Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… ·...

30
Fluorina)on Chemistry: A Tale of Two Reagents Brandon Reinus January 23 rd , 2013

Transcript of Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… ·...

Page 1: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Fluorina)on  Chemistry:  A  Tale  of  Two  Reagents  

 Brandon  Reinus  

January  23rd,  2013  

Page 2: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Outline  

•  Historical  Development  

•  The  C-­‐F  bond    •  Fluorine,  Who  cares?  

•  Fluorine,  Isn’t  it  toxic?  

•  Fluorina)on  Reac)ons    

Page 3: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Historical  Development  

•  In  1890  Moissan  claimed  to  have  isolated  CF4,  it  was  later  found  he  was  incorrect  in  his  report.  

 •  In  1892  Swarts  also  started  working  on  prepara)on  of  fluorocarbons  by  

exchange,  usually  from  the  chloro  compounds.  He  was  the  sole  author  publishing  in  the  field  of  organo-­‐fluorine  chemistry  for  25  years!  

 •  Midgley  and  Henne  picked  up  aYer  swarts  in  the  30’s  and  developed  fluoro-­‐

methanes  and  ethanes  as  refrigerants,  bringing  more  funding  to  the  field.  

Cl + MFx MFxClF-

(HF)F

2F2 CF4C +

H.  Moissan,  Compt.  Rend.,  110,  276  (1890)  F.  Swarts,  Bull.  Acad.  Roy.  Belg.,  [3],  24,  474  (1892)  T.  Midgley  and  A.  L.  Henne,  Ind.  Eng.  Chem.,  22,  542  (1930)  

Page 4: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Historical  Development  

•  In  1937  Simons  and  Block  found  mercury  promoted  the  reac)on  between  carbon  and  fluorine  and  isolated  several  purely  fluorinated  compounds.  

 •  Simons  proposed  these  highly  fluorinated  compounds  may  be  

chemically  resistant  to  UF6.    •  Use  of  fluorcarbons  in  the  machinery  for  enriching  U  caught  a  lot  of  

chemists  acen)on  and  the  field  really  took  off.      •  Polytetrafluoroethylene  (Teflon),  was  patented  in  1941.    •  Research  in  organofluorine  chemistry  has  slowly  caught  on  and  has  

become  very  acrac)ve  recently  due  to  the  prevalence  on  F  in  pharmaceu)cals.    

 

J.  H.  Simons  and  L.  P.  Block,  J.  Amer.  Chem.  Soc.,  59,  1407  (1937)  R.J.  Plunkec,  U.S.  Pat.  2,230,654  (Feb.  4,  1941)    

Page 5: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

The  C-­‐F  Bond,  and  more    

•  Fluorine  forms  strong  bonds  to  carbon,  ~115  Kcal/mol,  making  it  rela)vely  stable  to  metabolic  degrada)on,  and  making  elemental  fluorine  highly  reac)ve.  

•  The  van  der  Waals  radii  is  1.47  compared  to  1.20  Angstrom  for  H.  Also  the  bond  length  is  closer  to  that  of  C  –  O  bond,  sugges)ng  it  is  more  like  an  alcohol  sterically  speaking;  however,  it  is  oYen  considered  an  isostere  of  H.  

•  The  more  F  added  to  a  carbon  the  stronger  and  shorter  all  of  the  fluorine  bonds  become.  

CF

F FF

CF

F FF

no bond resonance

J.  H.  Simons  and  L.  P.  Block,  J.  Amer.  Chem.  Soc.,  59,  1407  (1937)  R.J.  Plunkec,  U.S.  Pat.  2,230,654  (Feb.  4,  1941)  Chem.  Rev.  2008,  108,  PR1-­‐PR43    

Page 6: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Fluorine,  Who  Cares?  

Journal  of  Fluorine  Chemistry  100  (1999)  127-­‐133  Nat.  Prod.  Rep.,  2004,  21,  773-­‐784  

•  ~  3000  halogen  containing  natural  products  

 •  Fluorine  is  the  most  abundant  halogen  

in  the  crust,  yet  there  are  only  13  secondary  metabolites  containing  F  

 •  Of  the  13,  only  6  discrete  natural  

products.      •  Fluoride  is  a  poor  nucleophile  in  water  

and  can  not  be  oxidized  to  X+  by  haloperoxidases,  resul)ng  in  it’s  extremely  low  bioavailability  in  surface  water  (1.3ppm  vs  3000ppm  for  chloride)    

O

O

F

Plant and Animal Enzymes HO2C CO2H

HO2C OH

F

FluorocitrateFluoroacetate

Toxic...

