Forms of Energy Generation : Degradation of electrical energy to heat

43
Forms of Energy Generation : 1. Degradation of electrical energy to heat 2. Heat from nuclear source (by fission) 3. Heat from viscous dissipation Overall Shell Energy Balance Energy Generat ion Let S = rate of heat production per unit volume (W/m 3 ) (S e ) (S n ) (S v )

description

Overall Shell Energy Balance. Forms of Energy Generation : Degradation of electrical energy to heat Heat from nuclear source (by fission) Heat from viscous dissipation. (S e ) (S n ) ( S v ). Energy Generation. Let S = rate of heat production per unit volume (W/m 3 ). - PowerPoint PPT Presentation

Transcript of Forms of Energy Generation : Degradation of electrical energy to heat

Page 1: Forms of Energy Generation : Degradation of electrical energy to heat

Forms of Energy Generation:

1. Degradation of electrical energy to heat

2. Heat from nuclear source (by fission)

3. Heat from viscous dissipation

Overall Shell Energy Balance

Energy Generation

Let S = rate of heat production per unit volume (W/m3)

(Se)

(Sn)

(Sv)

Page 2: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

Shell Heat Balance:

(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ βˆ’ (2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ+βˆ†π‘Ÿ+ (2πœ‹ π‘Ÿ βˆ†π‘ŸπΏ )𝑆𝑒=0

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ+βˆ†π‘Ÿ

(2πœ‹π‘Ÿ βˆ†π‘ŸπΏ )𝑆𝑒

Page 3: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ+βˆ†π‘Ÿ

(2πœ‹π‘Ÿ βˆ†π‘ŸπΏ )𝑆𝑒

The Shell:

(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ=(2πœ‹π‘ŸπΏ) βˆ™ (π‘žπ‘Ÿ |π‘Ÿ )

Rate of Heat IN Area perpendicular to qr at r = r

Page 4: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ+βˆ†π‘Ÿ

(2πœ‹π‘Ÿ βˆ†π‘ŸπΏ )𝑆𝑒

The Shell:

(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ+βˆ†π‘Ÿ=(2πœ‹(π‘Ÿ +βˆ†π‘Ÿ )𝐿) βˆ™ (π‘žπ‘Ÿ |π‘Ÿ +βˆ†π‘Ÿ )

Rate of Heat OUT Area perpendicular to qr at r = r + dr

Page 5: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ+βˆ†π‘Ÿ

(2πœ‹π‘Ÿ βˆ†π‘ŸπΏ )𝑆𝑒

The Shell:

Generation = Volume X Se

𝑉=πœ‹ [ (π‘Ÿ+βˆ†π‘Ÿ )2βˆ’π‘Ÿ2 ] 𝐿Too small

βˆ΄π‘‰=πœ‹ [2π‘Ÿ βˆ†π‘Ÿ ]𝐿 βˆ΄πΊπ‘’π‘›=2πœ‹ π‘Ÿ βˆ†π‘ŸπΏ βˆ™π‘†π‘’

ΒΏπœ‹ [π‘Ÿ2+2π‘Ÿ βˆ†π‘Ÿ+ (βˆ†π‘Ÿ )2βˆ’π‘Ÿ2 ] 𝐿

Page 6: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

Shell Heat Balance:

(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ βˆ’ (2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ+βˆ†π‘Ÿ+ (2πœ‹ π‘Ÿ βˆ†π‘ŸπΏ )𝑆𝑒=0

Dividing by

(π‘Ÿ π‘žπ‘Ÿ )|π‘Ÿβˆ’ (π‘Ÿ π‘žπ‘Ÿ )|π‘Ÿ+βˆ†π‘Ÿ

βˆ†π‘Ÿ =βˆ’π‘†π‘’ π‘Ÿ

Q: Why did we divide by and not by ?

(2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ βˆ’ (2πœ‹π‘ŸπΏπ‘žπ‘Ÿ ) |π‘Ÿ+βˆ†π‘Ÿ=βˆ’ (2πœ‹π‘Ÿ βˆ†π‘ŸπΏ)𝑆𝑒

Page 7: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have:(π‘Ÿ π‘žπ‘Ÿ )|π‘Ÿβˆ’ (π‘Ÿ π‘žπ‘Ÿ )|π‘Ÿ+βˆ†π‘Ÿ

βˆ† π‘Ÿ =βˆ’π‘†π‘’ π‘Ÿ

Taking the limit as :

Q: Is this correct?

