Fourier Theory

131
Fourier Theory: Overview  spectral analysis = stationary processes + Fourier  basic idea behind Fourier theory: given either real/complex-v alued function  g (·) dened over  R or real/complex-v alued sequence  {g t  :  t Z} want to write (represent, synthesize)  g (·) or  {g t }  as f 0 A(f )cos(2π f t) + B (f )sin(2π f t) = “ f C (f )e i2πf t where  e ix cos(x) + i sin(x) and  i  = √ 1 SAPA2e51 III1

description

Nice document on Fourier Theory

Transcript of Fourier Theory

Page 1: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 1/131

Fourier Theory: Overview

• spectral analysis = stationary processes + Fourier

• basic idea behind Fourier theory: given either

− real/complex-valued function g(·) defined over  R or

−real/complex-valued sequence {g

t : t∈Z}

want to write (represent, synthesize) g(·) or {gt} as

“f ≥0

”A(f )cos(2πf t) + B(f )sin(2πf t) = “

”C (f )e−i2πft

where eix ≡ cos(x) + i sin(x) and i = √ −1

SAPA2e–51 III–1

Page 2: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 2/131

Four Flavors of Fourier Theory: I

1.   g(·) periodic with period T 

− “

” is sum over f n = n/T , n ∈ Z

−continuous time/discrete frequency

2.   g(·) square integrable:

  ∞−∞

|g(t)|2 dt < ∞

− “

” is integral over (−∞,∞) (i.e.,  R)

− continuous time/continuous frequency

III–2

Page 3: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 3/131

Four Flavors of Fourier Theory: II

3.   {gt} square summable:∞

t=−∞|gt|

2 < ∞

− “

” is integral over [−1/2, 1/2]

− discrete time/continuous frequency

4.   {gt : t = 0, 1, . . . , N   − 1}, a finite sequence

− “f 

” is sum over f n = n/N , n = 0, 1, . . . , N   − 1

− discrete time/discrete frequency

• all used in spectral analysis!

• task: define C (f ) for each flavor (known as Fourier coefficients)

III–3

Page 4: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 4/131

Continuous Time/Discrete Frequency: I

• assume g p(·) is periodic with period T , i.e., g p(t + T ) = g p(t)for all t, and square integrable over one period:   T/2

−T/2|g p(t)|2 dt < ∞

• example with period T   = 1

−!   −"   −# $ # " !

        $

        #

        "

        !

        %

&

SAPA2e–53 III–4

Page 5: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 5/131

Continuous Time/Discrete Frequency: II

• definitions

− nth Fourier coefficient, n ∈ Z:

Gn

  1

T  

  T/2

−T/2

g p(t)e−i2πf nt dt, f  n

 n

T interpretation of  Gn: covariance between g p(·) and complexexponential (if similar, |Gn| large)

−mth order Fourier approximation:

g p,m(t) ≡m

n=−m

Gnei2πf nt

(least squares approximation – see pp. 55–6)

SAPA2e–53 III–5

Page 6: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 6/131

Continuous Time/Discrete Frequency: III

• can show:

limm→∞

   T/2

−T/2

g p(t)− g p,m(t)2 dt = 0

• shorthand for above:

g p(t) ms

=∞

n=−∞Gnei2πf nt,

where right-hand side is Fourier series representation of  g p(·)

• note: mean-square equality is not  the same as pointwise equal-ity (see pp. 56–7)

• notation:g p(·) ←→ {Gn}

SAPA2e–53 III–6

Page 7: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 7/131

Continuous Time/Discrete Frequency: IV

• to see that the definition for  Gn  makes sense, suppose

g p(t) =∞

n=−∞C nei2πf nt

for some set of constants C n

• multiply both sides of the above by e−i2πf mt:

g p(t)e−i2πf mt =∞

n=−∞C nei2π(f n−f m)t

• integrate both sides with respect to  t over [−T /2, T /2]:   T/2

−T /2g p(t)e−i2πf mt dt =

∞n=−∞

C n

   T /2

−T/2ei2π(f n−f m)t dt

SAPA2e–53 III–7

Page 8: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 8/131

Continuous Time/Discrete Frequency: V

• make use of fact that   T/2

−T/2ei2π(f n−f m)t dt =

   T/2

−T/2ei2π(n−m)t/T  dt =

T, if  n = m;

0, if  n = m

to show that   T/2

−T/2g p(t)e−i2πf mt dt =

∞n=−∞

C n

   T/2

−T/2ei2π(f n−f m)t dt =  T C m,

i.e.,

C m =   1T 

   T/2

−T/2g p(t)e−i2πf mt dt = Gm,

the mth Fourier coefficient for this very special  g p(·)

SAPA2e–53 III–8

Page 9: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 9/131

Continuous Time/Discrete Frequency: VI

• Parseval’s theorem:   T/2

−T/2

g p(t)

2

dt =  T ∞

n=−∞|Gn|

2

• proof:   T/2

−T /2

g p(t)2 dt  =

   T /2

−T/2

n

Gnei2πf nt

m

G∗me−i2πf mt

 dt

=

n

m

GnG∗m    T/2

−T/2 ei2π(f n

−f m)t

dt

=

n

GnG∗nT   = T 

n

|Gn|2

SAPA2e–53, 54 III–9

Page 10: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 10/131

Continuous Time/Discrete Frequency: VII

• can regard left-hand side of Parseval as “energy” in  g p(·) over[−T /2, T /2]    T/2

−T/2 g p(t)

2

dt =  T ∞

n=−∞|Gn|

2

• corollary (why?):   T/2

−T/2

g p(t)− g p,m(t)2 dt = T 

|n|>m

|Gn|2

• corollary:1

   T /2

−T/2

g p(t)2 dt =

∞n=−∞

|Gn|2

left-hand side is “power” in g p(·) (related to variance)

SAPA2e–53, 54 III–10

Page 11: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 11/131

Continuous Time/Discrete Frequency: VIII

• Q: what are energy & power over [−mT /2,mT/2]?

• can decompose power into pieces associated with  f n’s

• define discrete power spectrum for g p(·):   S n ≡ |Gn|2

• Q: can we recover  g p(·) from S n?

SAPA2e–75 III–11

Page 12: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 12/131

Continuous Time/Discrete Frequency: IX

• as example, consider 2π  periodic function of Equation (54c):

g p(t) ≡   1− φ2

1 + φ2 − 2φ cos(t),

which is square integrable when  |φ|  <  1 with  Gn  =  φ|n|

(theabove is related to the spectrum for an AR(1) process)

• mth order Fourier approximation:

g p,m(t) =m

n=−m

Gnei2πf nt = 1 + 2m

n=1

φn cos(nt)

• following plots show g p(·) and its Fourier approximation g p,m(·)of orders m = 4, 8, 16 and 32 when  φ = 0.9

SAPA2e–54, 55 III–12

Page 13: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 13/131

4th order Fourier Approximation  g p,4(·)  of  g p(·)

−!   −"   −# $ # " !