F CO2H

F CO2HO

F

OH

OHCO2H

w-fluorooleic acid

O

F

N

NN

NNH2

O

OHOHHHHF

OSH2NO

O

Fluorine Containing 'Natural Products'

OH

NH3

CO2

F

Page 7: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Fluorine,  Who  Cares?  

HN

N

F

O

O

O

O

HN

N

F

O

O

O

O

HN

N

F

O

O

O

HN

N

F

O

O

H2NHN

O

HN

NH

F

O

O5-fluoruracil

Derivatives:

Possible Natural Products

 •  Biologists  and  biochemists  have  been  equally  intrigued  in  fluorine  over  the  last  

several  decades  and  have  shown  certain  plants  that  don’t  generally  produce  fluorinated  metabolites  will  in  the  presence  of  elevated  levels  of  fluoride  

 •  A  so-­‐called  ‘fluorinase’  enzyme  has  been  isolated  that  is  responsible  for  

fluorina)ng  metabolites  in  a  certain  bacteria  species.    

Journal  of  Fluorine  Chemistry  100  (1999)  127-­‐133  Nat.  Prod.  Rep.,  2004,  21,  773-­‐784  

•  5-­‐fluorouracil  and  four  deriva)ves  were  isolated  from  a  sponge  in  the  South  China  Sea,  but  it  is  unclear  whether  the  sponge  was  incorpora)ng  fluorine  or  simply  deriva)zing  5FU  that  was  pollu)ng  the  waters.    

Page 8: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Fluorine,  Who  Cares?  

•  Around  a  1/3  of  agrochemicals  contain  fluorine  and  around  1/5  of  pharmaceu)cals  contain  fluorine.  (over  150  have  come  to  market  since  the  first  in  1957)  

 •  These  companies  are  interested  in  fluorine  because  it  can  change  the  binding  

interac)ons,  metabolic  stability,  physical  proper)es,  and  reac)vity.      •  Fluorine  can  change  the  way  a  compound  is  metabolized  (phase  I  P450),  it  can  

change  the  solubility  of  a  compound  (becer  oral  availability),  and  fluorine  forms  many  unique  bioisosteres.      

Journal  of  Fluorine  Chemistry  100  (1999)  127-­‐133  Nat.  Prod.  Rep.,  2004,  21,  773-­‐784  Science  317,  1881  (2007)  J.  Med.  Chem.,  2008,  51,  4359  

F3C

OHN

HClN

F

NH

O

COO

OHOH

1/2 Ca2+N

O

N

F

HN

O

OH

HCl

Prozac Lipitor Ciprobay

Page 9: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Fluorine,  Isn’t  it  toxic?  

•  Although  fluoroacetate  is  toxic,  most  organo-­‐fluorides  are  not  toxic.  Fluoroacetate  is  an  excep)on,  because  it  inhibits  an  important  enzyme  of  the  TCA  cycle.  

•  Fluoride  ion  is  toxic  however,  but  organic  compounds  rarely  release  fluoride  ion,  lethal  dose  of  NaF  is  5-­‐10g.  (not  very  lethal)  

 •  Upon  hea)ng  of  Teflon  (polytetrafluoroethylene),  small  molecules  containing  

fluorine  can  be  given  off  through  decomposi)on,  and  it  has  been  shown  that  these  molecules  are  lethal  to  birds  and  may  cause  flu-­‐like  symptoms  for  humans,  but  you  have  to  heat  the  pans  to  temperatures  that  are  unreasonable  for  cooking.    

 Baselt,  RC  (2008).  Disposi)on  of  toxic  drugs  and  chemicals  in  man.  Dupont,  Key  Ques)ons  about  Teflon,  accessed  Jan,  2013,    

Page 10: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Fluorina)on  Reac)ons    

N

F

NH

O

COO

OHOH

Lipitor

Start from pre-fluorinatedbuilding blocks

After-the-fact fluorination

10% F2 / N2

Simple Materials

Electrophilic Fluorination

Nucleophilic Fluorination

Complex Materials •  Elemental  fluorine  is  extremely  reac)ve,  but  can  be  used  on  an  industrial  scale  with  simple  compounds,  the  different  products  can  be  isolated  and  sold.  

•  The  compounds  used  in  laboratories  to  add  fluorine  are  generally  not  atom  economical.    