π‘‘π‘‘π‘Ÿ (π‘Ÿ π‘žπ‘Ÿ )=βˆ’π‘†π‘’ π‘Ÿ

NO!

Page 8: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have:(π‘Ÿ π‘žπ‘Ÿ )|π‘Ÿβˆ’ (π‘Ÿ π‘žπ‘Ÿ )|π‘Ÿ+βˆ†π‘Ÿ

βˆ† π‘Ÿ =βˆ’π‘†π‘’ π‘Ÿ

We must adhere to the definition of the derivative:

(π‘Ÿ π‘žπ‘Ÿ )|π‘Ÿ+βˆ† π‘Ÿβˆ’ (π‘Ÿ π‘žπ‘Ÿ ) |π‘Ÿβˆ†π‘Ÿ =+𝑆𝑒 π‘Ÿ

limβˆ†π‘Ÿβ†’0

(π‘Ÿ π‘žπ‘Ÿ )|π‘Ÿ+βˆ† π‘Ÿβˆ’ (π‘Ÿ π‘žπ‘Ÿ ) |π‘Ÿβˆ† π‘Ÿ = 𝑑

π‘‘π‘Ÿ (π‘Ÿ π‘žπ‘Ÿ )=π‘†π‘’π‘Ÿ

Page 9: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have:π‘‘π‘‘π‘Ÿ (π‘Ÿ π‘žπ‘Ÿ )=π‘†π‘’π‘Ÿ

Boundary conditions:

π‘Žπ‘‘ π‘Ÿ=0 ,π‘žπ‘Ÿ= 𝑓𝑖𝑛𝑖𝑑𝑒

π‘Žπ‘‘ π‘Ÿ=𝑅 ,𝑇=𝑇 0

Note: The problem statement will tell you hints about what boundary conditions to use.

Integrating: π‘žπ‘Ÿ=π‘†π‘’π‘Ÿ2

+𝐢1

π‘Ÿ

Page 10: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have:

π‘Žπ‘‘ π‘Ÿ=0 ,π‘žπ‘Ÿ= 𝑓𝑖𝑛𝑖𝑑𝑒Applying B.C. 1:

π‘žπ‘Ÿ=π‘†π‘’π‘Ÿ2

+𝐢1

π‘Ÿ

Because q has to be finite at r = 0, all the terms with radius, r, below the denominator must vanish. Therefore:

𝐢1=0

π‘žπ‘Ÿ=π‘†π‘’π‘Ÿ2

Page 11: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have: π‘žπ‘Ÿ=π‘†π‘’π‘Ÿ2

Substituting Fourier’s Law:

βˆ’π‘˜ π‘‘π‘‡π‘‘π‘Ÿ =

𝑆𝑒 π‘Ÿ2

π‘‘π‘‡π‘‘π‘Ÿ =

βˆ’π‘†π‘’π‘Ÿ2π‘˜

𝑇=βˆ’π‘†π‘’π‘Ÿ 2

4π‘˜ +𝐢2

Page 12: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

We now have: 𝑇=βˆ’π‘†π‘’π‘Ÿ 2

4π‘˜ +𝐢2

Applying B.C. 2: π‘Žπ‘‘ π‘Ÿ=𝑅 ,𝑇=𝑇 0

𝑇 0=βˆ’π‘†π‘’π‘…2

4 π‘˜ +𝐢2

𝐢2=𝑇0+𝑆𝑒𝑅2

4 π‘˜

𝑇=βˆ’π‘†π‘’π‘Ÿ 2

4π‘˜ +𝑆𝑒𝑅2

4π‘˜ +𝑇 0

This is it! But, we rewrite it into a nicer form…

Page 13: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Consider an electrical wire (solid cylinder):

𝑇 βˆ’π‘‡0=𝑆𝑒𝑅2

4π‘˜ [1βˆ’( π‘Ÿπ‘… )2]

Temperature Profile:

Important assumptions:

1. Temperature rise is not large so that

k and Se are constant & uniform.

2. The surface of the wire is

maintained at T0.

