mice (6 wk old) were sensitized with 50 μL of 1%TNBS (4:1 acetone:olive oil solution) on their backs. A week later, colitis wasinduced by intrarectal administration of 100 μg (standard dose) or 40 μg (lowdose) of TNBS per gram of mouse in 50% ethanol in anesthetized mice. Micewere injected s.c. with 1 × 105 MC38 colon adenocarcinoma cells. Tumor sizewas measured every 2 d with a caliper.

Expression Profiling. RNA was prepared and used for expression profiling onAffymetrix ST1.0 microarrays per ImmGen SOP (51). Cell lysates were useddirectly for profiling by Nanostring nCounter [custom Treg codeset (37)].Data were processed and normalized using Nanostring or Affymetrix soft-ware, per refs. 51 and 52.

ACKNOWLEDGMENTS. We thank Dr. E. Sefik for help with the mutantevaluation; K. Hattori, C. Araneo, and A. Rhoads for help with mice, cellsorting, and the Helmsley Inflammatory Bowel Disease Exomes Program; andthe groups that provided exome variant data for comparison (listed athttps://ibd.broadinstitute.org/about). This work was supported by NIH GrantAI116834 and a Sponsored Research Agreement from GSK, and by NationalResearch Foundation Fellowship 357-2011-1C00084 (to H.-K.K.).

1. Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562.

2. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: Mechanisms of differ-entiation and function. Annu Rev Immunol 30:531–564.

3. Panduro M, Benoist C, Mathis D (2016) Tissue Tregs. Annu Rev Immunol 34:609–633.4. Ziegler SF (2006) FOXP3: Of mice and men. Annu Rev Immunol 24:209–226.5. Fontenot JD, et al. (2005) Regulatory T cell lineage specification by the forkhead

transcription factor foxp3. Immunity 22:329–341.6. Sugimoto N, et al. (2006) Foxp3-dependent and -independent molecules specific for

CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. IntImmunol 18:1197–1209.

7. Hill JA, et al. (2007) Foxp3 transcription-factor-dependent and -independentregulation of the regulatory T cell transcriptional signature. Immunity 27:786–800.

8. Ferraro A, et al. (2014) Interindividual variation in human T regulatory cells. Proc NatlAcad Sci USA 111:E1111–E1120.

9. Arvey A, et al. (2015) Genetic and epigenetic variation in the lineage specification ofregulatory T cells. Elife 4:e07571.

10. Fu W, et al. (2012) A multiply redundant genetic switch ‘locks in’ the transcriptionalsignature of regulatory T cells. Nat Immunol 13:972–980.

11. Ouyang W, et al. (2012) Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 491:554–559.

12. Sekiya T, et al. (2013) Nr4a receptors are essential for thymic regulatory T cell de-velopment and immune homeostasis. Nat Immunol 14:230–237.

13. Ramsdell F, Ziegler SF (2014) FOXP3 and scurfy: How it all began. Nat Rev Immunol 14:343–349.

14. Verbsky JW, Chatila TA (2013) Immune dysregulation, polyendocrinopathy, enter-opathy, X-linked (IPEX) and IPEX-related disorders: An evolving web of heritableautoimmune diseases. Curr Opin Pediatr 25:708–714.

15. d’Hennezel E, Bin Dhuban K, Torgerson T, Piccirillo CA (2012) The immunogenetics ofimmune dysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome.J Med Genet 49:291–302.

16. Powell BR, Buist NR, Stenzel P (1982) An X-linked syndrome of diarrhea, poly-endocrinopathy, and fatal infection in infancy. J Pediatr 100:731–737.

17. Wildin RS, Freitas A (2005) IPEX and FOXP3: Clinical and research perspectives.J Autoimmun 25:(Suppl) 56–62.

18. Barzaghi F, Passerini L, Bacchetta R (2012) Immune dysregulation, poly-endocrinopathy, enteropathy, x-linked syndrome: A paradigm of immunodeficiencywith autoimmunity. Front Immunol 3:211.

19. Lopes JE, et al. (2006) Analysis of FOXP3 reveals multiple domains required for itsfunction as a transcriptional repressor. J Immunol 177:3133–3142.

20. Li B, et al. (2007) FOXP3 is a homo-oligomer and a component of a supramolecularregulatory complex disabled in the human XLAAD/IPEX autoimmune disease. IntImmunol 19:825–835.

21. Wu Y, et al. (2006) FOXP3 controls regulatory T cell function through cooperationwith NFAT. Cell 126:375–387.

22. Bandukwala HS, et al. (2011) Structure of a domain-swapped FOXP3 dimer on DNAand its function in regulatory T cells. Immunity 34:479–491.