        $

        %

        #        $

        #        %

        "        $

&

SAPA2e–55 III–13

Page 14: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 14/131

8th order Fourier Approximation  g p,8(·)  of  g p(·)

−!   −"   −# $ # " !

        $

        %

        #        $

        #        %

        "        $

&

SAPA2e–55 III–14

Page 15: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 15/131

16th order Fourier Approximation  g p,16(·)  of  g p(·)

−!   −"   −# $ # " !

        $

        %

        #        $

        #        %

        "        $

&

SAPA2e–55 III–15

Page 16: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 16/131

32nd order Fourier Approximation  g p,32(·)  of  g p(·)

−!   −"   −# $ # " !

        $

        %

        #        $

        #        %

        "        $

&

SAPA2e–55 III–16

Page 17: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 17/131

Discrete Power Spectrum  {S n}  for  g p(·)

−!"   −#"   −$" " $" #" !"

        "  %

        "

        "  %

        #

        "  %

        &

        "

  %        '

        "  %

        (

        $  %        "

)

III–17

Page 18: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 18/131

{S n}  on a Decibel Scale (i.e,  10log10(S n))

−!"   −#"   −$" " $" #" !"

   −        !        "

   −

        #        %

   −        #        "

   −        $        %

   −        $        "

   −        %

        "

&

SAPA2e–56 III–18

Page 19: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 19/131

Continuous Time/Continuous Frequency: I

• assumption

− g(·) square integrable:

  ∞−∞

|g(t)|2 dt < ∞

• definition of Fourier transform (or analysis) of  g(·):

G(f ) ≡  ∞−∞

g(t)e−i2πf t dt,   −∞ < f < ∞

• can recover g(·) from G(·) (Fourier synthesis):

g(t) ms

=  ∞−∞G(f )e

i2πf tdf 

g(·) is inverse Fourier transform of  G(·)

• can motivate above using g p,m(·)

SAPA2e–57, 58 III–19

Page 20: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 20/131

Truncation and Periodic Extension of Function  g(·)

   ! "   !

   # "

   !

 

−%&   −& ! & %&

'

   ! "

   !

   # "

   !

 

SAPA2e–58 III–20

Page 21: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 21/131

Continuous Time/Continuous Frequency: II

• let  gT (t) be periodic wth period  T   such that  gT (t) =  g(t) fort ∈ [−T /2, T /2]

• using continuous time/discrete frequency theory, we have

g(t) ≡ gT (t)  ms=

∞n=−∞

   T/2

−T/2g(u)e−i2πf nu du

ei2πf nt

 1

≈  ∞−∞

  ∞−∞

g(u)e−i2πfu du

ei2πft df 

for large  T , where the integral within the parentheses is theFourier transform of  g(·)

SAPA2e–58 III–21

Page 22: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 22/131

Continuous Time/Continuous Frequency: III

• shorthand notation g(·) ←→ G(·) indicates that−G(·) is Fourier transform of  g(·)

− g(·) is inverse Fourier transform of  G(·)

− g(·) & G(·) form a Fourier transform pair

• many other conventions for defining Fourier transform exist!• Parseval’s theorem:  ∞

−∞|g(t)|2 dt =

  ∞−∞

|G(f )|2 df 

left-hand side is “energy” in g(·) (Q: what would “power” be?)• define energy spectral density function:   |G(f )|2

• can write G(f ) = |G(f )|eiθ(f ), where |G(f )| is the amplitudespectrum and  θ(f ) is the phase function

SAPA2e–59 III–22

Page 23: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 23/131

Continuous Time/Continuous Frequency: IV

• example:  e−πt2 ←→ e−πf 2

− change of variable yields gσ(·) ←→ Gσ(·), where

gσ(t) =  1

(2πσ2

)

1/2e−t2/(2σ2), Gσ(f ) = e−2π2f 2σ2

− gσ(·) is probability density function for Gaussian (normal)random variable with mean zero and variance  σ2 (standarddeviation σ)

−note:   Gσ(·) real-valued so can see |Gσ(·)|2 easily

SAPA2e–60 III–23

Page 24: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 24/131

gσ(·)  and  Gσ(·)   for  σ = 1

−!   −" # " !

        #  $

        #

        #  $

        "

        #  $

        !

        #

  $        %

        #  $

        &

        '  $        #

( *+,-./0 12 3 *+,450

SAPA2e–60 III–24

Page 25: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 25/131

gσ(·)  and  Gσ(·)   for  σ = 2

−!   −" # " !

        #  $

        #

        #  $

        "

        #  $

        !

        #

  $        %

        #  $

        &

        '  $        #

( *+,-./0 12 3 *+,450

SAPA2e–60 III–25

Page 26: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 26/131

gσ(·)  and  Gσ(·)   for  σ = 4

−!   −" # " !

        #  $

        #

        #  $

        "

        #  $

        !

        #

  $        %

        #  $

        &

        '  $        #

( *+,-./0 12 3 *+,450

SAPA2e–60 III–26

Page 27: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 27/131

Time-/Band-Limited Functions

• g(·) time-limited to [−T, T ] if  g(t) = 0 for all  |t| > T − lots of examples!

• g(·) band-limited to [−W, W ] if  G(f ) = 0 for all  |f | > W 

−male speech limited to 8000 Hz (= cycles/second)

− orchestra limited to 20,000 Hz− has representation

g(t) ms

=

   W 

−W 

G(f )ei2πf t df 

− can be diff erentiated arbitrary number of times (very “smooth”)• Q: can g(·) be both time- and band-limited?

• of considerable interest (Chapters 6 and 8): time-limited se-quences that are close to band-limited

SAPA2e–62, 63 III–27

Page 28: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 28/131

Reciprocity Relationships: I

• g(·) ←→ G(·) implies that, in a mean-square sense, G(·) uniquelydetermines g(·) and vice versa

• can regard   g(·) and   G(·) as two representations for a singlemathematical entity, per this quote from Bracewell (2000):

“We may think of functions and their transforms as oc-cupying two domains, sometimes referred to as the upperand the lower, as if functions circulated at ground leveland their transforms in the underworld (Doetsch, 1943).There is a certain convenience in picturing a function as

accompanied by a counterpart in another domain, a kindof shadow which is associated uniquely with the functionthrough the Fourier transformation, and which changes asthe function changes.”

SAPA2e–59 III–28

Page 29: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 29/131

Reciprocity Relationships: II

• can quantify how changing a function in the time-domain af-fects its frequency-domain representation via three reciprocityrelationships

1. similarity theorem

2. equivalent width3. fundamental uncertainty relationship

SAPA2e–63, 64, 65 III–29

Page 30: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 30/131

Similarity Theorem

• g(·) ←→ G(·) implies |a|1/2g(at) ←→ G(f /a)/|a|1/2

• for  a > 1, |a|1/2g(at) formed by

− contracting  g(·) horizontally

−expanding g(·) vertically

whereas G(f /a)/|a|1/2 formed by

− expanding G(·) horizontally

− contracting  G(·) vertically

• as an example, considerg(t) =

  1

(2π)1/2e−t2/2 ←→ G(f ) = e−2π2f 2

for a = 1, 2 and 4

SAPA2e–63, 64 III–30

Page 31: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 31/131

|a|1/2g(at)  and  G(f /a)/|a|1/2 for  a = 1

−!   −" # " !