3. Heat flux is finite at the center.

Page 14: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Other important notes…Let: electrical conductivity

current density

voltage drop over a length

[ 1Ξ©βˆ™π‘π‘š ]

[ π‘Žπ‘šπ‘π‘π‘š2 ]

[𝑉 ]

𝑆𝑒=𝐼 2π‘˜π‘’

𝐼=π‘˜π‘’πΈπΏ

𝑆𝑒𝑅2

4π‘˜ =𝐸2𝑅2

4𝐿2 (π‘˜π‘’

π‘˜ )These imply the following : 𝑇 βˆ’π‘‡0=

𝑆𝑒𝑅2

4π‘˜ [1βˆ’( π‘Ÿπ‘… )2]

Page 15: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

𝑇 βˆ’π‘‡0=𝑆𝑒𝑅2

4π‘˜ [1βˆ’( π‘Ÿπ‘… )2]

Temperature Profile:

The stress profile versus the temperature profile:

π‘žπ‘Ÿ=π‘†π‘’π‘Ÿ2

Heat flux profile:

Page 16: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Quantities that might be asked for:

1. Maximum Temperature

2. Average Temperature Rise

3. Heat Outflow Rate at the Surface

Substituting r = 0 to the profile T(r): π‘‡π‘šπ‘Žπ‘₯=𝑇 0+

𝑆𝑒𝑅2

4 π‘˜

βŸ¨π‘‡ βŸ©βˆ’π‘‡ 0=∫0

2πœ‹

∫0

𝑅

(𝑇 βˆ’π‘‡0 )π‘Ÿ π‘‘π‘Ÿ 𝑑 πœƒ

∫0

2 πœ‹

∫0

𝑅

π‘Ÿ π‘‘π‘Ÿ 𝑑 πœƒβŸ¨π‘‡ βŸ©βˆ’π‘‡ 0=

𝑆𝑒𝑅2

8π‘˜ =12π‘‡π‘šπ‘Žπ‘₯

π‘žπ‘Ÿ=𝑄𝐴= 𝑄

2πœ‹ 𝑅𝐿=π‘†π‘’π‘Ÿ2

|π‘Ÿ=𝑅 𝑄=πœ‹ 𝑅2𝐿 βˆ™π‘†π‘’

Page 17: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Examples for Review:

Example 10.2-1 and Example 10.2-2Bird, Stewart, and Lightfoot, Transport Phenomena, 2nd Ed., p. 295

Page 18: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

Consider a spherical nuclear fuel assembly (solid sphere):

Before doing a balance, let: volumetric heat rate of production within the fissionable material only

volumetric heat rate of production at r = 0

Sn depends on radius parabolically:

a dimensionless positive constant

Page 19: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

Consider a spherical nuclear fuel assembly (solid sphere):

Before doing a balance, let:

temperature profile in the fissionable sphere

temperature profile in the Alcladding

heat flux in the fissionable sphere

heat flux in the Al cladding

Page 20: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

Consider a spherical nuclear fuel assembly (solid sphere):

For the fissionable material:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐹 ))|π‘Ÿβˆ’ (4πœ‹π‘Ÿ 2π‘žπ‘Ÿ

(𝐹) )|π‘Ÿ+βˆ† π‘Ÿ+(4 πœ‹π‘Ÿ2βˆ†π‘Ÿ )𝑆𝑛=0

Rate of Heat IN:

Rate of Heat OUT:

Generation:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐹 ))|π‘Ÿ

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐹 ))|π‘Ÿ+βˆ†π‘Ÿ

(4πœ‹π‘Ÿ 2βˆ† π‘Ÿ )𝑆𝑛

Page 21: Forms of Energy Generation : Degradation of electrical energy to heat

Electrical Heat Source

Rate of Heat IN:

Rate of Heat OUT:

Generation:

Generation = Volume X Sn

𝑉=43 πœ‹ [ (π‘Ÿ+βˆ†π‘Ÿ )3βˆ’π‘Ÿ3 ]

Too small

βˆ΄π‘‰=4πœ‹ [π‘Ÿ2βˆ†π‘Ÿ ] βˆ΄πΊπ‘’π‘›=(4πœ‹π‘Ÿ 2βˆ†π‘Ÿ )𝑆𝑛

ΒΏ43 πœ‹ [π‘Ÿ3+3π‘Ÿ 2βˆ†π‘Ÿ +3π‘Ÿ (βˆ† π‘Ÿ )2+ (βˆ†π‘Ÿ )3βˆ’π‘Ÿ 3 ]