•  However,  if  you  want  to  install  the  fluorine  yourself  you  have  lots  of  reac)ons  available  to  you  

Page 11: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Fluorina)on  Reac)ons  

J.  Chem.  Soc.,  Perkin  Trans.  I,  2002,  2190-­‐2197  Beilstein  Journal  of  Organic  Chemistry  2006,  2,  No.  19  

Fluorination with F2

Aromatics:

Alkanes:

Mechanism:

F2

Typical Reactivity

F

FF2 or Selectfluor

FFH

Via: Selectfluor:

N

N

F

Cl

x2 BF4

•  Fluorina)on  of  aroma)cs  with  fluorine  gas  will  give  you  your  typical  product  distribu)ons  you  see  with  electrophilic  aroma)c  subs)tu)on  

•  Fluorina)on  of  alkanes  is  believed  to  go  through  an  electrophilic  mechanism  rather  than  a  radical  mechanism,  this  was  ra)onalized  by  the  fact  that  Selecrluor  generally  gave  the  same  products  as  elemental  fluorine.  

•  Vicinal  fluorides  are  not  prac)cally  prepared  via  fluorina)on  of  alkenes  

Chambers,  Chem.  Commun.,  2000,  959-­‐960  

Page 12: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Fluorina)on  Reac)ons  

Problem:    Elemental  fluorine  easily  reacts  with  aroma)cs,  alkanes,  and  reacts  with  alkenes  Solu)on:  Develop  more  selec)ve  fluorina)ng  reagents  

N

N

F

Cl

x2 BF4N

SF3

Selecrluor   DAST  

Page 13: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Electrophilic  Fluorina)on  •  As  men)oned  previously,  due  to  the  difficulty  in  handling  fluorine,  selec)ve  and  

user  friendly  fluorina)on  reagents  were  sought  out    •  The  1950’s  development  of  Perchloryl  fluoride  FClO3,  a  very  dangerous  gas,  

inspired  the  development  of  perfluoro-­‐N-­‐fluoropiperidine.  Which  was  successful  at  fluorina)ng  a  handful  of  stabilized  sodium  salts.  

•  N-­‐F  reagents  quickly  caught  on  and  many  different  compounds  and  their  reac)vity's  were  published  

F2CF2C C

F2

CF2

CF2NF

NO2

Na

+NO2

F

Banks, Chem. Ind. (london), (1964) 1864.

F2CF2C C

F2

CF2

CF2NF

N

N

F

Cl

2x BF4N OF

NF

FNF

XSO ON RF

Selectfluor

Journal  of  Fluorine  Chemistry  87  (1998)  1-­‐17  Angew.  Chem.  Int.  Ed.  2005,  44,  192-­‐212  

Page 14: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Selecrluor  

•  Selecrluor  is  an  easily  handled  solid,  is  resistant  to  elevated  temperatures,  and  is  rela)vely  nontoxic:  LD50  =  640mg/kg  in  adult  rats  

NN

dabco

DCM

40 oCNN Cl NaBF4

CH3CN20oC

Cl

NN ClBF4

F2NaBF4

CH3CN-35oC

NN ClBF42X

F

Preparation of Selectfluor

multiton quantities/ year

•  Tuning  the  reac)vity  of  Selecrluor  can  be  achieved  by  changing  the  alkyla)ng  reagent  and  the  counter-­‐ion,  it  has  been  shown  that  these  can  enhance  the  solubility,  changing  the  fluorina)ng  agent’s  reac)vity.    

Journal  of  Fluorine  Chemistry  87  (1998)  1-­‐17  Angew.  Chem.  Int.  Ed.  2005,  44,  192-­‐212    

J.  Org.  Chem.  1999,  64,  5264  

J.  Fluorine.  Chem.  1999,  100,  157  

Page 15: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Selecrluor  O O R O

Selectfluor

AcetonitrileRT

F

O

OR

Selectfluor

AcetonitrileOoC

O

OF

90%

alpha-Fluorination of steroids

fluorination of beta-ketoesters

O

O RO

F-TEDA-BF4

DMF, -50 to 20oC

O

O RO

F

94%

PO(OEt)2

SO2Ar

F-TEDA-BF4

DMF, RT

PO(OEt)2

SO2Ar

F

61%

O O

NR2

O O

NR2F F

Lal,  J.  Org.  Chem.  1993,  58,2791  Herrinton,  Org.  Process  Res.  Dev.  1997,  1,  217  