        #  $

        #

        #  $

        "

        #  $

        !

        #

  $        %

        #  $

        &

        '  $

        #

( *+,-./0 12 3 *+,450

SAPA2e–63 III–31

Page 32: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 32/131

|a|1/2g(at)  and  G(f /a)/|a|1/2 for  a = 2

−!   −" # " !

        #  $

        #

        #  $

        "

        #  $

        !

        #

  $        %

        #  $

        &

        '  $

        #

( *+,-./0 12 3 *+,450

SAPA2e–63 III–32

Page 33: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 33/131

|a|1/2g(at)  and  G(f /a)/|a|1/2 for  a = 4

−!   −" # " !

        #  $

        #

        #  $

        "

        #  $

        !

        #

  $        %

        #  $

        &

        '  $

        #

( *+,-./0 12 3 *+,450

SAPA2e–63 III–33

Page 34: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 34/131

Equivalent Width: I

• measures concentration of signal in time

• sensible when g(·) is real, nonnegative, even & continuous at 0

• definition:

widthe {g(·)} ≡   ∞

−∞ g(t) dt

g(0)

• width of rectangular signal whose

− height is g(0)

− area is the same as the area under curve of  g(·)

SAPA2e–64 III–34

Page 35: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 35/131

Equivalent Width of  g(t) = exp(−|t|)

−!   −" # " !

        #  $

        #

        #  $

        "

        #  $

        !

        #  $

        %

        #  $

        &

        '  $        #

(

SAPA2e–64 III–35

Page 36: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 36/131

Equivalent Width: II

• note: area =  ∞−∞

g(t) dt =  G(0) & g(0) =  ∞−∞

G(f ) df 

• implies

widthe {g(·)} = G(0)  ∞

−∞G(f ) df  =

  1

widthe {G(·)}• product of widths of signal & transform = unity

SAPA2e–64 III–36

Page 37: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 37/131

Fundamental Uncertainty Relationship: I

• if  g(·) real & nonnegative with unit area, then g(·) is probabilitydensity function (PDF)

• consider a uniform PDF r(·; µr, W r) that is centered at µr andhas width 2W r  and height 1/2W r

• variance σ2r  is related to spread of a PDF:

σ2r ≡

  ∞−∞

(t− µr)2 r(t; µr, W r) dt = W 2r

3

• relationship between “natural width” 2W r

 and standard devi-ation  σr   is thus

2W r = 2σr√ 

3

SAPA2e–65 III–37

Page 38: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 38/131

Fundamental Uncertainty Relationship: II

• if  g(·) has nonunit area, form g(t) (same width!):

g(t) ≡ g(t)/

  ∞−∞

g(t) dt

• variance width of  g(·) is widthv {g(·)} ≡ 2σg√ 

3

• for general g(·), use widthv|g(·)|2

• suppose |g(·)|2 integrates to unity (i.e., is a PDF):

  ∞

−∞

|g(t)|2 dt = 1 =   ∞

−∞

|G(f )|2 df 

• let  σ2g  and σ2

G be variances of  |g(·)|2 and |G(·)|2

• can show (pp. 66–7) that  σ2g × σ2

G ≥   1/16π2, with equalityholding only in the Gaussian case

SAPA2e–65, 66, 67 III–38

Page 39: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 39/131

Convolution Theorem: I

• briefly: convolution in time domainequivalent to multiplication in frequency domain

• convolution of  g(·) & h(·) is this function of  t:

  ∞−∞ g(u)h(t− u) du ≡ g ∗ h(t)

− assumes integral exists

− “reflect and translate” second function, i.e., h(·)

−g

∗h(·) notation for function defined above

− change of variable shows h ∗ g(·) same as g ∗ h(·)

SAPA2e–72, 73 III–39

Page 40: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 40/131

Illustration of Convolution: I

• consider convolution of 

g(u) =

3/4,   |u| <  3/4 and

0,   otherwiseand   h(u) =

1,   |u| < 1/4 and

0,   otherwise.

−!   −" # " !

        #  $        #

        #  $

        %

        #  $

        &

'

• following plots show g(u), h(t− u), g(u) · h(t− u) and g∗h(t)

SAPA2e–74 III–40

Page 41: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 41/131

Illustration of Convolution: II

   ! "

   !

   ! "

   #

   ! "

   $

 

−& ! &

' ()*+, *- ) (.*))*/,

   ! "

   !

   ! "

   #

   ! "

   $

 

SAPA2e–74 III–41

Page 42: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 42/131

Illustration of Convolution: III

• now consider convolution of rectangles of equal width:

g(u) =

3/4,   |u| <  1/2 and

0,   otherwiseand   h(u) =

1,   |u| < 1/2 and

0,   otherwise.

−!   −" # " !

        #  $        #

        #  $

        %

        #  $

        &

'

• following plots show g(u), h(t− u), g(u) · h(t− u) and g∗h(t)

SAPA2e–75 III–42

Page 43: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 43/131

Illustration of Convolution: IV

   ! "   !

   ! "

   #

   ! "

   $

 

−& ! &

' ()*+, *- ) (.*))*/,

   ! "

   !

   ! "

   #

   ! "

   $

 

III–43

Page 44: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 44/131

Convolution Theorem: II

• Fourier transform of  g ∗ h(·) is the product of the individualtransforms for g(·) and h(·):  ∞

−∞g ∗ h(t)e−i2πft dt =  G(f )H (f )

(this is Exercise [73])

• thus g ∗ h(·) ←→ G(·)H (·)

• variety of convolution theorems in literature that stipulate con-ditions for above to hold

SAPA2e–73 III–44

Page 45: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 45/131

Convolution as Smoothing Operation: I

• regard h(·) as a signal,  g(·) as a smoother (filter) and  g ∗ h(·)as smoothed version of  h(·)

• example

− a signal:   h(t) =

L

l=1 Al cos (2

πf lt +

φl)

− a smoother:   g(t) =  1

(2πσ2)1/2e−t2/(2σ2), where we can re-

gard σ  as an adjustable smoothing parameter

− smoothed version of  h(·) (Exercise [75]):

g ∗ h(t) =L

l=1

e−(σ2πf l)2/2Al cos (2πf lt + φl)

SAPA2e–73, 75 III–45

Page 46: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 46/131

Convolution as Smoothing Operation: II

• let’s compare h(·) and its smoothed version:

h(t) =L

l=1

Al cos (2πf lt + φl) , g∗h(t) =L

l=1

e−(σ2πf l)2/2Al cos (2πf lt + φl)

• note that− frequencies f l  and phases  φl  are unchanged

− 0 < e−(σ2πf l)2/2 < 1 is an attenuation factor

−smoother shrinks amplitudes toward 0

− as f l → 0, attenuation factor increases to 1

− as f l →∞, attenuation factor decreases to 0

− reduces amplitudes of high frequency terms

SAPA2e–75 III–46

Page 47: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 47/131

Specific Examples of Smoothing: I

• consider example with f 1 = 1/6 and f 2 = 3, namely,

h(t) = 5 cos (2π1

6t + 0.5) + cos (2π3t + 1.1)

along with three settings for  σ  (0.1, 0.25 and 0.625)

SAPA2e–75 III–47

Page 48: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 48/131

g(·),  h(·)  and  g ∗ h(·)   for  σ = 0.1

   −   !