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐹 ))|π‘Ÿ

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐹 ))|π‘Ÿ+βˆ†π‘Ÿ

(4πœ‹π‘Ÿ 2βˆ† π‘Ÿ )𝑆𝑛

Page 22: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐹 ))|π‘Ÿβˆ’ (4πœ‹π‘Ÿ 2π‘žπ‘Ÿ

(𝐹) )|π‘Ÿ+βˆ† π‘Ÿ+(4 πœ‹π‘Ÿ2βˆ†π‘Ÿ )𝑆𝑛=0

For the Al cladding:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐢 ))|π‘Ÿβˆ’ ( 4πœ‹π‘Ÿ 2π‘žπ‘Ÿ

(𝐢))|π‘Ÿ +βˆ†π‘Ÿ=0

No generation

here!

Dividing by :

(π‘Ÿ 2π‘žπ‘Ÿ(𝐹 ))|π‘Ÿ+βˆ†π‘Ÿ βˆ’ (π‘Ÿ 2π‘žπ‘Ÿ

(𝐹 ) )|π‘Ÿβˆ†π‘Ÿ =π‘†π‘›π‘Ÿ

2

Dividing by :

(π‘Ÿ 2π‘žπ‘Ÿ(𝐢))|π‘Ÿ+βˆ†π‘Ÿβˆ’ (π‘Ÿ 2π‘žπ‘Ÿ

(𝐢 ))|π‘Ÿβˆ†π‘Ÿ =0

Page 23: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐹 ))|π‘Ÿβˆ’ (4πœ‹π‘Ÿ 2π‘žπ‘Ÿ

(𝐹) )|π‘Ÿ+βˆ† π‘Ÿ+(4 πœ‹π‘Ÿ2βˆ†π‘Ÿ )𝑆𝑛=0

For the Al cladding:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐢 ))|π‘Ÿβˆ’ ( 4πœ‹π‘Ÿ 2π‘žπ‘Ÿ

(𝐢))|π‘Ÿ +βˆ†π‘Ÿ=0

No generation

here!

Taking :

π‘‘π‘‘π‘Ÿ (π‘Ÿ 2π‘žπ‘Ÿ

(𝐹 ))=π‘†π‘›π‘Ÿ 2

Taking :

π‘‘π‘‘π‘Ÿ (π‘Ÿ 2π‘žπ‘Ÿ

(𝐢))=0

Page 24: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐹 ))|π‘Ÿβˆ’ (4πœ‹π‘Ÿ 2π‘žπ‘Ÿ

(𝐹) )|π‘Ÿ+βˆ† π‘Ÿ+(4 πœ‹π‘Ÿ2βˆ†π‘Ÿ )𝑆𝑛=0

For the Al cladding:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐢 ))|π‘Ÿβˆ’ ( 4πœ‹π‘Ÿ 2π‘žπ‘Ÿ

(𝐢))|π‘Ÿ +βˆ†π‘Ÿ=0

No generation

here!

Taking :

π‘‘π‘‘π‘Ÿ (π‘Ÿ 2π‘žπ‘Ÿ

(𝐹 ))=𝑆𝑛0[1+𝑏 ( π‘Ÿπ‘… (𝐹 ) )

2]π‘Ÿ 2Taking :

π‘‘π‘‘π‘Ÿ (π‘Ÿ 2π‘žπ‘Ÿ

(𝐢))=0

Page 25: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐹 ))|π‘Ÿβˆ’ (4πœ‹π‘Ÿ 2π‘žπ‘Ÿ

(𝐹) )|π‘Ÿ+βˆ† π‘Ÿ+(4 πœ‹π‘Ÿ2βˆ†π‘Ÿ )𝑆𝑛=0

For the Al cladding:

(4πœ‹ π‘Ÿ2π‘žπ‘Ÿ(𝐢 ))|π‘Ÿβˆ’ ( 4πœ‹π‘Ÿ 2π‘žπ‘Ÿ

(𝐢))|π‘Ÿ +βˆ†π‘Ÿ=0

No generation

here!