Lal,  J.  Org.  Chem.  1993,  58,2791  

•  Ketones  must  first  be  converted  to  the  enol-­‐acetates  

•  Both  alpha  and  gamma  fluorina)on  can  be  achieved  

•  Beta-­‐ketoesters  are  good  substrates  and  can  be  fluorinated  twice  

Page 16: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Selecrluor  

+F

F60% 40%

F-TEDA-BF4

AcetonitrileReflux

F-TEDA-BF4

AcetonitrileReflux

F F+

F

65% 32%

O

CO2Me

O

O

OF-TEDA-BF4

AcetonitrileReflux

O

CO2Me

O

O

OF

22%

Electrophilic Aromatic Substitution

OHSelectfluor

AcetonitrileF

O

60%

HO

Selectfluor

Acetonitrile O

F

84%

O

HO

O

O

Selectfluor

Acetonitrile

F

90%

4-fluorocyclohexadienones

J.  Fluorine  Chem.  68  (1994)  201  Sharif,  Chem.  Soc.,  Perkin  Trans.  1  (1996)  2069  

Zupan,  Synlec  1999,  9,  1375  

•  Fluorina)on  of  phenols  gives  4-­‐fluorocyclohexadienones  as  products  

•  Fluorina)on  of  most  aroma)cs  gives  subs)tu)on  products  

Page 17: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Selecrluor  

Fluorination of Syrene and Phenylacetylene

Ph

Me

F-TEDA-BF4

CH3CN, H2O, RT

F-TEDA-BF4

CH3CN, CH3OH, RT

F-TEDA-BF4

CH3CN, H2O, Reflux

F-TEDA-BF4

CH3CN, H2O, Reflux

FOH

OF

OPh

F F

OMe

F F

OSelectfluor

ROHCH3CN

O

FOR

NH

Selectfluor

H20CH3CN

NH

FO

71%

NH

NH

N

O

OR

H RSelectfluor

CH3CN / THFNH

NN

O

O

F

HR

H R

Fluorination of Activated Alkenes

Wong,  J.  Org.  Chem.  1999,  64,  5264  Shibata,  Org.  Lec.  2000,  2,  693  Kirk,  Angew.  Chem.  2001,  40,  4461  

Zupan,  Bull.  Chem.  Soc.  Jpn.  69,  (1996)  169.    

•  Electron  rich  alkenes  or  alkenes  that  react  to  give  stabilized  carboca)ons  will  react  with  selecrluor  

Page 18: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Selecrluor  

OSnMe3

O

F-TEDA-BF4

Acetonitrile, RT OF

O

52%

F-TEDA-BF4

Acetonitrile, RTNSnMe3

TsN

F

Ts 40%

TlF-TEDA-BF4

Acetonitrile, RT

R

R

+

F

R

R

35%

Sn and Tl Conversion to F

TMSPh

TMSPh

TMSPh

Selectfluor (1 equiv)

Acetonitrile

Selectfluor (2.5 equiv)

Acetonitrile

Selectfluor (2.5 equiv)

Acetonitrile / MeOH

FPh

FPh

FAcHN

FPh

FO

32%

70%

75%

TMS Conversion to F

Widdowson,  J.  Chem.  Soc.,  Perkin  Trans.  1  (1995)  2965  Widdowson,  Tetrahedron  50  (1994)  1899  Sik,  J.  Chem.  Soc.,  Perkin  Trans.  (1992)  1891  

Gouverneur,  Chem.  Commun.  2001,  233  

•  Quick  method  for  producing  F18  labeled  compounds  

•  Vinyl  stannanes  and  silanes  will  react  via  electrophilic  fluorina)on  to  give  an  array  of  products.    

Page 19: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Selecrluor  

N

N

H

O

HO

HH F

N

N

H

O

H

HHO F

N

N

H

H

HHO F

N

N

H

HO

HH F

23a 23b

23d23c

Chiral N-F Reagents Synthesized From Selectfluor

Improved enantioselective fluorinations were observedwith a new class of charged [N!F]+ reagents. Selectfluor wasused to prepare the N-fluoroammonium derivatives 23a–d ofcinchona alkaloids by transfer fluorination (Figure 3,Scheme 26).[66–68] The fluorinated reagents 23a–d were