   −   "

   "

   !

 

−$   −" % " $

&

   %

   '

   "

   (

   $

 

SAPA2e–76 III–48

Page 49: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 49/131

g(·),  h(·)  and  g ∗ h(·)  for  σ = 0.25

   −   !

   −   "

   "

   !

 

−$   −" % " $

&

   %

   '

   "

   (

   $

 

SAPA2e–76 III–49

Page 50: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 50/131

g(·),  h(·)  and  g ∗ h(·)   for  σ = 0.625

   −   !

   −   "

   "

   !

 

−$   −" % " $

&

   %

   '

   "

   (

   $

 

SAPA2e–76 III–50

Page 51: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 51/131

Specific Examples of Smoothing: II

• attenuation factors:f 1 = 1/6   f 2 = 3

σ = 0.1 0.99 0.17σ = 0.25 0.97 0.0

σ = 0.625 0.81 0.0

SAPA2e–75 III–51

Page 52: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 52/131

Specific Examples of Smoothing: III

• another smoother:

r(t) =

1/2δ ,   −δ  ≤ t ≤ δ ;

0,   otherwise.

• smoothed version of  h(·) (note: sinc(u)

≡sin(πu)/(πu)):

r∗h(t) =  1

2δ 

   t+δ 

t−δ h(u) du =

Ll=1

sinc (2f lδ )Al cos (2πf lt + φl)

• sinc (2f lδ ) varies about 0 (not monotonic in f l)

• consider same example as before

h(t) = 5 cos (2π1

6t + 0.5) + cos (2π3t + 1.1)

along with three settings for  δ  (1/8, 1/6 and 1/4)

SAPA2e–75, 76, 77 III–52

Page 53: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 53/131

r(·),  h(·)  and  r ∗ h(·)   for  δ  = 1/8

   −   !

   −   "

   "

   !

 

−$   −" % " $

&

   %

   '

   "

   (

   $

 

III–53

Page 54: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 54/131

r(·),  h(·)  and  r ∗ h(·)   for  δ  = 1/6

   −   !

   −   "

   "

   !

 

−$   −" % " $

&

   %

   '

   "

   (

   $

 

SAPA2e–77 III–54

Page 55: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 55/131

r(·),  h(·)  and  r ∗ h(·)   for  δ  = 1/4

   −   !

   −   "

   "

   !

 

−$   −" % " $

&

   %

   '

   "

   (

   $

 

SAPA2e–77 III–55

Page 56: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 56/131

Specific Examples of Smoothing: IV

• δ  = 1/8 damps down f 2  term• δ  = 1/6 eliminates f 2 term completely

• δ  = 1/4 causes ripples to appear!

• will prefer smoothers with monotonic attenuation

SAPA2e–77 III–56

Page 57: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 57/131

Cross and Autocorrelations

• variations on convolution idea• cross-correlation of  g(·) and h(·):

g   h∗(t) ≡  ∞

−∞

g(u + t)h∗(u) du

• can show (Exercise [3.13a]):  g  h∗(·) ←→ G(·)H ∗(·)

• letting h(·) = g(·) yields autocorrelation:

g   g∗(t)

≡   ∞

−∞g(u + t)g∗(u) du

• have g  g∗(·) ←→ G(·)G∗(·) = |G(·)|2

SAPA2e–78 III–57

Page 58: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 58/131

Autocorrelation Width

• leads to another measure of width:

widtha {g(·)}   ≡   widthe {g  g∗(·)}

=

 ∞−∞ g  g∗(t) dt

g  g∗(0)

[78f]=

 ∞−∞ g(t) dt2 ∞

−∞ |g(t)|2 dt

(will prove useful in Chapters 6, 7 and 8)

SAPA2e–78 III–58

Page 59: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 59/131

Comparison of Three Measures of Width: I

• plot shows rectangular PDF  g(·) along with− equivalent width: widthe {g(·)} (red lines)

− variance width: widthv {g(·)} (red lines)

−autocorrelation width: widtha {g(·)} (red lines)

−!   −" # " !

        #  $

        #

        #

  $        %

        #  $

        "

        #  $

        &

        #  $        !

'

III–59

Page 60: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 60/131

Comparison of Three Measures of Width: II

• plot shows standard Gaussian PDF g(·) along with− equivalent width: widthe {g(·)} (dashed lines)

− variance width: widthv {g(·)} (blue lines)

−autocorrelation width: widtha {g(·)} (red lines)

−!   −" # " !

        #  $

        #

        #

  $        %

        #  $

        "

        #  $

        &

        #  $        !

'

SAPA2e–79 III–60

Page 61: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 61/131

Discrete Time/Continuous Frequency: I

• assumptions about g(·)− has finite energy

− is continuous at t∆t, t ∈ Z, where ∆t > 0

• extract samples gt

≡g(t∆t), where ∆t is time interval between

samples (i.e., sampling interval)

• need to assume sequence {gt} is square summable:∞

t=−∞

|gt|2 <

SAPA2e–80 III–61

Page 62: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 62/131

{gt}  Obtained from Samples of  g(·)  with  ∆t = 1

−!"   −#" " #" !"

   −        "

  $        "        %

   −        "  $

        "        #

        "  $

        "        #

        "  $

        "        %

&

III–62

Page 63: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 63/131

Discrete Time/Continuous Frequency: II

• definition: discrete Fourier transform of  {gt} is

G p(f ) ≡ ∆t

∞t=−∞

gte−i2πft∆t

− first motivation: if  g(·) ←→ G(·), then

G(f ) ≡  ∞−∞

g(t)e−i2πft dt

≈ ∆t

t=−∞

g(t∆t)e−i2πft∆t = G p(f )

− second motivation: use Dirac delta functions (p. 80)

III–63

Page 64: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 64/131

Discrete Time/Continuous Frequency: III

• reason for p subscript (note e−i2πt = 1 for integer t):

G p(f  +   1∆t

) =  ∆t

∞t=−∞

gte−i2π(f +   1

∆t)t∆t

=  ∆t ∞t=−∞

gte−i2πft∆te−i2πt = G p(f )

G p(·) is periodic with period  T   = 1/∆t (deja vu!)

