Formulas Gestures

55
ormulas Gestures Music Mathematics Guerino Mazzola U Minnesota & Zürich [email protected] [email protected] www.encyclospace.org Alexander Grothendieck : „This is probably the mathematics of the new age“

description

Music. Formulas Gestures. Mathematics. Alexander Grothendieck: „This is probably the mathematics of the new age“. Guerino Mazzola U Minnesota & Zürich [email protected]   [email protected]     www.encyclospace.org        . Yoneda‘s Lemma in Music: Reinventing Points. - PowerPoint PPT Presentation

Transcript of Formulas Gestures

Page 1: Formulas Gestures

Formulas Gestures Music

Mathematics

Guerino MazzolaU Minnesota & Zü[email protected]   [email protected]     www.encyclospace.org        

Alexander Grothendieck:

„This is probably the mathematics of the new age“

Page 2: Formulas Gestures

Yoneda‘s Lemma in Music:Reinventing Points

Nobuo Yoneda (1930-1996)

Page 3: Formulas Gestures
Page 4: Formulas Gestures

A@F

f

change of address g

f·g

space FA

B

Hom(A,F)

Page 5: Formulas Gestures

RMod@ = RModopp@Ens= {F: RModopp —> Sets}

presheaveshave all these properties

Setscartesian products X x Ydisjoint sums X È Ypowersets XY

characteristic maps c: X —> 2no „algebra“

RModabelian category,direct sums etc.

has „algebra“no powersets

no characteristic maps

Page 6: Formulas Gestures

2

C Ÿ12 ~> Trans(C,C) Ÿ12@Ÿ12

C Ÿ12 (pitch classes mod. octave)

C Ÿ12MA@MA@F   A RMod F RMod@

C 2A@F = A@2F W

C^ A@WF = {sub-presheaves of @A F}= {F-sieves in A}

A@W = {sub-presheaves of @A}= {sieves in A}

Gottlob Frege

(@Ÿ12 = (Hom(-, Ÿ12))

Page 7: Formulas Gestures

F

@A1A f:B A

C f@C^ = C.f

B@C^ = {(f:BA, c.f)| c C} B@A B@F

applications of general caseto harmonic topologies, ToM ch 24

Page 8: Formulas Gestures

Category RLoc of local compositions (over R):• objects = F-sieves in A, i.e. K @A F• morphisms:

K @A F, L @B Gf: K L : A B (change of address)such that there is h: F G with:

K @A F

L @B G

f @ h f/: K L

Full subcategories RObLoc RLoc of objective local compositions K = C^ and

RLocMod RObLoc of modular local compositions, C A@M, M = R-module

Page 9: Formulas Gestures

x: Ÿ12 Ÿ12

z: Ÿ12 Ÿ12

xOx: O Ÿ12

Euclid‘s punctual address

O = { }

z Ÿ12@Ÿ12

Thomas Noll 1995:models Hugo Riemann‘s harmonyself-addressed tones

Page 10: Formulas Gestures

Trans(Dt,Tc) = < f Ÿ12@Ÿ12 | f: Dt Tc >

f

Dt

dominant triad {g, b, d}

Tc

tonic triad {c, e, g}

„relative consonances“

ƒe: Ÿ12 @Ÿ12 Ÿ12 [e] @ Ÿ12 [e]

Fuxian counterpoint:

Trans(Dt,Tc) = Trans(Ke, Ke)|ƒe

Page 11: Formulas Gestures

Pierre Boulezstructures Ia (1952) analyzed by G. Ligeti

thread (« Faden »)

The composition is a system of threads!

Page 12: Formulas Gestures

A = Ÿ11, F = Ÿ12 (pitch classes)

S: Ÿ11 Ÿ12, S = (S0, S1, ... S11)ei ~> Si, e1 = (1, 0, ... 0), etc.e0 = 0

Ÿ12

S

0 11

dodecaphonic series

Messiaen: modes et valeurs d‘intensité

strongdichotomyof class 71

symmetry T7.11

Page 13: Formulas Gestures

The yoga of Boulez‘s construction is acanonical system of address changes on address

Ÿ11 Ÿ11 (affine tensor product) generating new series of series

used in the composition.