tested in the enantioselective fluorination of the sodiumenolate of 2-methyl-1-tetralone, providing the product in upto 98% yield and with up to 50% ee (Table 8). Higherenantioselectivities (up to 94% ee) were later observed withmodified N-fluoro cinchona alkaloids.[69] In a similar manner,enantioselective fluorinations with a reagent combination of acinchona alkaloid derivative and 1 were demonstrated(Table 9).[70] This method bypasses the isolation of the N-fluoroammonium salt and therefore constitutes a one-pot

procedure, in which a mixture of the cinchona alkaloid and 1can be added to a variety of substrate types, including silylenol ethers. Both cyclic and acyclic carbonyl compounds werefluorinated in good to excellent yields with selectivitiessometimes greater than 90% ee by this method, which isalso useful for b-keto esters (up to 80% ee) and acyclic b-cyano esters (up to 87% ee). Significant progress has beenmade in the development of an enantioselective electrophilicfluorination method. In most cases cinchona alkaloids andselectfluor have been used in a transfer fluorination to accessthe corresponding chiral electrophilic fluorination reagents.This strategy has proved to be very practical, especiallybecause of the commercial availability of the cinchonaalkaloid derivatives.

A major breakthrough would be the development ofcatalytically active enantioselective fluorination reagents. Thesystematic investigation of the catalytic activity of varioustransition-metal complexes in the electrophilic fluorination ofketones led to the discovery that the taddol-modified(taddol=a,a,a’,a’-tetraaryl-2,2-dimethyl-1,3-dioxolan-4,5-di-methanol) titanium complexes 24a and 24b are highlyefficient catalysts for the enantioselective fluorination of b-keto esters (Scheme 27).[71] It was hypothesized that theinteraction of the ketoester with the Lewis acidic catalystinduces enolization, and that the resulting enol is thenfluorinated enantioselectively with 1. This mechanistic ration-alization is supported by previous reports of a rate enhance-ment in the fluorination of ketones with N-fluoropyridiniumsalts in the presence of zinc(ii) chloride.[10] Further mecha-nistic details[72] were reported.

6.Mechanism of Fluorination with Selectfluor:Electron Transfer or SN2 Reaction?

The mechanism of fluorination with N!F reagents hasbeen a subject of debate since their introduction. There aretwo possible mechanistic pathways: single-electron transfer(SET) or nucleophilic SN2 substitution. As shown inScheme 28, both SET and SN2 pathways lead to the sameproduct, in this case a fluorinated carbocation. Banks and co-workers initially voiced support for a SET mechanism to

Figure 3. N-Fluoroammonium derivatives of cinchona alkaloids forenantioselective electrophilic fluorination.[66–68]

Scheme 26. Synthesis of the fluorinated cinchona alkaloid F-CD-BF4.[66–

68]

Table 8: Enantioselective fluorination with [N!F]+ cinchona alkaloids(see Figure 3).[66–68]

[N!F]+ ee [%] Configuration Yield [%]

23a 50 S 9823b 40 R 7023c 27 R 8723d 20 S 98

Table 9: Enantioselective fluorination with a combination of DHQB and1.[70]

R n ee [%] Configuration Yield [%]

Me 1 53 R 93Et 1 73 R 100Bn 1 91 R 86Me 2 40 R 94Et 2 67 R 71Bn 2 71 S 95

C.-H. Wong et al.Reviews

204 ! 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org Angew. Chem. Int. Ed. 2005, 44, 192 – 212Improved enantioselective fluorinations were observedwith a new class of charged [N!F]+ reagents. Selectfluor wasused to prepare the N-fluoroammonium derivatives 23a–d ofcinchona alkaloids by transfer fluorination (Figure 3,Scheme 26).[66–68] The fluorinated reagents 23a–d were

tested in the enantioselective fluorination of the sodiumenolate of 2-methyl-1-tetralone, providing the product in upto 98% yield and with up to 50% ee (Table 8). Higherenantioselectivities (up to 94% ee) were later observed withmodified N-fluoro cinchona alkaloids.[69] In a similar manner,enantioselective fluorinations with a reagent combination of acinchona alkaloid derivative and 1 were demonstrated(Table 9).[70] This method bypasses the isolation of the N-fluoroammonium salt and therefore constitutes a one-pot

procedure, in which a mixture of the cinchona alkaloid and 1can be added to a variety of substrate types, including silylenol ethers. Both cyclic and acyclic carbonyl compounds werefluorinated in good to excellent yields with selectivitiessometimes greater than 90% ee by this method, which isalso useful for b-keto esters (up to 80% ee) and acyclic b-cyano esters (up to 87% ee). Significant progress has beenmade in the development of an enantioselective electrophilicfluorination method. In most cases cinchona alkaloids andselectfluor have been used in a transfer fluorination to accessthe corresponding chiral electrophilic fluorination reagents.This strategy has proved to be very practical, especiallybecause of the commercial availability of the cinchonaalkaloid derivatives.