III–64

Page 65: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 65/131

Discrete Time/Continuous Frequency: IV

• apply continuous time/discrete frequency theory to  G p(·)• Fourier coefficients for G p(·) are, say,

gn ≡   1

T    T /2

−T /2

G p(t)e−i2πf ntdt   with   f n = n

T   = n ∆t

=   ∆t

   1/2∆t

−1/2∆t

G p(t)e−i2πtn∆t dt

• Fourier synthesis of  G p(·) is thus

G p(t) =∞

n=−∞gnei2πf nt =

∞n=−∞

gnei2πtn∆t

SAPA2e–81 III–65

Page 66: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 66/131

Discrete Time/Continuous Frequency: V

• changing (i) t to f  and (ii) n to t yields

gt   =  ∆t

   1/2∆t

−1/2∆t

G p(f )e−i2πf t∆t df 

G p(f ) =∞

t=−∞

gtei2πf t∆t

• letting gt = g−t∆t yields

gt   =    1/2∆t

−1/2∆t

G p(f )ei2πft∆t df 

G p(f ) =  ∆t

∞t=−∞

gte−i2πf t∆t

2nd equation is definition; 1st gives inverse DFT

SAPA2e–81 III–66

Page 67: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 67/131

Discrete Time/Continuous Frequency: VI

• notation:  {gt}←→ G p(·)• Parseval etc. falls out readily

• two questions of interest

1. given just g−

m, . . . , gm (a finite sample), how well can G p(·)be approximated?

2. how are G(·) and G p(·) related?

• answers to questions involve discussion of 

− leakage, convergence factors (windows)− aliasing

SAPA2e–81 III–67

Page 68: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 68/131

Finite Sample Approximation of  G p(·): I

• assuming ∆t = 1, can approximate  G p(·) using

G p,m(f )   ≡m

t=−m

gte−i2πf t

[82]= (2m + 1)  

  1/2

−1/2

G p(f )D2m+1(f 

 −f ) df ,

where D2m+1(·) is Dirichlet’s kernel, which is proportional tothe Fourier transform of a “rectangular” sequence {rt}

• can regardm

t=−m

gte−i2πft = (2m + 1)   1/2

−1/2G p(f )D2m+1(f  − f ) df 

as example of “inverse” convolution theorem:

{gt × rt}←→ (2m + 1)G p ∗D2m+1(·)

SAPA2e–82 III–68

Page 69: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 69/131

Finite Sample Approximation of  G p(·): II

• given g−m, . . . , gm, can argue that G p,m(·) is best approxima-tion to G p(·) in least squares sense

• consider plots of  D2m+1(·) for m = 4, 16 and 64

SAPA2e–82, 83 III–69

Page 70: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 70/131

D2m+1(·)  for  m = 4

−!"#   −!"$ !"! !"$ !"#

   −        !  "

        %

        !  "

        !

        !  "

        %

        &  "

        !

'

SAPA2e–83 III–70

Page 71: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 71/131

D2m+1(·)   for  m = 16

−!"#   −!"$ !"! !"$ !"#

   −        !  "        %

        !  "

        !

        !  "

        %

        &  "

        !

'

SAPA2e–83 III–71

Page 72: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 72/131

D2m+1(·)   for  m = 64

−!"#   −!"$ !"! !"$ !"#

   −        !  "        %

        !  "

        !

        !  "

        %

        &  "

        !

'

SAPA2e–83 III–72

Page 73: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 73/131

Finite Sample Approximation of  G p(·): III

• as m →∞, (2m +1)D2m+1(·) converges to a Dirac δ  function,which is good in view of 

G p,m(f ) = (2m + 1)

   1/2

−1/2G p(f )D2m+1(f  − f ) df 

• in contrast to a  δ  function, the approximation has

1. central lobe of finite width

2. sidelobes (some of which are negative)

which, as the following figures illustrate, can

1. smear out features, resulting in a loss of resolution (attribut-able to having just a subsequence from  {gt})

2. cause leakage and a “Gibbs” phenomenon

SAPA2e–82, 83, 84 III–73

Page 74: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 74/131

{gt}  with “Twin Peaks” DFT  G p(·)

−!""   −#" " #" !""

   −        "  $

        "        %

   −        "  $

        "        &

        "  $

        "        &

        "  $

        "        %

'

III–74

Page 75: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 75/131

“Twin Peaks”  G p(·)  (DFT of  {gt})

−!"#   −!"$ !"! !"$ !"#

        !  "

        !

        !  "

        $

        !  "        #

        !  "

        %

        !  "

        &

        '  "

        !

(

SAPA2e–85 III–75

Page 76: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 76/131

“Twin Peaks”  G p(·)  & Approximation  G p,4(·)

−!"#   −!"$ !"! !"$ !"#

        !  "

        !

        !  "

        $

        !  "        #

        !  "

        %

        !  "

        &

        '  "

        !

(

SAPA2e–84 III–76

Page 77: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 77/131

“Twin Peaks”  G p(·)  & Approximation  G p,16(·)

−!"#   −!"$ !"! !"$ !"#

        !  "

        !

        !  "

        $

        !  "        #

        !  "

        %

        !  "

        &

        '  "

        !

(

SAPA2e–84 III–77

Page 78: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 78/131

“Twin Peaks”  G p(·)  & Approximation  G p,64(·)

−!"#   −!"$ !"! !"$ !"#

        !  "

        !

        !  "

        $

        !  "        #

        !  "

        %

        !  "

        &

        '  "

        !

(

SAPA2e–84 III–78

Page 79: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 79/131

{gt}  with Rectangular DFT  G p(·)

−!""   −#" " #" !""

   −        "  $

        !

        "  $

        "

        "  $

        !

        "

  $        %

        "  $

        &

        "  $

        '

        "  $

       #

(

III–79

Page 80: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 80/131

Rectangular  G p(·)  (DFT of  {gt})

−!"#   −!"$ !"! !"$ !"#

        !  "

        !

        !  "

        $

        !  "

        #

        !  "

        %

        !  "

        &

        '  "        !

(

SAPA2e–85 III–80

Page 81: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 81/131

Rectangular  G p(·)  & Approximation  G p,4(·)

−!"#   −!"$ !"! !"$ !"#

        !  "

        !

        !  "

        $

        !  "

        #

        !  "

        %

        !  "

        &

        '  "        !

(

SAPA2e–85 III–81

Page 82: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 82/131

Rectangular  G p(·)  & Approximation  G p,16(·)

−!"#   −!"$ !"! !"$ !"#

        !  "

        !

        !  "

        $

        !  "

        #

        !  "

        %

        !  "

        &

        '  "        !

(

SAPA2e–85 III–82

Page 83: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 83/131

Rectangular  G p(·)  & Approximation  G p,64(·)

−!"#   −!"$ !"! !"$ !"#

        !  "

        !

        !  "

        $

        !  "

        #

        !  "

        %

        !  "

        &

        '  "        !

