Foundation Calculation

63
Drawing

Transcript of Foundation Calculation

Drawing

Foundation Calculation

Description: 14550E001SN 00152Bowthruster room

Project: JSS

Author: ALI

Date: 3/23/2011

File: 'file:///tt/file_convert/55cf9a04550346d033a02246/document.xls'#$Foundation Calculation

Vulnerability Y/N N

Shock zone / category 0

UWN category -

Seating code -

Noise control spec Y/N Y

1. Vertical loading (on "z" direction) General Input:

W1 4000 [Kg] distributed weight

W2 4000 [Kg] point load weight

a) Bending stress f 3 (minim) acceleration factor

Span maxim S 2.78 [m] f1 0.6 safety factor

Total length of found. L=2x0.9+2 x 5 11.8 [m] s 355 [N/mm2]

Mass per length M = W1 / L 339 [Kg/m] a 9.8 [m/s2] acceleration

Point load on S F=SxW2xfxa/L 27706 [N] s 213 [N/mm2] allowable bending stress

Distributed load Q = M x f x a 9967 [N/m] t 213 [N/mm2] allowable shear stress

Load type

Distributed <=== Choose

Distributed 9629 [Nm]

Point Mmp = F x S/4 19256 [Nm]

Distributed+Point Mmd + Mmp 28885 [Nm]

Bending moment max 9629 [Nm]

Section modulus min 46 [cm3]

Profile chosed =====> HEB160 116 [cm3] OK

b) Compresive stress

Leg's no. of foundation 10

2. Longitudinal loading (on "x" direction)

Mmd = Q x S2/8

SMmin = Mm/s

Foundation Calculation

3. Transversal loading (on "y" direction)

Foundation Calculation

Screw numbe 25

HP

HP

HP

HP

HP

HP

L Equal

L Equal

L Equal

L Equal

L Equal

L Equal

L Unequal

L Unequal

L Unequal

L Unequal

L Unequal

L Unequal

T

T

T

T

T

T

IPE

IPE

IPE

IPE

IPE

IPE

UNP

UNP

UNP

UNP

UNP

UNP

Pipe

Pipe

Pipe

Pipe

Pipe

Pipe

Tube rectangular

Tube rectangular

Tube rectangular

Tube rectangular

Tube rectangular

Tube rectangular

Tube square

Tube square

Tube square

Tube square

Tube square

Tube square

COMPRESION STRESS

Sat 117.0 N/mm2

Calculation

Anec = F/Sat 41.9 mm2

N 4,905.0 N

Sat 117.0 N/mm2

Checking

St = N/A 2.6 N/mm2 OK

N 4,905.0 N

A 1,900.0 mm2

Maxim load on element

Nmax = AxSa 0.0 N

A mm2

Sat N/mm2

A4
minimum compresion stress
A9
axial normal load

[SI] [mm] [mm] [mm]

i Element Hight (hi) Width (bi) Fi = hi x bi di Fi x di Ii1 Added plate 10 1715 17150 5 85750 428750 142916.666666672 Web plate 200 8 1600 110 176000 19360000 5333333.33333333 Face plate 10 120 1200 215 258000 55470000 100004 HIP 0 0 0 0 0 0

Sum 19950 519,750 75,258,750 5,486,250

HIP position (dh4) 272.5 mm

26.05 mm

193.95 mmemin 26.05 mmemax 193.95 mmI 67,204,144.74 mm4Wmax 2,579,553.03 mm3Wmin 346,507.12 mm3

Deck load 150000 NDistance 1200 mmBending moment 180,000,000 Nm

69.78 N/mm2

Wmin 1,525,424 mm3

118 N/mm2

[mm2] [mm3] [mm4] [mm4]

Fi x di2

e1 (SFixdi/SFi)

e2 (h1+h2+h3 - e1)

s ef

σa max

d3

b1

b3

b2=b4

h1

h2

h3

h4

dh4

d1

d2

SM DNV

SECTION MODULUS BY DNV

Description:

Author: L.A. ILIEDate: 29-02-2010File: 'file:///tt/file_convert/55cf9a04550346d033a02246/document.xls'#$SM DNV

Asa = 17.15 [cm2] (net effective shear area of panel stiffeners away from web scallops)

Zpa = 420.00 [cm3] (net effective plastic section modulus of the panel stiffener cross-section with an inclined web)

(and where the cross-sectional area of the attached plate flange exceeds the cross-sectional area of the stiffener)

= 77 [degree]tp = 10 [mm]tw = 8 [mm]tk = 0 [mm]tf = 10 [mm]hw = 200 [mm]hfc = 205 [mm]h = 210 [mm]

bf = 120 [mm]be = 60 [mm]

bw = 0 [mm]Af = 1200 [mm2]b = 0.500 [mm]g = 1.000 [mm]

Afn = 1200 [mm2]

Pt.3 Ch.1 Sec.3 C

jw

Asa = (h + tp)(tw - tk) sinjw /100 (cm2)

Zpa=hw (hw+tp ) (tw− tk ) sinϕw2000

+Afn ( (hfc+tp /2 )sinϕw−bw cosϕw )1000

SM DNV

(and where the cross-sectional area of the attached plate flange exceeds the cross-sectional area of the stiffener)