Formation of Secondary Organic Aerosol - US EPA

32

Transcript of Formation of Secondary Organic Aerosol - US EPA

Page 1: Formation of Secondary Organic Aerosol - US EPA
Page 2: Formation of Secondary Organic Aerosol - US EPA

Formation of Secondary Organic Aerosol

And

At

John H. SeinfeldCalifornia Institute of Technology

EPA STAR September 21, 2010

Page 3: Formation of Secondary Organic Aerosol - US EPA

Ambient Organic Aerosol

•About 5 years ago: Higher SOA Levels in the atmosphere than models predicted.Finding “missing SOA”

is no longer the issue.  We need to understand the complete life cycle of the VOC/SOA system.  

–Laboratory chamber experiments do not account fully for ambient aging;functionalization vs. fragmentation, gas‐phase aging vs. OH surface reactions uncertain 

Gas‐phase oxidation chemistry is critical in establishing path to SOA    

formation; role of NOx

key

– Role of aerosol acidity, aqueous‐phase uptake and reaction of small molecules like glyoxal, and  heterogeneous chemistry in overall SOA formation not yet fullyunderstood

– Models now have the machinery to represent SOA formation and aging but at present the parameterization of aging awaits experimental input

• We have learned in the last 5 years:

Page 4: Formation of Secondary Organic Aerosol - US EPA

Fate of Peroxy (RO2 ) Radicals Determines Product Volatility

Pankow and Asher (2007)

Changes to vapor pressure of a VOC upon addition of common functional groups

Small VOCs - NOx yields high-volatility fragmentation products (e.g., alkyl radical + small carbonyls)NOx yields lower-volatility products (e.g., hydroperoxides) Higher SOA Yields

Large VOCs - NOx yields low-volatility products (large organic nitrates + isom. products) Higher SOA YieldsNOx yields higher-volatility products

Level of NOx (= NO + NO2 ) Determines Fate of RO2 Radicals:

C10

C15

Page 5: Formation of Secondary Organic Aerosol - US EPA

Comparison of Atmospheric AMS Components

• SV‐OOA has larger variability in 43/org; Increasing photochemical age collapses variability,OOA components become increasingly similar to each other• 44/org ratios of the LV‐OOA components similar to those from HULIS collected in filtersamples • Increasing photochemical age: increasing O/C, 44/43 ratio      

Ng et al., ACP

(2010)

Photoche

mical age

O/C ratio

0.30

0.25

0.20

0.15

0.10

0.05

0.00

44/o

rg

0.200.150.100.050.0043/org

OOA LV-OOA SV-OOA

HULIS Fulvic

HULIS, Fulvic data:E. Dinar, Y. Rudich

Page 6: Formation of Secondary Organic Aerosol - US EPA

SOA Formation from Isoprene

Isoprene (C5H8)

Monoterpenes (C10H16) Other Methane

~500 ~130 ~562 ~93 ~510

Biogenic VOCsAnthropogenic

VOCs

Estimated Global VOC and Methane Emissions (TgC yr-1)

Guenther et al. [1999]

• Laboratory Experiments Confirm Isoprene as SOA Source

2-methylglyceric (2-MG) acid

diastereoisomeric 2-methyltetrols

[Claeys et al., 2004; Edney et al., 2005]

• Previously Assumed Not to be Significant Source of SOA Despite High Emissions:

OH

OHOH

HO

OHOH

O

HO

Detection in Ambient Aerosol Indicated Isoprene as Likely Source

MW 120

MW 136

[Kroll et al., 2006;Surratt et al, 2006]

• Isoprene Estimated to Contribute Significantly to Global SOA Burden

Page 7: Formation of Secondary Organic Aerosol - US EPA

Role of NOx

in Isoprene Oxidation

• Peroxy radical chemistry: RO2

+HO2

vs RO2

+NO

Kroll et al., ES&T

(2006)Less volatile products

More volatile products

Page 8: Formation of Secondary Organic Aerosol - US EPA

OH-initiated Oxidation of Isoprene: First-Generation Products

Measured Yields under High-NOXMVK 32-44%

MACR 22-28%3-methylfuran <2-5%

Hydroxynitrate (and isomers) 4-14%C5 -hydroxycarbonyl 15-19%

O

OONO2

OH/O2/NO2

methacryloylperoxynitrate (MPAN)

OH

HO

OHO OHepoxydiols of isoprene

(IEPOX)IEPOX only recentlydiscoveredPaulot et al., Science (2009)

Page 9: Formation of Secondary Organic Aerosol - US EPA

Formation of Isoprene Low-NOx SOA Constituents and Oligomers

Products Characterized by GC/ITMS with prior derivatization:

These Compounds are Ambient Tracers for SOA Formation from Isoprene

Under Low-NOx Conditions

Key to the Low-NOxMechanism

Page 10: Formation of Secondary Organic Aerosol - US EPA

Increased Aerosol Acidity Reveals Role of IEPOX in Low-NOx SOA Formation

• Photooxidation of 49 and 40 ppb of isoprene in presence of acidified or neutral sulfate seed aerosol, respectively.