(

SAPA2e–85 III–83

Page 84: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 84/131

Cesaro Sums: I

• can reduce leakage & Gibbs using Cesaro sums• let  . . . , u−2, u−1, u0, u1, u2, . . . be an infinite sequence

• form mth partial sum:  sm ≡m

t=−

m

ut

• form average of partial sums of orders 0, . . . , m− 1:

am ≡   1

m

m−1 j=0

s j  =m

t=−m

1− |t|

m

ut

(to see this, work out what  am is for, e.g., m = 3)

• above called (two-sided) Cesaro sum

• theorem: if  sm → s, then am → s also

SAPA2e–84, 85 III–84

Page 85: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 85/131

Cesaro Sums: II

• application: let

sm =m

t=−m

gte−i2πft = G p,m(f )

• since G p,m(f ) → G p(f ), must also have

G(C )

 p,m(f ) ≡m

t=−m

1− |t|

m

gte−i2πf t → G p(f )

i.e., G

(C )

 p,m(·) is another approximation for  G p(·)

SAPA2e–86 III–85

Page 86: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 86/131

Cesaro Sums: III

• claim:G

(C ) p,m(f )   ≡

mt=−m

1− |t|

m

gte−i2πf t

[86]=   m   1/2

−1/2G p(f 

)D2

m(f  −

f ) df 

• sketch of proof:

− (1− |t|/m) ∝ convolution of  {rt} with itself 

−FT of  {rt}

∝Dm(·)

− thus FT of (1− |t|/m) ∝ D2m(·)

− FT of (1− |t|/m)× gt = convolution of FTs

• D2m(·) related to Fejer’s kernel (Chapter 6)

SAPA2e–86 III–86

Page 87: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 87/131

D2m+1(·)  and  D2m(·)   for  m = 4

−!"#   −!"$ !"! !"$ !"#

   −        !  "

        %

        !  "

        !

        !  "

        %

        &  "

        !

'

SAPA2e–83, 87 III–87

Page 88: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 88/131

D2m+1(·)  and  D2m(·)   for  m = 16

−!"#   −!"$ !"! !"$ !"#

   −        !  "

        %

        !  "

        !

        !  "

        %

        &  "

        !

'

SAPA2e–83, 87 III–88

Page 89: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 89/131

D2m+1(·)  and  D2m(·)   for  m = 64

−!"#   −!"$ !"! !"$ !"#

   −        !  "

        %

        !  "

        !

        !  "

        %

        &  "

        !

'

SAPA2e–83, 87 III–89

Page 90: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 90/131

Cesaro Sums: IV

• as plots of  D2m+1(·) and D2m(·) show,

−D2m(·) has smaller sidelobes (hurray!)

−D2m(·) has nonnegative sidelobes (hurray!)

−D2m(·) has wider central lobe (boo!)

• following plots illustrate tradeoff s between approximations basedon D2m+1(·) and D2

m(·)

SAPA2e–83, 87 III–90

Page 91: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 91/131

G p(·)  Approximates Based on  D2m+1(·)  &  D2m(·),  m = 4

−!"#   −!"$ !"! !"$ !"#

        !  "

        !

        !  "

        $

        !  "

        #

        !  "

        %

        !  "

        &

        '  "        !

(

SAPA2e–85, 88 III–91

Page 92: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 92/131

G p(·)  Approximates Based on  D2m+1(·)  & D2m(·),  m = 16

−!"#   −!"$ !"! !"$ !"#

        !  "

        !

        !  "

        $

        !  "

        #

        !  "

        %

        !  "

        &

        '  "        !

(

SAPA2e–85, 88 III–92

Page 93: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 93/131

G p(·)  Approximates Based on  D2m+1(·)  & D2m(·),  m = 64

−!"#   −!"$ !"! !"$ !"#

        !  "

        !

        !  "

        $

        !  "

        #

        !  "

        %

        !  "

        &

        '  "        !

(

SAPA2e–85, 88 III–93

C ` S

Page 94: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 94/131

Cesaro Sums: V

• more generally, can approximate  G p(·) usingm

t=−m

ctgte−i2πf t,

where {ct}’s are called convergence factors or a window

SAPA2e–86 III–94

G ( ) G( )

Page 95: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 95/131

Relating  G p(·)  to  G(·)  – Aliasing: I

• assume general ∆t, i.e., ∆

t is not necessarily unity

• {gt}←→ G p(·) implies gt =

   1/(2∆t)

−1/(2∆t)G p(f )ei2πft∆t df 

• g(·) ←→ G(·) and gt = g(t∆t) imply

gt   =  ∞−∞G(f )ei2πf t∆t df 

=∞

k=−∞

   (2k+1)/(2∆t)

(2k−1)/(2∆t)G(f )ei2πf t∆t df 

= ∞k=−∞

   1/(2∆t)

−1/(2∆t)G(f  + k/∆t)ei2π(f +k/∆t)t∆t df,

where f  ≡ f  − k/∆t

SAPA2e–86, 87, 88 III–95

R l i G ( ) G( ) Ali i II

Page 96: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 96/131

Relating  G p(·)  to  G(·)   – Aliasing: II

• since ei2π(f +k/∆t)t∆t = ei2πft∆tei2πkt = ei2πft∆t, we have

gt   =∞

k=−∞

   1/(2∆t)

−1/(2∆t)G(f  + k/∆t)ei2π(f +k/∆t)t∆t df 

=   1/(2∆t)

−1/(2∆t) ∞

k=−∞G(f  + k/∆

t)

ei2πft∆t

df 

• since gt =

   1/(2∆t)

−1/(2∆t)G p(f )ei2πft∆t df  also, must have

G p(f ) =∞

k=−∞G(f  + k/∆t) for   |f | ≤ 1/(2∆t) ≡ f  N ,

where f  N  is known as the Nyquist frequency

SAPA2e–88, 89 III–96

R l i G ( ) G( ) Ali i III

Page 97: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 97/131

Relating  G p(·)  to  G(·)   – Aliasing: III

• f  ± k/∆t, k = 0, are  aliases  of  f • highest f  that is not an alias of a lower frequency is  f  N 

• following plots illustrate various aspects of aliasing

SAPA2e–89 III–97

Ill t ti f Ali i (∆ 1 & f 0 5)

Page 98: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 98/131

Illustration of Aliasing (∆t = 1  &  f  N   = 0.5)

 

−"#$   −"   −%#$ % %#$ " "#$

&

 

G(·)

G p(·)

SAPA2e–89 III–98

(2 f t) (2 (f 1)t) d S l t t 0 1 8

Page 99: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 99/131

cos(2πf t),  cos(2π(f  − 1)t)  and Samples at   t = 0, 1, . . . , 8

! " # $ %

   −        &  '

        !

   −        !  '

        (

        !  '        !

        !  '

        (

        &  '

        !