23. Chen Y, et al. (2015) DNA binding by FOXP3 domain-swapped dimer suggestsmechanisms of long-range chromosomal interactions. Nucleic Acids Res 43:1268–1282.

24. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling andregulation. Nat Rev Mol Cell Biol 16:18–29.

25. Andersen KG, Nissen JK, Betz AG (2012) Comparative genomics reveals key gain-of-function events in Foxp3 during regulatory T cell evolution. Front Immunol 3:113.

26. Zheng Y, et al. (2009) Regulatory T-cell suppressor program co-opts transcriptionfactor IRF4 to control T(H)2 responses. Nature 458:351–356.

27. Chaudhry A, et al. (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326:986–991.

28. Darce J, et al. (2012) An N-terminal mutation of the Foxp3 transcription factor alle-viates arthritis but exacerbates diabetes. Immunity 36:731–741.

29. Bettini ML, et al. (2012) Loss of epigenetic modification driven by theFoxp3 transcription factor leads to regulatory T cell insufficiency. Immunity 36:717–730.

30. Lek M, et al.; Exome Aggregation Consortium (2016) Analysis of protein-coding ge-netic variation in 60,706 humans. Nature 536:285–291.

31. Bacchetta R, et al. (2006) Defective regulatory and effector T cell functions in patientswith FOXP3 mutations. J Clin Invest 116:1713–1722.

32. Magg T, Mannert J, Ellwart JW, Schmid I, Albert MH (2012) Subcellular localization ofFOXP3 in human regulatory and nonregulatory T cells. Eur J Immunol 42:1627–1638.

33. Song X, et al. (2012) Structural and biological features of FOXP3 dimerization relevantto regulatory T cell function. Cell Rep 1:665–675.

34. Gambineri E, et al. (2008) Clinical and molecular profile of a new series of patientswith immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome:Inconsistent correlation between forkhead box protein 3 expression and disease se-verity. J Allergy Clin Immunol 122:1105–1112.e1.

35. Liu Y, Wang L, Han R, Beier UH, Hancock WW (2012) Two lysines in the forkheaddomain of foxp3 are key to T regulatory cell function. PLoS One 7:e29035.

36. Hayatsu N, et al. (2017) Analyses of a mutant Foxp3 allele reveal BATF as a criticaltranscription factor in the differentiation and accumulation of tissue regulatoryT cells. Immunity 47:268–283.e9.

37. Kwon HK, Chen HM, Mathis D, Benoist C (2017) Different molecular complexes thatmediate transcriptional induction and repression by FoxP3. Nat Immunol 18:1238–1248.

38. Arvey A, et al. (2014) Inflammation-induced repression of chromatin bound by thetranscription factor Foxp3 in regulatory T cells. Nat Immunol 15:580–587.

39. Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF (2001) Scurfin (FOXP3) acts as arepressor of transcription and regulates T cell activation. J Biol Chem 276:37672–37679.

40. Hancock WW, Ozkaynak E (2009) Three distinct domains contribute to nucleartransport of murine Foxp3. PLoS One 4:e7890.

41. Overdier DG, Porcella A, Costa RH (1994) The DNA-binding specificity of the hepa-tocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adja-cent to the recognition helix. Mol Cell Biol 14:2755–2766.

42. Nakagawa S, Gisselbrecht SS, Rogers JM, Hartl DL, Bulyk ML (2013) DNA-bindingspecificity changes in the evolution of forkhead transcription factors. Proc NatlAcad Sci USA 110:12349–12354.

43. Biggs WH, III, Meisenhelder J, Hunter T, Cavenee WK, Arden KC (1999) Protein kinaseB/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helixtranscription factor FKHR1. Proc Natl Acad Sci USA 96:7421–7426.

44. Xie X, et al. (2015) The regulatory T cell lineage factor Foxp3 regulates gene ex-pression through several distinct mechanisms mostly independent of direct DNAbinding. PLoS Genet 11:e1005251.

45. Wang H, et al. (2013) One-step generation of mice carrying mutations in multiplegenes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918.

46. Levine AG, Arvey A, Jin W, Rudensky AY (2014) Continuous requirement for the TCRin regulatory T cell function. Nat Immunol 15:1070–1078.

47. Overacre-Delgoffe AE, et al. (2017) Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell 169:1130–1141.e11.

48. Frankel AD, Kim PS (1991) Modular structure of transcription factors: Implications forgene regulation. Cell 65:717–719.

49. Cutler G, Perry KM, Tjian R (1998) Adf-1 is a nonmodular transcription factor thatcontains a TAF-binding Myb-like motif. Mol Cell Biol 18:2252–2261.