Page 14: Formulas Gestures

B:ist. 11A:ist. 11

B:ist. 10A:ist. 10

B:ist. 9A:ist. 9

B:ist. 8A:ist. 8

B:ist. 7A:ist. 7

B:ist. 6A:ist. 6

B:ist. 5A:ist. 5

B:ist. 4A:ist. 4

B:ist. 3A:ist. 3

B:ist. 0A:ist. 0

B:ist. 1A:ist. 1

B:ist. 2A:ist. 2

3, 2, 9, 8, 7, 6, 4, 1, 0, 10, 5, 114, 5, 10, 11, 0, 1, 3, 6, 7, 9, 2, 8 T7.11

Page 15: Formulas Gestures

part A part B

Gérard Milmeister

Page 16: Formulas Gestures

fourth movement: Coherence/Opposition

Page 17: Formulas Gestures

I IV VII III VI VII

global theory

Page 18: Formulas Gestures

I

IV

II

VIV

III

VII

K = {0, 2, 4, 5, 7, 9, 11} Ÿ12

J = {I, II,..., VII} triadic degrees in Kcovering KJ

nerve n(KJ) = harmonic strip

Page 19: Formulas Gestures

The category RGlobMod ofglobal modular compositions:

• objects: - an address A,- a covering I of a finite set G by subsets Gi, - atlas (Ki)I, Ki A@Mi , Mi = R-modules - bijections gi: Gi Ki

- gluing conditions: (gj gi-1)/IdA: Kij Kji

= A-addressed global modular composition GI

• morphisms:...

Page 20: Formulas Gestures

Theorem (global addressed geometric classification)

Let A be a locally free module of finite rank over a commutative R.Consider the A-addressed global modular compositions GI with the following properties (*):

• the modules R.Gi generated by the charts Gi arelocally free of finite rank

• the modules of affine functions G(Gi) are projective

Then there exists a subscheme Jn* of a projective R-scheme of finite type whose points w: Spec(S) Jn* parametrize the isomorphism classes of S

RA -addressed global modular compositions with

properties (*).

ToM, ch 15, 16

Page 21: Formulas Gestures

f: X YCat

Frege @f: @X @Y

balance

objective Yoneda

Page 22: Formulas Gestures

A@R 1

2

3

46

5Gi

6

5

3

41

res

i

2

G(Gi)res G(i)

G(Gi)

Edgar Varèse

resolution A

GI

Page 23: Formulas Gestures

6

5

3

41

A@R

2

G(Gi)res G(i)i

G(Gi Gj)res G(i j)N =

pr(/) (N) = N

N A@limnerf(A)(F)

N = G(Gi)res G(i)

Page 24: Formulas Gestures

yx

Category ∫C of C-addressed points

• objects of ∫C

x: @A F, F = presheaf in C@

~

x F(A), write

x: A F A = address, F = space of x

h

F

A

G

B

address change

• morphisms of ∫C

x: A F, y: B Gh/: x y

FA x

Page 25: Formulas Gestures

xi: Ai Fi hilq/il

q

hjms/jm

s

hlip/li

p

hjlk/jl

k

hllr/ll

r

xj: Aj Fj

xm: Am Fm

xl: Al Fl

hijt/ij

t

local network in C = diagram x of C-addressed points

x: ∫C

coordinateof x

2004

Applications: neural networs, automata, OO classes

PNM

Page 26: Formulas Gestures

Ÿ12

Ÿ12

Ÿ12

Ÿ12

T4

T2

T5.-1 T11.-1D

3 7

2 4

Ÿ12

Ÿ12

Ÿ12

Ÿ12

T4

T2

T5.-1 T11.-1(3, 7, 2, 4) 0@lim(D)

Klumpenhouwer networks

A = 0

Page 27: Formulas Gestures

network of dodecaphonic series

Ÿ12

Ÿ12

Ÿ12

Ÿ12

s

Us

Ks

UKs

T11.-1/IdT11.-1/Id

Id/T11.-1

Id/T11.-1

Ÿ11 Ÿ11

Ÿ11 Ÿ11

s

Page 28: Formulas Gestures

David LewinGeneralized Musical Intervals and Transformations Cambridge UP 1987/2007:

If I am at s and wish to get to t, what characteristic gesture should I perform in order to arrive there?