Integrating: Integrating:

Page 26: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

Integrating: Integrating:

Boundary Conditions: Boundary Conditions:

π‘Žπ‘‘ π‘Ÿ=0 ,π‘žπ‘Ÿ 𝑖𝑠 𝑓𝑖𝑛𝑖𝑑𝑒 π‘Žπ‘‘ π‘Ÿ=𝑅(𝐹 ) ,π‘žπ‘Ÿ(𝐹 )=π‘žπ‘Ÿ

(𝐢 )

𝐢1(𝐹 )=0 𝐢1

(𝐢)=𝑆𝑛0 ( 13+𝑏5 )𝑅(𝐹 )3

For the fissionable material For the Al cladding

Page 27: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

Inserting Fourier’s Law: Inserting Fourier’s Law:

For the fissionable material For the Al cladding

Page 28: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material For the Al cladding

Boundary Conditions: Boundary Conditions:

At r = R(F),

T(F) = T(C) R(F)

R(C)

At r = R(C),

T(C) = T0

Page 29: Forms of Energy Generation : Degradation of electrical energy to heat

Nuclear Heat Source

For the fissionable material

For the Al cladding

Page 30: Forms of Energy Generation : Degradation of electrical energy to heat

Recall the Overall Shell Energy Balance:

Overall Shell Energy Balance

Q by Convective Transport Q by Molecular Transport

W by Molecular Transport W by External Forces

Energy Generation

Steady-State!

Page 31: Forms of Energy Generation : Degradation of electrical energy to heat

Overall Shell Energy Balance

Q by Convective Transport Q by Molecular Transport

W by Molecular Transport

How can we account for all these terms at once?

We need all these terms for viscous dissipation:

Page 32: Forms of Energy Generation : Degradation of electrical energy to heat

Combined Energy Flux Vector

Convective Energy FluxHeat Rate from Molecular Motion

Work Rate from Molecular Motion

Combined Energy Flux Vector:

𝒆=( 12 πœŒπ‘£2+𝜌 οΏ½Μ‚οΏ½)𝒗+ [𝝅 βˆ™π’— ]+𝒒

We introduce something new to replace q:

Page 33: Forms of Energy Generation : Degradation of electrical energy to heat

Combined Energy Flux Vector

Combined Energy Flux Vector:

We introduce something new to replace q:

𝝅=π‘πœΉ+𝝉Recall the molecular stress tensor:When dotted with v: [𝝅 βˆ™π’— ]=𝑝 𝒗+[𝝉 βˆ™π’— ]

Substituting into e:

𝒆=( 12 πœŒπ‘£2+𝜌 οΏ½Μ‚οΏ½)𝒗+𝑝𝒗+[𝝉 βˆ™π’— ]+𝒒

Page 34: Forms of Energy Generation : Degradation of electrical energy to heat

Combined Energy Flux Vector

Combined Energy Flux Vector:

We introduce something new to replace q:

𝒆=( 12 πœŒπ‘£2+𝜌 οΏ½Μ‚οΏ½)𝒗+𝑝𝒗+[𝝉 βˆ™π’— ]+𝒒

Simplifying the boxed expression:

𝜌 οΏ½Μ‚οΏ½ 𝒗+𝑝 𝒗=𝜌 (οΏ½Μ‚οΏ½+ π‘πœŒ )𝒗=𝜌 (π‘ˆ+𝑝 οΏ½Μ‚οΏ½ ) 𝒗=𝜌 οΏ½Μ‚οΏ½ 𝒗

Finally: 𝒆=( 12 πœŒπ‘£2+𝜌 οΏ½Μ‚οΏ½ )𝒗+[𝝉 βˆ™π’— ]+𝒒

Page 35: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

𝑣 𝑧 (π‘₯ )=𝑣𝑏( π‘₯𝑏 )

Page 36: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

We now make a shell balance shown in red on the left.

Rate of Energy IN:

Rate of Energy OUT:

π‘ŠπΏπ’†π’™ |π‘₯

π‘ŠπΏπ’†π’™ |π‘₯+βˆ† π‘₯

When the combined energy flux vector is used, the generation term will automatically appear from e.

Page 37: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

We now make a shell balance shown in red on the left.