50. Li B, et al. (2007) FOXP3 interactions with histone acetyltransferase and class II histonedeacetylases are required for repression. Proc Natl Acad Sci USA 104:4571–4576.

51. Heng TS, Painter MW; Immunological Genome Project Consortium (2008) The im-munological genome project: Networks of gene expression in immune cells. NatImmunol 9:1091–1094.

52. Ye CJ, et al. (2014) Intersection of population variation and autoimmunity genetics inhuman T cell activation. Science 345:1254665.

53. Sefik E, et al. (2015) MUCOSAL IMMUNOLOGY. Individual intestinal symbionts inducea distinct population of RORγ+ regulatory T cells. Science 349:993–997.

54. Koh KP, Sundrud MS, Rao A (2009) Domain requirements and sequence specificity ofDNA binding for the forkhead transcription factor FOXP3. PLoS One 4:e8109.

55. Shay T, et al.; ImmGen Consortium (2013) Conservation and divergence in the tran-scriptional programs of the human and mouse immune systems. Proc Natl AcadSci USA 110:2946–2951.

E262 | www.pnas.org/cgi/doi/10.1073/pnas.1718599115 Kwon et al.

Page 11: FoxP3 scanning mutagenesis reveals functional variegation ...

Supporting InformationKwon et al. 10.1073/pnas.1718599115SI Materials and MethodsMice. C57BL/6J mice (Jackson Laboratory) and mutants werebred in an SPF facility at Harvard Medical School and usedthroughout. CRISPR-Cas9 mutagenesis with oligonucleotide-directed resealing P176RKDSN181 or P354 was used to introduceM176 and M354 mutations into the mouse germline. Experimentswere performed under protocol 02954 approved by the HarvardMedical School Institutional Animal Care and Use Committee.

Cloning and Mutagenesis. To construct the FoxP3 alanine-scanlibrary, FoxP3 cDNA was amplified from Treg cDNA andinserted into the MSCV-IRES-Thy1.1 retroviral vector (7) with anN-terminal FLAG tag motif (FLAG-FoxP3Met1). From this tem-plate, alanine replacement mutations were generated by sub-stituting groups of six amino acids from the N-terminal (Met1) tothe FKH domain (Arg337) or each individual amino acid withinthe FKH domain (details in Dataset S1). Directed mutagenesisused the QuikChange XLII SiteDirected Mutagenesis Kit (Agi-lent). All coding sequences in the mutant plasmids were verifiedby Sanger sequencing.

Retroviral Production and Titration. Retroviral production and ti-tration was performed as described (37). Viral particles havebeen stored at −80 °C for further experiments.

Preparation and Activation of Mouse CD4+ CD25− T Cells.CD4+CD25− Tconv isolation was performed as described (37).CD4+CD25− T cells from splenocytes were negatively purifiedby an incubating combination of phycoerythrin (PE)-conjugatedantibody mixture [anti-CD11b (M1/70), anti-CD11c (N418), anti-CD19 (6D5), anti-CD8α (53-6.7), anti-CD25 (PC61), anti-NK1.1(PK136), anti-Gr1 (8C5), and anti-Ter119 (TER-119); all are fromBioLegend] for 15 min and subsequently captured with anti-PEmicrobead (130–048-801; Miltenyi Biotec) for 20 min at 4 °C andpurified by MACS LD columns (130–042-901; Miltenyi Biotec)followed by the manufacturer’s protocol. Cells were activated byanti-CD3/CD28 beads (11452; Invitrogen) at one cell per 1/2 beadratio for 36 h in 200 μL of complete RPMI medium supplementedwith 10% FCS, 3 mM L-glutamine, 10 mM sodium pyruvate,10 mM nonessential amino acids, 100 U/mL penicillin–strepto-mycin, 50 μM 2-β–mercaptoethanol, and 50 U/mL human IL-2(200–02; Peprotech). For viral infection, culture medium was re-moved and activated cells were spin-infected with 200 μL/well ofeach viral supernatant containing 50 U/mL of IL-2 and 8 μg/mL ofPolybrene (TR-1003-G; Sigma) for 2 h at 32 °C and 2,000 × g, andthen plates were incubated at 32 °C for 6 more hours. Medium wasexchanged with fresh culture medium containing 50 U/mL of hIL-2 for 72 h at 37 °C until harvest.