(Opposition to what he calls cartesian approach, of res extensae.)

This attitude is by and large the attitude of someone inside the music, as idealized dancer and/or singer. No external observer (analyst, listener) is needed.

Musical Transformational Theory

Page 29: Formulas Gestures

Theodor W. AdornoTowards a Theory of Musical Reproduction(1946) Polity, 2006:

Correspondingly the task of the interpreter would be to consider the notes until they are transformed into original manuscripts under the insistent eye of the observer; however not as images of the author‘s emotion—they are also such, but only accidentally—but as the seismographic curves, which the body has left to the music in its gestural vibrations.

Gestures in Performance Theory

Robert S. HattenInterpreting Musical Gestures, Topics, and Tropes 2004, Indiana UP 2004, p.113Given the importance of gesture to interpretation, why do we not have a comprehensive theory of gesture in music?

Page 30: Formulas Gestures

Cecil Taylor

The body is in no way supposed to get involved in Western music. I try to imitate on the piano the leaps in space a dancer makes.

Free Jazz

Page 31: Formulas Gestures

Le geste est élastique, il peut se ramasser sur lui-même, sauter au-delà de lui-même et retentir, alors que la fonction ne donne que la forme du transit d'un terme extérieur à un autre terme extérieur, alors que l'acte s'épuise dans son résultat. (...)

Figuring Space, 2000

Gilles Châtelet (1944-1999)

Localiser un objet en un point quelconque signifie se représen-ter le mouvement (c'est-à-dire les sensations musculaires qui les accompagnent et qui n'ont aucun caractère géométrique) qu'il faut faire pour l'atteindre.

La valeur de la science, 1905

Henri Poincaré (1854-1912)

Page 32: Formulas Gestures

a11x+a12y+a13z = aa21x+a22y+a23z = ba31x+a32y+a33z = c

a11 a12 a13

a21 a22 a23

a31 a32 a33

xyz

abc

=

rotation matrix formula

in algebra, we compactify gestures to formulas

Page 33: Formulas Gestures

X

Y

f(x)

x

f(x)

f(x) (x) x (x

teleportation

the Fregean drama: morphisms/fonctions are the

„phantoms“ (prisons?) of gestures.

Page 34: Formulas Gestures

„Two attempts of reanimation“

1. Gabriel: formulas via digraphs = „quiver algebras“

S

P

T

Q

K

TX

mathematics of Lewin‘s musical transformation theory

=> R[X], polynomial algebra

=> RK, quiver algebra

Page 35: Formulas Gestures

¬

2. Multiplication of complex numbers:from phantom to gesture: infinite factorization

x-x

—0

x.eit

Robert Peck: imaginary rotation

Page 36: Formulas Gestures

f: X YCat

Frege @f: @X @Y

balance

objectve Yoneda

@f: @X @YChâtelet

morphic Yoneda?

Page 37: Formulas Gestures

Journal of Mathematics and Music2007, 2009 Taylor & Francis

MCM Proceedings 2011Springer

Page 38: Formulas Gestures

position

pitch

time

Xg

bodyskeleton

Gesture = -addressed point g: in spatial digraph Xof topological space X(= digraph of continuous curves I X

I = [0,1])

X

Page 39: Formulas Gestures

p

realistic forms?tip space

position

pitch

time

Page 40: Formulas Gestures

circle

knot

„loop of loops“

Hypergestures!