• SOA mass yield increased from 1.3% for the neutral case to 28.6% for the acidic case.

• RO2 + HO2 reactions dominate.

• 9 ppb to 0.6 ppb of IEPOX was measured in the neutral and acidic cases, respectively; no other differences observed for other isoprene oxidation products

• Mixing ratios of other gas-phase products: ROOH ~ 12 ppb, and diols, hydroxycarbonyls, and tetrols all < 0.8 ppb

• All particle-phase products substantially increase inpresence of acidic seed; for example, 2-methyltetrols increased from 0.1 μg m-3 for the neutral case to 5.1 μg m-3 for the acidic case.

• Particle-phase IEPOX could be due to un-reacted IEPOXthat partitioned favorably into wet aerosol.

Surratt et al., PNAS (2010)

Page 11: Formation of Secondary Organic Aerosol - US EPA

(-)CIMS Time Traces Further Demonstrate Role of IEPOX

Dark Reactive Uptake of2,3‐epoxy‐1,4‐butanediol 

(BEPOX) Standard

Butadiene Photooxidation underLow‐NOx

Conditions

Isoprene Photooxidation under 

Low‐NOx

Conditions

neutral seed

acidic seed BEPOX(acidic seed)

ROOH

(acidic seed)

IEPOX (acidic seed)

IEPOX (neutral seed)

ROOH (acidic seed)ROOH (neutral seed)

• Synthesized BEPOX standard, which is butadiene derivative of IEPOX, shows exact same reactive uptake behavior as that found for BEPOX produced from butadiene photooxidation and IEPOX produced from isoprene photooxidation in presence of acid seed

• Conclusion:  Significant loss of epoxydiols (i.e., BEPOX and IEPOX) to highly

acidic seed aerosolresults from acid‐catalyzed particle‐phase reactions

• All of the detected particle‐phase constituents in BEPOX or butadiene SOA are exact analoguesof isoprene low‐NOx

SOA (i.e., differ by a mass of 14 amu, which corresponds to CH2

group) 

Presenter
Presentation Notes
John, it is important to note that the ROOH and epoxydiols for both the butadiene and isoprene systems are shown on the same plot because they are isomers. Our MS/MS results Obtained from the CIMS revealed that these two isomers produce different daughter ions. Thus, we are monitoring the specific daughter ion that is representative of only the epoxydiols and of the ROOH (i.e., hydroxyhydroperoxide) compounds. These daughter ions used to track the epoxydiols and the hydroxyhydroperoxides (ROOH) were confirmed by isotopically labelled H2O2 experiments.
Page 12: Formation of Secondary Organic Aerosol - US EPA
Page 13: Formation of Secondary Organic Aerosol - US EPA

Methacrolein photooxidation

• HONO + hv  OH + NO• CH3

ONO (no net NO production):– CH3

ONO  CH3

O + NO– CH3

O + O2

HO2

+ HCHO– HO2

+ NO  OH + NO2

• Not an effect of enhanced HNO3

CH3

ONO

HONOadding NO2

adding NO

Total amount of SOA trends with NO2 /NO ratio

Chan et al., ACP (2010)

Page 14: Formation of Secondary Organic Aerosol - US EPA

Chan et al., ACP (2010)

Page 15: Formation of Secondary Organic Aerosol - US EPA
Page 16: Formation of Secondary Organic Aerosol - US EPA
Page 17: Formation of Secondary Organic Aerosol - US EPA

Summary of NOx 

on Isoprene SOA

OH/O2 RO2

HO2low-NOx SOA

NOO

OH/O2R'O2

HO2no aerosol

no aerosol

MPAN high-NOx SOA

NO

NO2

NOx

vs HO2

NO2

vs NO

Page 18: Formation of Secondary Organic Aerosol - US EPA

Other unsaturated aldehydes

acrolein crotonaldehyde

Chan et al., ACP (2010)