Evaluation of FoxP3 Expression. EV, WT, and mutant transducedT cells were stained with anti-Thy1.1 (OX-7; BioLegend), fixed/permeabilized with FoxP3 staining buffer (eBioscience) overnightat 4 °C, and stained with anti-FoxP3 (Fjk-16s; eBioscience) for 1 hat 4 °C and analyzed on an LSRII (Becton Dickinson). For im-munoblotting of FoxP3, cells were sorted by Thy1.1 expression,lyzed with a nuclear extraction kit (Active motif), revolved bySDS/PAGE, and subjected to immunoblotting with anti-FLAG(F1804; Sigma) and HRP-conjugated anti-mouse IgG (115–035-003; Jackson ImmunoResearch Laboratory). For imaging analysis,EV, WT, or mutant plasmids were transfected into HEK293 cellsand seeded on sterile coverslips by TransIT-293 (Mirus). After48 h, cells were fixed with 2% formaldehyde for 10 min at room

temperature, permeabilized with ice-cold 100% Me-OH for 1 hat −20 °C, and then washed 10 times with ice-cold PBS.FoxP3 was stained with anti-FLAG (1–200 dilution) overnight at4 °C, followed by staining with donkey–anti-mouse IgG-Cy5 (1–1,000 dilution, 715–095-150 or 715–175-150; Jackson Immuno-Research Laboratory) for 1 h at room temperature. DAPI(100 nM, D1306; Thermo Fisher) was used for nuclear coun-terstaining. Images were acquired on a Zeiss Axio M1 fluores-cence microscope.

DNA-Binding Assay. Retroviral production and titration were per-formed as described (37). Briefly, nuclear extract from EV, WT,and mutant transduced T cells was incubated with a 25-bp double-stranded biotinylated oligonucleotide encompassing two copies ofthe canonical FoxP3 motif (underlined) (5′- CAAGGTAAA-CAAGAGTAAACAAGTC-3′) (54), or a control oligo with ascrambled motif (5′-CAAGACGCGAGCGATGCCTAGGGTC-3′) was used as a probe. To test nonspecific binding of other proteinsin the FoxP3 motif, recombinant EBNA protein (20148D; Ther-mo Fisher) was used. FoxP3 binding was measured with anEpiseeker DNA-protein binding assay kit (ab117139; Abcam)followed by the manufacturer’s protocol.

Luciferase Reporter Assay. EV, WT, or mutant vectors (200 ng)—together with TK-Renilla luciferase vector (20 ng) and8×FKRE–luciferase (200 ng) (50) or IL2 promoter–luciferase(200 ng; gift from A. Rao, Department of Pharmacology andMoores Cancer Center, University of California, San Diego, LaJolla, CA, plasmid #12194; Addgene)—were transfected intoEL4 T cells by Lipofectamine 2000 (11668019; Thermo Fisher).After 48 h, cells were stimulated with 50 ng/mL of phorbolmyristate acetate (P1585; Sigma)/1 μM of ionomycin (407952;Sigma) for 2 h before lysing cells and were analyzed by means ofdual luciferase assay normalized with Renilla luciferase activityaccording to the manufacturer’s protocol (Promega).

Gene Expression Profiling and Analysis. Transduced CD4+CD25−

T cells (300,000 cells/sample) were sorted as above by Thy1.1 re-porter expression corresponding to normal Treg levels of FoxP3.Ex vivo Tregs from mutant mice or WT littermates (CD4+CD25high)were double-sorted per Immgen SOP (51). The final sort wasinto TRIzol (Invitrogen) for microarray or RLT Buffer (Qiagen)for nanostring analysis. For microarray, extracted RNA was usedfor cDNA synthesis, labeling, and subsequent hybridization tothe Affymetrix Mouse Gene 1.1 ST array. Raw data were pro-cessed with the RMA algorithm (55) for probe-level normali-zation. Normalized data were analyzed with Multiplot Studioand Gene-e modules in Genepattern. Other Treg signatureswere used as a reference: Treg signature (7), CD44hi vs. CD62lhi

Treg signature (46), and tissue Treg signature (53). Nanostringprofiling was followed by previous study (37).

Computational Analysis. To relate DNA-binding activity of themutants of FoxP3 with their ability to affect transcription (Fig.S3C), a Pearson correlation coefficient was calculated betweenDNA-binding ability (normalized to WT activity) and the resultsof luciferase reporter activity (Il2 promoter) of transfected cells. Ageneric “FoxP3 repression index” (Fig. S4A) was computed foreach mutant as the mean of the FoldChanges for all FoxP3-repressed transcripts (equivalently weighting each transcript byfirst normalizing to the mean FoldChange for the transcript) andsimilarly deriving a “FoxP3 activation index” from the FoxP3up-regulated gene set. In Fig. S4C, for each FoxP3-activated

Kwon et al. www.pnas.org/cgi/content/short/1718599115 1 of 7

Page 12: FoxP3 scanning mutagenesis reveals functional variegation ...

or -repressed gene, correlation to the global response observedacross all of the mutants was then computed as the Pearsoncorrelation between the set of FoldChanges vs. EV control ob-served for each transcript across all mutants and the mutants’FoxP3 activation index.