)

SAPA2e–90 III–99

R l ti G ( ) t G( ) Ali i IV

Page 100: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 100/131

Relating  G p(·)  to  G(·)  – Aliasing: IV

• as an example, consider following function:g(t) = 2

√ πe−π

2t2/α2[cos (2πf 1t) + 0.9cos(2πf 2t)] ,

where α = 100, f 1 =  14 −   1

50  and f 2 =  14 +   1

50

• Fourier transform of  g(·) is

G(f ) = e−α2(f −f 1)2 + e−α2(f +f 1)2 + 0.9e−α2(f −f 2)2 + 0.9e−α2(f +f 2)2

• both   g(·) &   G(·) are even functions (i.e.,   g(−t) =   g(t) &G(−f ) =   G(f )), so it suffices to look at   g(t) for   t ≥   0 &G(f ) for f 

 ≥0

• following overheads show g(·) & G(·) and gt = g(t∆t) & G p(·)for  ∆t  = 0.5, 1, 1.5, 2, 3, 4, 8, 16 and 32 (Nyquist frequencyindicated by vertical dashed line)

SAPA2e–89 III–100

(t) d (t∆ ) ∆ 0 5

Page 101: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 101/131

g(t)  and  gt = g(t∆t),  ∆t = 0.5

! "! #! $! %! &! '!

   −        !

  (        !        '

   −        !  (

        !        #

        !  (

        !        #

        !  (        !        '

)

III–101

G(f ) d G (f ) ∆ 0 5

Page 102: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 102/131

G(f )  and  G p(f ),  ∆t = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

        0  .        0

        0  .

        5

        1  .

        0

        1  .

        5

        2  .

        0

        2  .

        5

        3  .

        0

f

III–102

(t) d (t∆ ) ∆ 32

Page 103: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 103/131

g(t)  and  gt = g(t∆t),  ∆t = 32

! "! #! $! %! &! '!

   −        !

  (        !        '

   −        !  (

        !        #

        !  (

        !        #

        !  (        !        '

)

III–103

G(f ) and G (f ) ∆ 32

Page 104: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 104/131

G(f )  and  G p(f ),  ∆t = 32

0.0 0.2 0.4 0.6 0.8 1.0

        0  .        0

        0  .

        5

        1  .

        0

        1  .

        5

        2  .

        0

        2  .

        5

        3  .

        0

f

III–104

Discrete/Continuous Concentration Problem: I

Page 105: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 105/131

Discrete/Continuous Concentration Problem: I

• assumptions (∆t = 1 for convenience)− gt real-valued & time-limited to t = 0, . . . , N   − 1

− {gt}←→ G p(·)

• energy =

N −1t=0

g2t   =

   1/2

−1/2G p(f )

2df 

• how close can G p(·) be to bandlimited?

• for 0 < W < 1/2, consider concentration measure:

β 2(W ) ≡ 

  W 

−W 

G p(f )2 df 

   1/2

−1/2

G p(f )2 df 

SAPA2e–91, 92 III–105

Discrete/Continuous Concentration Problem: II

Page 106: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 106/131

Discrete/Continuous Concentration Problem: II

• reduction of numerator (using |z |2

= zz ∗):   W 

−W 

G p(f )

2

df   =

   W 

−W 

N −1t=0

gte−i2πf t

N −1t=0

gtei2πf t

 df 

=N −

1t=0

N −

1t=0

gtgt 

  W 

−W ei2πf (t−t) df 

=N −1

t=0

N −1

t=0

gtgtsin[2πW (t − t)]

π(t −

t)  = gT Ag,

where g ≡ [g0, . . . , gN −1]T  and A is an N  ×N  matrix whose(t, t)th element is sin [2πW (t − t)]/π(t − t)

SAPA2e–94 III–106

Discrete/Continuous Concentration Problem: III

Page 107: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 107/131

Discrete/Continuous Concentration Problem: III

• reduction of denominator (why?):   1/2

−1/2

G p(f )2 df  = gT g

• hence can write concentration measure as

β 2(W ) = gT Ag/gT g

• our task is to find g that maximizes β 2(W ) for a given  W 

SAPA2e–94 III–107

Solution to Concentration Problem: I

Page 108: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 108/131

Solution to Concentration Problem: I

• to maximize β 2

(W ), diff 

erentiate with respect to  g  and set tovector of zeros:dβ 2(W )

dg  = 0

• says that solution  g  must satisfy  Ag   =   β 2(W )g   (necessary,

but not sufficient condition)• eigenvalue/eigenvector problem:  Ag = λg

• solution is eigenvector, say  v0(N, W ), associated with largesteigenvalue, say, λ0(N, W ) = β 2(W )

• v0(N, W ) is (subsequence) of 0th order discrete prolate spher-oidal sequence (DPSS) – also called Slepian sequence

• A  is positive definite, so all  N  eigenvalues are positive

SAPA2e–94, 95 III–108

Solution to Concentration Problem: II

Page 109: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 109/131

Solution to Concentration Problem: II

• can show that eigenvalues are distinct, so order as:0 < λN −1(N, W ) < · · · < λ1(N, W ) < λ0(N, W ) <  1

• Q: why must  λ0(N, W ) be less than unity?

• first 2NW  (Shannon number) eigenvalues close to 1, after whichλk(N, W )’s fall off  rapidly to 0

• can use eigenvectors to form orthonormal basis:

v j(N, W )T vk(N, W ) = 1, j  = k;

0,   otherwise.• following plots give some examples

SAPA2e–94, 95 III–109

v0(N W ) with N = 32 and W = 4/N = 1/8

Page 110: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 110/131

v0(N, W )  with  N  = 32  and  W   = 4/N  = 1/8

! " #! #" $! $" %!

   −        !  &

        '

   −        !  &

        $

        !  &        !

        !  &

        $

        !

  &        '

(

SAPA2e–96 III–110

v1(N W ) with N = 32 and W = 4/N = 1/8

Page 111: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 111/131

v1(N, W )  with  N  = 32  and  W   = 4/N  = 1/8

! " #! #" $! $" %!

   −        !  &        '

   −        !  &

        $

        !  &        !

        !  &

        $

        !

  &        '

(

SAPA2e–96 III–111

v2(N W ) with N = 32 and W = 4/N = 1/8

Page 112: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 112/131

v2(N, W )  with  N  = 32  and  W   = 4/N  = 1/8

! " #! #" $! $" %!

   −        !  &        '

   −        !  &

        $

        !  &        !

        !  &

        $

        !

  &        '

(

SAPA2e–96 III–112

v3(N W ) with N = 32 and W = 4/N = 1/8

Page 113: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 113/131

v3(N, W )  with  N  = 32  and  W   = 4/N  = 1/8

! " #! #" $! $" %!

   −        !  &        '

   −        !  &

        $

        !  &        !

        !  &

        $

        !

  &        '

(

SAPA2e–96 III–113

|G (·)|2 for v0(N W ) with N = 32 and W = 4/N = 1/8

Page 114: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 114/131

|G p(·)| for v0(N, W )  with  N  = 32  and  W   = 4/N  = 1/8

!"! !"# !"$ !"% !"& !"'

   −        #        !        !

   −        (        !

   −        )        !