Rate of Energy IN:

Rate of Energy OUT:

π‘ŠπΏπ’†π’™ |π‘₯

π‘ŠπΏπ’†π’™ |π‘₯+βˆ† π‘₯

When the combined energy flux vector is used, the generation term will automatically appear from e.

π‘ŠπΏπ’†π’™ |π‘₯+βˆ† π‘₯βˆ’π‘ŠπΏπ’†π’™ |π‘₯=0𝑑𝒆𝒙

𝑑π‘₯ =0

𝒆𝒙=𝐢1

Page 38: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

When the combined energy flux vector is used, the generation term will automatically appear from e.

𝒆𝒙=𝐢1 𝒆=( 12 πœŒπ‘£2+𝜌 οΏ½Μ‚οΏ½ )𝒗+[𝝉 βˆ™π’— ]+𝒒

Fourier’s Law:

Newton’s Law:

π‘žπ‘₯=βˆ’π‘˜π‘‘π‘‡π‘‘π‘₯

𝜏π‘₯𝑧=βˆ’πœ‡π‘‘π‘£ 𝑧

𝑑π‘₯

Page 39: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

When the combined energy flux vector is used, the generation term will automatically appear from e.

𝒆𝒙=𝐢1 βˆ’π‘˜ 𝑑𝑇𝑑π‘₯ βˆ’πœ‡π‘£π‘§

𝑑𝑣𝑧

𝑑π‘₯ =𝐢1

Substituting the velocity profile:

Integrating:

βˆ’π‘˜ 𝑑𝑇𝑑π‘₯ βˆ’πœ‡π‘₯ (𝑣𝑏

𝑏 )2

=𝐢1

𝑇=βˆ’ πœ‡π‘˜ ( 𝑣𝑏

𝑏 )2 π‘₯22βˆ’πΆ1

π‘˜ π‘₯+𝐢2

Page 40: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

When the combined energy flux vector is used, the generation term will automatically appear from e.

Boundary Conditions:

After applying the B.C.:

𝑇 βˆ’π‘‡ 0

π‘‡π‘βˆ’π‘‡0=12 [ πœ‡π‘£π‘

2

π‘˜ (𝑇 π‘βˆ’π‘‡ 0 ) ]( π‘₯𝑏 )(1βˆ’ π‘₯𝑏 )+π‘₯𝑏

𝑇=βˆ’ πœ‡π‘˜ ( 𝑣𝑏

𝑏 )2 π‘₯22βˆ’πΆ1

π‘˜ π‘₯+𝐢2

Page 41: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

When the combined energy flux vector is used, the generation term will automatically appear from e.

𝑇 βˆ’π‘‡ 0

π‘‡π‘βˆ’π‘‡0=12 [ πœ‡π‘£π‘

2

π‘˜ (𝑇 π‘βˆ’π‘‡ 0 ) ]( π‘₯𝑏 )(1βˆ’ π‘₯𝑏 )+π‘₯𝑏

Q: So where is Sv?

𝑆𝑣=πœ‡(𝑣𝑏

𝑏 )2

𝑇=βˆ’ πœ‡π‘˜ ( 𝑣𝑏

𝑏 )2 π‘₯22βˆ’πΆ1

π‘˜ π‘₯+𝐢2

After applying the B.C.:

Page 42: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Consider the flow of an incompressible Newtonian fluid between 2 coaxial cylinders:

𝑇 βˆ’π‘‡ 0

π‘‡π‘βˆ’π‘‡0=12 [ πœ‡π‘£π‘

2

π‘˜ (𝑇 π‘βˆ’π‘‡ 0 ) ]( π‘₯𝑏 )(1βˆ’ π‘₯𝑏 )+π‘₯𝑏Temperature

Profile:

New Dimensionless Number:Dim. Group Ratio Equation

Brinkman, Br viscous heat dissipation/ molecular heat transport

Page 43: Forms of Energy Generation : Degradation of electrical energy to heat

Viscous Dissipation Source

Scenarios when viscous heating is significant:

1. Flow of lubricant between rapidly moving parts.2. Flow of molten polymers through dies in high-

speed extrusion.3. Flow of highly viscous fluids in high-speed

viscometers.4. Flow of air in the boundary layer near an earth

satellite or rocket during reentry into the earth’s atmosphere.