Generation of FoxP3 Mutant Mice with the CRISPR-Cas9 System.Mutations were created by oligonucleotide-directed homolo-gous recombination after a Cas9-driven DNA break in fertilizedmouse zygotes, by coinjection of a targeting single guide RNA(sgRNA) together with Cas9 mRNA (45). The sgRNA used todirect site-specific cleavage was generated in the px330 vec-tor (45) that includes the U6-gRNA-CBh0hSPcas9 cassette(#42230; Addgene). Briefly, vector was digested with BbsI andgel-purified. A pair of each targeting oligo (M176 F: 5′-TTCCTGGGTGTACCCGAGCG-3′ and R: 5′-CGCTCGGG-TACACCCAGGAA-3′ and M354 F: 5′-TCTGCCTCTCCGG-GGCTTCC-3′ and R: 5′-GGAAGCCCCGGAGAGGCAGA-3′)from these complementary oligonucleotides was annealed, phos-phorylated, and ligated into restriction enzyme BBSI-digestedpx330 vector. T7 promoter was added by PCR with T7-sgRNA/common reverse primers (T7-sgRNA: 5′-TTAATACGACTCA-CTATAG-sgRNAs; common reverse: 5′-AAAAGCACCGAC-TCGGTGCC-3′). This T7-sgRNA PCR product was gel-purifiedand used as the template for in vitro transcription (IVT) with aMEGAshortcript T7 kit (Life Technologies). The sgRNAs werepurified using a MEGAclear kit (Life Technologies) and eluted inRNase-free water, and RNA concentration and quality were an-alyzed with an Agilent RNA 6000 Pico kit (Agilent Technologies).For homology-driven repair, a double-stranded oligonucleotidewas used, which included 65 bases of flanking homology aroundthe cleavage site, around a 3- or 18-bp mismatch that encodedthe alanine replacements. To facilitate later mouse genotyping,an artificial restriction enzyme site was introduced into themutated sequence of the repair oligo (KpnI for M176, AciI forM354). Cas9 mRNA was purchased from TriLink (#L6125). Formicroinjection, B6 female mice were used as embryo donors andfoster mothers. Superovulated female B6 mice (7–8 wk old) weremated to B6 males, and fertilized embryos were collected fromoviducts. Diluted Cas9 mRNA (5 ng/μL), sgRNA (2.5 ng/μL),and repair oligonucleotide (5 ng/μL) in 40 μL of microinjectionbuffer (MR-095–10F; Millipore) were mixed and injected into amade pronucleus. One series of microinjections was performedin which 100 zygotes were injected for each of five mutations. Mu-tations at the targeted site were obtained in 45% of pups, the ma-jority of which corresponded to nonhomologous end joining withoutthe homologous recombination. But two (M176) or one (M354)carried the desired homologous recombination event that in-troduced the desired mutation, resulting in theM176 andM354 linesanalyzed here. The mutation and the remainder of the FoxP3-codingregion were verified by PCR amplification and Sanger sequencing.The lines were propagated by normal breeding, and genotyping ofeach strain was performed by PCR amplification around the mu-tated site (M176 F: 5′-TCAGACTTAGAACCTTGAAGAC-3′ andR: 5′-TGAGAGGATGGTGAGTTGAG-3′ or M354 F: 5′-CAC-AACCCTGAGGAACAT-3′ and R: 5′- TGAAGTAGGCGAA-CATGC-3′) and subsequent restriction enzyme digestion was donewith KpnI (M176) or AciI (M354).

Treg Analysis in Mutant Mice. Single-cell suspensions were pre-pared from lymphoid organs by mechanical disruption. For the

isolation of laminar propria lymphocytes, Peyer’s patches were firstremoved from colons—which were treated with RPMI containing1 mM DTT, 20 mM EDTA, and 2% FCS at 37 °C for 20 min—and minced and digested further with 1.5 mg/mL collagenase II(Gibco), 0.5 mg/mL dispase, and 1% FBS in RPMI with constantstirring at 37 °C for 40 min. Cells were filtered through 40-μmmesh to remove debris and washed with three times with RPMIwith 4% of FCS. Single-cell suspensions were stained with anti-bodies against CD4 (GK1.5), CD8 (53-6.7), TCRb (H57-597),PD1 (29F.1A12), ICOS (7E.17G9), CD25 (3C7), and GITR(DTA-1) at 4 °C for 20 min; all are from BioLegend. Then cellswere incubated overnight at 4 °C in FoxP3 fix/permeabilizationbuffer (eBioscience) to stain for intracellular and transcriptionfactors, followed by staining for 1 h with antibodies againstCTLA4 (UC10-4B9; BioLegend), RORγ (AFKJS-9; eBioscience),Helios (22F6; eBioscience), and FoxP3 (Fjk-16s; eBioscience).Cells were acquired with a BD LSRII, and analysis was performedwith FlowJo (Tree Star) software.