Page 19: Formation of Secondary Organic Aerosol - US EPA

SOA formation from aldehydes/alcohols

Chan et al., ACP (2010)

Page 20: Formation of Secondary Organic Aerosol - US EPA
Page 21: Formation of Secondary Organic Aerosol - US EPA

Chan et al., ACP (2010)

Page 22: Formation of Secondary Organic Aerosol - US EPA

Recent work (CMU) indicates there is a large potential for low‐volatility 

organic compounds ( C* < 106 μg/m3 ) to form organic aerosol

SVOC

POA+ Ox

O-SVOCSOASOA

IVOC

+ Ox

O-IVOC

log10 (C* [μg/m3])

Station fire from Roof Lab, Caltech 2009

SVOCs: Semivolatile

Organic Compounds

(C* < 104)

IVOCs: Intermediate Volatility Organic Compounds (104 < C* < 106 μg/m3)

Low-Volatility Organics

Page 23: Formation of Secondary Organic Aerosol - US EPA
Page 24: Formation of Secondary Organic Aerosol - US EPA

Kautzman et al., J. Phys. Chem. (2010)

Page 25: Formation of Secondary Organic Aerosol - US EPA

Kautzman et al., J. Phys. Chem. (2010)

Page 26: Formation of Secondary Organic Aerosol - US EPA
Page 27: Formation of Secondary Organic Aerosol - US EPA

SOA from biomass burning:

A case for studying methoxyphenols

Page 28: Formation of Secondary Organic Aerosol - US EPA

Emissions/Importance of MeOPhOHs

Schauer et al. (2001)

Page 29: Formation of Secondary Organic Aerosol - US EPA

0 50 100 150 200 2500

20

40

60

80

100

120

140

Guaiacol High NOX Growth Curve

Guaiacol (g m-3)

M

0 (

g m

-3)

02/0502/0302/0503/023/283/3104/064/94/134/154/22

O:C = 0.9OH

OCH3

Page 30: Formation of Secondary Organic Aerosol - US EPA

0 50 100 150 200 250 3000

20

40

60

80

100

120

140

Guaiacol (g m-3)

M

0 (

g m

-3)

Guaiacol Low-NOx Growth Curve

1/292/022/042/06

O:C = 0.9OHO

CH3

Page 31: Formation of Secondary Organic Aerosol - US EPA

Laboratory SOA

0.30

0.25

0.20

0.15

0.10

0.05

0.00

44/o

rg

0.40.30.20.10.043/org

OZONOLYSIS Caltech ap (acid seed) Caltech ap (nonacid seed) Harvard ap (Shilling et al., 2008) Caltech biogenics

PHOTOOXIDATION

PSI ap (Alfarra et al., 2006) Caltech ap (HONO) Caltech ap (H2O2) Caltech mxylene (NO/NO2) Caltech mxylene (HONO) Caltech mxylene (H2O2) Caltech toluene (HONO) Caltech toluene (H2O2) Caltech benzene PSI 1,3,5_TMB (Alfarra et al., 2006) Caltech biogenics (NOx/propene) Caltech longifolene (HONO) Caltech longifolene (H2O2+NO) Caltech longifolene (H2O2) LBNL diesel Caltech isoprene (HONO) CMU n_heptadecane (Presto et al., 2009) CMU wood smoke (Grieshop et al., 2009)

Data from chamber experiments fall into the same space as ambient data; 44/org of most of the chamber data 

are < 0.1, indicating that chamber SOA is not as oxidized as ambient aerosol                                     Ng et al., ACP

(2010)]

0.30

0.25

0.20

0.15

0.10

0.05

0.00

44/o

rg

0.40.30.20.10.043/org

isoprene (H2O2) isoprene (H2O2+NO)

Data from Sean Kessler, 

Jesse Kroll

erythritol

44.0544.0043.95

CO2 C2H4O

500

400

300

200

100

0

Diff

, Hz

Page 32: Formation of Secondary Organic Aerosol - US EPA

The Future

• Seek to bridge the gap between detailed molecular 

mechanisms of VOC oxidation leading to SOA and the 

ultimate ambient state that is characterized by O:C, H:C, 

volatility, polarity.

• Laboratory chamber experiments are the essential source of 

information on SOA formation; need to devise ways to extend 

the chemical lifetime of such experiments (within the 

confines of inevitable wall loss) to simulate ambient aging.

• Atmospheric models need to be able to track the sources of 

SOA; the challenge is to retain this identification in view of 

the evolution of SOA towards its highly oxidized state.