Digraph(, X) = topological space of gestures with skeleton and body in X notation: @X

Page 41: Formulas Gestures

space

space

time

ET dance gesture

Page 42: Formulas Gestures

Proposition (Escher Theorem)For a topological space X, a sequence of digraphs

1 , 2, ... n

and a permutation of 1, 2,... n,

there is a homeomorphism

1@ ... n@X (1)@ ... (n)@X

Page 43: Formulas Gestures

counterpoint

Page 44: Formulas Gestures

Escher Theorem for Musical Creativity

Page 45: Formulas Gestures

The homotopy classes of curves of a gesture gdefine the R-linear category Gestoid RGg of gesture g, R = commutative ring.

It is generated by R-linear combinations

n ancn

of homotopy classes cn of the gesture‘s curves joining given points x, y.

Gestoids: from gestures to formulas

y

x

Page 46: Formulas Gestures

ei2t

i—

1

i

X = S1

¬ Gg ¬ 1(S1)

fundamental group 1(S1) Ÿei2nt ~ n

~ Fourier formula f(t) = n an ei2nt n an ei2nt

g:

1(X) Ÿn, n ≥ 0? Yes: All groups are fundamental groups!

Page 47: Formulas Gestures

Dancing the Violent Body of Sound

Diyah Larasati Bill Messing Schuyler Tsuda

Page 48: Formulas Gestures

How can we „gestify“ formulas? Category [f] of factorizations of morphism f inC:

f

X

Y

W

u

v

g

X

Y

W

u

v

Z

a

b

objects morphisms

If C is topological, then [f] is canonically a topological category

Page 49: Formulas Gestures

Curve spaces? These are the „infinite factorizations“: Order category = {0 ≤ x ≤ y ≤ 1} of unit interval I

f

X

Y

W0

u0

v0

W1

u1

v1

c = continuousfunctorfor chosen topology on [f]

curve space = @[f]

Page 50: Formulas Gestures

Gestures ?• spatial digraph f = @[f] [f] : c ~> c(0), c(1)

A G-gesture in f is a G-addressed point g: G f

f

X

Y

G

g

Gest[f] = Digraph / f

X Y = Gest[f] ∏

X@YY Z X Y X Z bicategories...

Page 51: Formulas Gestures

Categorical gestures and homological constructions

• More generally: For any topological category X we have a curve space = @X, whose elements, the categorical curves, are continuous functors → X instead of continuous curves.

• @X is canonically a topological category, morphisms = continuous natural transformationsbetween categorical curves.

• Categorical gestures are gestures g with values in the spatial digraph

X = @X X: c ~> c(0), c(1) g: → X

The set of these categorical gestures is a topological category,denoted by @X.

Page 52: Formulas Gestures

Proposition (Categorical Escher Theorem)For a topological category X, a sequence of digraphs

1 , 2, ... n

and a permutation of 1, 2,... n,

there is a categorical homeomorphism

1@ ... n@X (1)@ ... (n)@X

Page 53: Formulas Gestures

Two homological constructions for categorical gestures:

1. Extension modules. In loc. cit. we have shown that gestures in factorization categories [f] in RMod can be used to define the classical extension modules Extn(W, Z) for R-modules W, Z.

loc. cit.

Page 54: Formulas Gestures

2. Singular homology for gestures

Replacing I by the topological category and X by a topological category, a n-chain can be interpreted as a hypergesture in ↑@↑@... ↑@X, the n-fold hypergesture category over the line digraph ↑= • → •

Observe that a singular n-chain c: In → X with values in a topological space X is also a 1-chain c: I → In-1@X, etc.The n-chain R-module Cn(R, X) is generated by iterated 1-chains: In@X I@[email protected]@X.

𝛾4

𝛾1 𝛾

2 𝛾3

I0

𝜎0

I1

𝛾1

I2

𝛾2

Page 55: Formulas Gestures

Using the Escher Theorem, we have boundary homomorphisms∂n: Cn(X.*) → Cn-1(X.*) for any sequence * of digraphs, generalizing ↑↑... ↑, and ∂2 = 0, whence homology modules

Hn = Ker(∂n)/Im(∂n+1).