Mixed Bone Marrow Chimera. Bone marrow cells from male WT(CD45.1) and M176 or M354 (CD45.2) mice were isolated fromfemur/tibia bone and lysed red blood cells with RBC lysis buffer(Lonza). T cells in each bone-marrow-cell suspension were re-moved by negative magnetic selection with biotin–anti-Thy1/anti-CD3 and anti-biotin. T-depleted bone marrow was dilutedin sterile PBS and mixed at a 1:1 ratio of WT and mutant origin(total 2 × 106/mouse). Recipient mice (Rag2−/−) were irradiatedwith an MDS Nordion Gammacell irradiator (GC40E, 600 rad)at least 2 h before transplantation. Mixed bone marrow cells(100 μL) were injected by intraorbital injection. Twelve weeksafter transplantation, mice were killed for analysis.

TNBS Colitis. Colitis was induced as described (53) with minormodification. Briefly, mice were sensitized via administration of1% TNBS (Sigma) in a 4:1 acetone:olive oil solution on shavenskin between the shoulders and challenged 7 d later by intrarectaladministration of 100 μg (standard dose) or 40 μg (low dose)TNBS (50% ethanol) per gram of mouse. Mice were observedand weighed daily and were killed on day 3 after intrarectalTNBS administration at the peak of the disease. A combinedcolitis score was calculated based on weight loss, histology, di-ameter of the colon, appearance of the stool, and histology. Forhistology, colons were fixed, sectioned, and stained with hema-toxylin and eosin.

MC38 Tumor Model. Six-week-old mice were injected s.c. with 1 ×105 of MC38 tumor cells. The tumor was measured every 2 d(length × width) with a caliper. Tumor volume was determinedusing the formula: 1/2 × D × d2, whereD is the major axis and d isthe minor axis. Mice were killed at day 27 after tumor implan-tation (tumor size in WT reached around 2 cm3). To isolateT cells from tumor tissue, tumor tissues minced and digested withDMEM containing 1 mg/mL collagenase type IV (17104019;Thermo Fisher), 0.02 U/mL of DNaseI (11284932001; Sigma),and 0.02% of BSA (A2153; Sigma) at 37 °C for 20 min. Cellswere filtered with 70-mm mesh (BD) and further purified bycentrifugation through Ficoll gradient (70%/100%) at 2,000 × gfor 20 min without break. Tumor-infiltrated mononuclear cellswere washed with ice-cold PBS and used for further experimentalpurposes.

Kwon et al. www.pnas.org/cgi/content/short/1718599115 2 of 7

Page 13: FoxP3 scanning mutagenesis reveals functional variegation ...

M1 M7 M14 M21 M27 M34 M40 M46 M52 M59 M65 M71 M85 M91 M95 M98 M104 M111 M118 M124 M131 M138 M145 M151 M163 M170 M176

EV WT M182 M190 M203 M209 M215 M222 M228 M235 M241 M247 M262 M271 M278 M285 M291 M299 M306 M313 M319 M325 M331 M338 M339 M340 M341

M342 M344 M345 M346 M347 M348 M350 M351 M352 M354 M355 M356 M357 M358 M359 M360 M361 M362

M373 M374 M375 M376 M377 M378 M380 M381 M382 M383 M385 M386 M387 M388 M389 M390 M391 M392 M393 M394 M395 M396 M397 M398 M399 M400 M401

M363 M364 M365 M366 M367 M368 M369 M370 M371

M402 M403 M405 M406 M407 M408 M409 M410 M411 M412 M413 M414 M415 M416 M417 M418 M419 M240 M421 M422 M423 M424 M425 M426

Fig. S1. Protein expression of FoxP3 alanine-scanning library. After retroviral transduction of WT or mutant FoxP3 (FLAG-tagged) into primary CD4+ T cells,expression of the transduced protein was detected by immunoblotting of nuclear extracts with anti-FLAG antibody.

Kwon et al. www.pnas.org/cgi/content/short/1718599115 3 of 7

Page 14: FoxP3 scanning mutagenesis reveals functional variegation ...