   −        &        !

   −        $        !

        !

        $

        !

*

SAPA2e–97 III–114

|G (·)|2 for v1(N W ) with N = 32 and W = 4/N = 1/8

Page 115: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 115/131

|G p(·)| for v1(N, W )  with  N  = 32  and  W   = 4/N  = 1/8

!"! !"# !"$ !"% !"& !"'

   −        #        !        !

   −        (        !

   −        )        !

   −        &        !

   −        $        !

        !

        $

        !

*

SAPA2e–97 III–115

|Gp(·)|2 for v2(N W ) with N = 32 and W = 4/N = 1/8

Page 116: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 116/131

|G p(·)| for v2(N, W )  with  N  = 32  and  W   = 4/N  = 1/8

!"! !"# !"$ !"% !"& !"'

   −        #        !        !

   −        (        !

   −        )        !

   −        &        !

   −        $        !

        !

        $

        !

*

SAPA2e–97 III–116

|Gp(·)|2 for v3(N W ) with N = 32 and W = 4/N = 1/8

Page 117: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 117/131

|G p( )| for v3(N, W )  with  N  = 32  and  W   = 4/N  = 1/8

!"! !"# !"$ !"% !"& !"'

   −        #        !        !

   −        (        !

   −        )        !

   −        &        !

   −        $        !

        !

        $

        !

*

SAPA2e–97 III–117

Page 118: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 118/131

v0(N, W )  with  N  = 99  and  W   = 4/N  = 4/99

Page 119: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 119/131

0( , ) / /

! "! #! $! %! &!!

   −        !  '        #

   −        !  '

        "

        !  '        !

        !  '

        "

        !

  '        #

(

SAPA2e–96 III–119

v1(N, W )  with  N  = 99  and  W   = 4/N  = 4/99

Page 120: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 120/131

1( , ) / /

! "! #! $! %! &!!

   −        !  '        #

   −        !  '

        "

        !  '        !

        !  '

        "

        !

  '        #

(

SAPA2e–96 III–120

v2(N, W )  with  N  = 99  and  W   = 4/N  = 4/99

Page 121: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 121/131

2( , ) / /

! "! #! $! %! &!!

   −        !  '        #

   −        !  '

        "

        !  '        !

        !  '

        "

        !

  '        #

(

SAPA2e–96 III–121

v3(N, W )  with  N  = 99  and  W   = 4/N  = 4/99

Page 122: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 122/131

3( , ) / /

! "! #! $! %! &!!

   −        !  '        #

   −        !  '

        "

        !  '        !

        !  '

        "

        !

  '        #

(

SAPA2e–96 III–122

|Gp(·)|2 for v0(N, W )  with  N  = 99  and  W   = 4/N  = 4/99

Page 123: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 123/131

|G p( )| 0( , W ) w 99 W / /99

!"! !"# !"$ !"% !"& !"'

   −        #        !        !

   −        (        !

   −        )        !

   −        &        !

   −        $        !

        !

        $

        !

*

SAPA2e–97 III–123

|Gp(·)|2 for v1(N, W )  with  N  = 99  and  W   = 4/N  = 4/99

Page 124: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 124/131

|  p( )| 1( , ) / /

!"! !"# !"$ !"% !"& !"'

   −        #        !        !

   −        (        !

   −        )        !

   −        &        !

   −        $        !

        !

        $

        !

*

SAPA2e–97 III–124

|Gp(·)|2 for v2(N, W )  with  N  = 99  and  W   = 4/N  = 4/99

Page 125: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 125/131

|  p( )| 2( , ) / /

!"! !"# !"$ !"% !"& !"'

   −        #        !        !

   −        (        !

   −        )        !

   −        &        !

   −        $        !

        !

        $

        !

*

SAPA2e–97 III–125

|Gp(·)|2 for v3(N, W )  with  N  = 99  and  W   = 4/N  = 4/99

Page 126: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 126/131

|  p( )| 3( , ) / /

!"! !"# !"$ !"% !"& !"'

   −        #        !        !

   −        (        !

   −        )        !

   −        &        !

   −        $        !

        !

        $

        !

*

SAPA2e–97 III–126

λk(N, W )  with  N  = 99  and  W   = 4/N  = 4/99  (2NW   = 8)

Page 127: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 127/131

0 20 40 60 80 100

        0  .

        0

        0  .

        2

        0  .

        4

        0  .

        6

        0  .

        8

        1

  .        0

k

SAPA2e–98 III–127

Discrete Time/Discrete Frequency: I

Page 128: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 128/131

• {gt : t = 0, . . . , N  

 −1}, sampled ∆t units apart

• two possible definitions for Fourier transform:

− form infinite sequence: set gt ≡ 0 for other t’s:

G p(f ) = ∆t

t=−∞

gte−i2πf t∆t = ∆t

N −1

t=0

gte−i2πft∆t

useful (e.g., periodogram), but infinite number of frequencies

− define discrete Fourier transform (DFT) of  {gt}:

Gn ≡

G p

(f n

) = ∆

t

N −1

t=0

gte−

i2πf nt∆t = ∆

t

N −1

t=0

gte−

i2πnt/N ,

where f n are N  Fourier (standard) frequencies:

f n ≡ n/N ∆t, n = 0, 1, . . . , N   − 1

SAPA2e–97, 98 III–128

Discrete Time/Discrete Frequency: II

Page 129: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 129/131

• inverse DFT given by

gt[98]=

  1

N ∆t

N −1n=0

Gnei2πnt/N 

• fast Fourier transform (FFT) algorithm vs. DFT• two standard forms:  ∆t = 1 or ∆t = 1/N 

SAPA2e–98, 99 III–129

Discrete Time/Discrete Frequency: III

Page 130: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 130/131

• DFT definition implies gt = 0 beyond t = 0 to N  − 1• notion of  zero padding 

− add N −N > 0 zeros to g0, . . . , gN −1 to form g0, . . . , gN −1with gt = 0, N  ≤ t ≤ N  − 1

− DFT of padded sequence (f n ≡ n/N ∆t):

Gn ≡ ∆t

N −1t=0

gte−i2πnt/N  = ∆t

∞t=−∞

gte−i2πnt/N  = G p(f n)

evaluates G p(·) over finer grid than f n’s− useful to compute convolutions or DFT via chirp transformalgorithm (p. 101)

SAPA2e–100, 101 III–130

Discrete Time/Discrete Frequency: IV

Page 131: Fourier Theory

7/17/2019 Fourier Theory

http://slidepdf.com/reader/full/fourier-theory-568ee781391c4 131/131

• can also claim DFT implies periodic extension:

gt ≡  1

N ∆t

N −1n=0

Gnei2πnt/N , t < 0 or t ≥ N ,

so {gt : t∈Z} has period N 

• can use right-hand side of DFT to define Gn for all n, so

gt =  1

N ∆t

N +k−1

n=k

Gnei2πnt/N 

for any integer k

• note: summary of Fourier theory, pp. 103–10