ZF LZ FKH

B

A

B

W406

F395

N-term

I385L389

F395

L389I385

Expanded

C-term

W406

I350I363

I350

I363

N-term

L345

FoxP3DAPI

0.5 0

1 7 14 21 27 34 40 46 52 59 65 71 85 91 95 104

111

118

124

131

138

145

151

163

170

176

182

190

203

209

215

222

228

235

241

247

262

271

278

285

291

299

306

313

319

325

331

338

339

340

341

342

344

345

346

347

348

350

351

352

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

373

374

375

376

377

378

380

381

382

383

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

EV

WT

1 7 14 21 27 34 40 46 52 59

65 71 85 91 95 98 104 111 118 124 131 138

145 151 163 170 176 182 190 203 209 215 222 228

235 241 247 262 271 278 285 291 299 306 313 319

325 331331 338 339 340 341 342 344 345 346 347 348

352 354 355 356 357 358 359 360 361 362351

363 364 365 366 367 368 369 370 371 373 374 375

376 377 378 380 381 382 383 385 386 387 388 389

390 391 392 393 394 395 396 397 398 399 400 401

407 408 409 410 411 412 413 414402 403 405 406

415 416 417 418 419 420 421 422 423 424 425 426

WT EV

98

350

Fig. S2. Sequence determinants of FoxP3 nuclear localization. (A) WT or mutant FoxP3 was transfected into HEK293 cells, and after 72 h of transfection, cells were stained with anti-FLAG (red) and counterstained for nuclear DNA with DAPI (blue)(yellow: mutants localized in cytoplasm). Data are representative of three independent experiments. (B) Residues leading to atypical cellular localization and their position in the sequence of the FKH domain and in the 3D FoxP3/DNA dimerstructure.

Kwon et al. www.pnas.org/cgi/content/short/1718599115 4 of 7

Page 15: FoxP3 scanning mutagenesis reveals functional variegation ...

TK gene promoterFKRE (8x) IL2 promoterNfat1 FKRE

0

2

4

6

8xFK

RE

activ

ity

0

2

4

6

8

IL2p

ro a

ctiv

ity

StimulationEV EV WT EV EV WT

+ + + +

A

1.0 0.8 0.6 0.4 0.2 0 0.2

-0.4

-0.2

0

0.2

0.4

0.6

8xFKRE

DN

A b

indi

ng

1.5 1 0.5 0IL2pro

r = 0.4p < 0.0001

r = 0.138 p = 0.11

B C

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

8xFKRE

IL2p

ro

M1M7

M14

M21

M27

M34

M40

M46M52M59

M65M71

M85M91

M95M98M104M111M118M124

M131M138

M145

M151

M163

M170M176M182M190

M203M209

M215

M222

M228M235M241

M247

M262

M271M278M285

M291M299

M306

M313

M319

M325

M331M338

M339

M340

M341

M342

M344

M345M346

M347M348

M350

M351M352M354

M355M356M537

M358

M359M360M361

M362

M363

M364

M365

M366

M367

M368

M369

M370

M371

M373

M374

M375M376M377M378M380

M381

M382

M383M386

M387M388

M389

M390

M391

M392

M393

M394

M395

M396

M397 M398M399

M4

M401M402

M403

M405

M406

M407

M408

M409M410

M411M412

M413M414

M415M416M417M418M419M420 M421

M422M423

M424

M425

M426

EV

WT

r = 0.65

p < 10-16

8x FKRE Il2 pro

Fig. S3. Transcriptional activity of the FoxP3 mutants: Reporter system. (A, Left) Schematic of 8xFKRE and (A, Right) schematic of IL2 promoter luciferasereporter system. El4 T cells were transfected with 8xFKRE or Il2pro luciferase plasmids alone or together with WT FoxP3 in the absence or presence of PMA/ionomycin stimulation for 4 h (mean ± SD from three independent experiments). (B) The 8xFK1tk activity was compared against Il2pro activity for each mutant.Pearson correlation r and P value. (C) Correlation between the DNA-binding activity of each mutant FoxP3 (from Fig. 3C, Left) and its transcriptional output(8xFKRE; Right from Fig. 4, IL2 promoter). Pearson correlation r and P value.

Kwon et al. www.pnas.org/cgi/content/short/1718599115 5 of 7

Page 16: FoxP3 scanning mutagenesis reveals functional variegation ...

−0.8 −0.6 −0.4 −0.2 0.0 0.2

−0.3

−0.2

−0.1

0.0

0.1

Il2pro

FoxP

3 in

duct

ion

inde

x

r = 0.75p < 10-13

A

Mean FoldChange from EV

Nor

mal

cy(c

orre

latio

n to

gen

eral

indu

ctio

n in

dex)

0.5 1 5

-1

- 0.5

0

0.5

1

Anln

Arhgap31

BC005685Capg

Ccl5

Ccr3

Ccr4

Ccr8

Cd200r1

Cd24a

Csf1

Ctla2a

Ctla4

Cxcr4

Cxcr6

Dusp4

Egr1

EomesEzh2Fgl2

Folr4

Fos

Foxp3

Fundc2

Gbp2Gbp3

Gen1

Gm4951

Gnaq Gpr83

GzmaGzmb

Icos

Id2

Ifng

Igf1r

Igfbp4

Ikzf4

Il10ra

Il12rb1

Il12rb2

Il18r1

Il18rap

Il1rl1

Il2

Il2raIl2rb

Il4 Il5

Il6ra

Itgae

JunLag3

Lgals1Lgals3

Lrrc32

Lta

Maf

Neb

Nr4a1

Nr4a2

Nr4a3

Nrn1

Nrp1

Nt5eP2ry10

Pcyt1a

Pde3b Penk

Pglyrp1

Pole

Prdm1

Rorc

Sdc4

Slc16a3

Slc22a5

Socs2

Tbx21

Tcrg-V3

Tgm2

Tnf

Tnfrsf18

Tnfrsf4

Txn1

Xcl1

Zscan29

0.6 0.8 1.0 1.2 1.4 1.6

0.6

0.8

1.0

1.2

1.4

1.6

FoxP3 induction index

FoxP

3 re

pres

sion

inde

x

M1M7

M14M21M34

M46M59

M71M95

M111

M131

M151

M176

M203M215M222

M235

M241M247

M271

M278

M306

M319

M325

M331

M338M339

M341

M342

M344

M347

M351

M352

M354

M356

M359

M360

M364

M365

M366M367

M369

M371

M373

M374

M377M378

M386

M388

M390

M392

M393

M394

M396

M397

M400

M402

M406

M409M410

M412M415M418

M421M424

M425

M426

EV

WT

Br = -0.74p < 10-13

C

Fig. S4. Transcriptional activity of FoxP3 mutants: NanoString. A FoxP3 induction index was computed against (A) the FoxP3 repression index and(B) Il2 promoter luciferase activity (from Fig. 4). Pearson correlation r and P value. (C) Relationship between a transcript’s activation by WT FoxP3 (x axis) and its“normalcy index,” defined as the correlation between its expression across all mutants and the global induction index for the mutants—where transcripts thatbehave like the bulk of FoxP3-induced targets should have a high correlation coefficient, but outlier transcripts show a high FoldChange by FoxP3 but nocorrelation to the majority index.

Kwon et al. www.pnas.org/cgi/content/short/1718599115 6 of 7

Page 17: FoxP3 scanning mutagenesis reveals functional variegation ...

Rag KO

CD45.2(M176 or M354)

(WT)

50%

50%

CD45.1

A

CD8 Tconv Treg0

50

100

WT SPM176 SP

Spleen Colon

Chi

mer

ism

(%)

WT SPM354 SP

Spleen Colon

WT M176 M3540

0.5

1

1.5

Rel

ativ

e C

D25

MFI

WT M176 M354

WT M176

M354

B

FoxP

3

WT

CD25

FoxP3: 5900±1255 3200±500Il2ra: 2500±260 2800±360

FoxP3: 2200±55 1300±31 Il2ra: 1380±61 870±30

*********

0

0.5

1

1.5

Rel

ativ

e Fo

xP3

MFI

CD8 Tconv Treg CD8 Tconv Treg CD8 Tconv Treg

Fig. S5. Defective fitness of FoxP3 mutants Tregs. (A) Proportions of congenic-marked cells of WT (CD45.1) or mutant (CD45.2) origin in mixed bone marrowchimera (50:50 initial mix) for gated CD8+ T cells, CD4+ Tconv, and CD4+FoxP3+ Tregs in spleen and colon; each dot represents an independent mouse.(B) FoxP3 vs. CD25 expression in gated splenic CD4+ T cells from each compartment. Representative plots from three experiments are shown; FoxP3 and CD25MFI are shown (mean ± SD, three mice per group.). ***P < 0.001 (Student’s t test).

Other Supporting Information Files

Dataset S1 (XLSX)Dataset S2 (XLSX)Dataset S3 (XLSX)Dataset S4 (XLSX)

Kwon et al. www.pnas.org/cgi/content/short/1718599115 7 of 7