A major breakthrough would be the development ofcatalytically active enantioselective fluorination reagents. Thesystematic investigation of the catalytic activity of varioustransition-metal complexes in the electrophilic fluorination ofketones led to the discovery that the taddol-modified(taddol=a,a,a’,a’-tetraaryl-2,2-dimethyl-1,3-dioxolan-4,5-di-methanol) titanium complexes 24a and 24b are highlyefficient catalysts for the enantioselective fluorination of b-keto esters (Scheme 27).[71] It was hypothesized that theinteraction of the ketoester with the Lewis acidic catalystinduces enolization, and that the resulting enol is thenfluorinated enantioselectively with 1. This mechanistic ration-alization is supported by previous reports of a rate enhance-ment in the fluorination of ketones with N-fluoropyridiniumsalts in the presence of zinc(ii) chloride.[10] Further mecha-nistic details[72] were reported.

6.Mechanism of Fluorination with Selectfluor:Electron Transfer or SN2 Reaction?

The mechanism of fluorination with N!F reagents hasbeen a subject of debate since their introduction. There aretwo possible mechanistic pathways: single-electron transfer(SET) or nucleophilic SN2 substitution. As shown inScheme 28, both SET and SN2 pathways lead to the sameproduct, in this case a fluorinated carbocation. Banks and co-workers initially voiced support for a SET mechanism to

Figure 3. N-Fluoroammonium derivatives of cinchona alkaloids forenantioselective electrophilic fluorination.[66–68]

Scheme 26. Synthesis of the fluorinated cinchona alkaloid F-CD-BF4.[66–

68]

Table 8: Enantioselective fluorination with [N!F]+ cinchona alkaloids(see Figure 3).[66–68]

[N!F]+ ee [%] Configuration Yield [%]

23a 50 S 9823b 40 R 7023c 27 R 8723d 20 S 98

Table 9: Enantioselective fluorination with a combination of DHQB and1.[70]

R n ee [%] Configuration Yield [%]

Me 1 53 R 93Et 1 73 R 100Bn 1 91 R 86Me 2 40 R 94Et 2 67 R 71Bn 2 71 S 95

C.-H. Wong et al.Reviews

204 ! 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org Angew. Chem. Int. Ed. 2005, 44, 192 – 212

Shiro,  JACS,  2001,  123,  7001  

Roques,  Org.  Lec.  2000,  2,  3699  Roques,  Tet.  Lec.  2001,  42,  1867  Takeuchi,  JACS,  2000,  122,  10728  

•  Chinchona  alkaloids  were  fluorinated  with  selecrluor  and  used  in  enan)oselec)ve  transforma)ons  

Page 20: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

DAST  •  DAST  and  Deoxofluor  are  by  far  the  most  useful  nucleophilic  fluorina)on  

reagents,  DAST  has  been  around  since  1975.    

•  DAST  will  detonate  if  heated  to  about  90  C,  so  you  have  to  be  more  careful  when  using  it  than  you  do  with  Selecrluor,  but  it  is  s)ll  rela)vely  safe  and  easy  to  handle.    

•  Deoxyfluor  has  the  same  reac)vity  of  DAST,  but  is  more  thermally  stable.    

NTMS

+ SF4 NSF3

+ TMSF

Shreeve,  synthesis,  2000,  2561  

Diethylaminosulfurtrifluoride  

Page 21: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

DAST  

OH

OH

Ph OHPh

OH

OOH

OBnBnO

BnO

Deoxofluor, DCM

-78 to RT

Deoxofluor, DCM

-78oC

Deoxofluor, DCM

RT

Deoxofluor, DCM

RT

F

F

Ph FPh

F

OF

OBnBnO

BnO

44%

96%

72%

98%

Fluorination of Alcohols

Prozonic,  Chem.  Commun.  1999,  215  Cheng,  J.  Org.  Chem.  1999,  64,  7048  Shreeve,  j.  Fluorine  Chem.  2002,  116,  23  Ball,  J.  Org.  Chem,  2000,  65,  4984    

•  Rate  of  the  reac)on  is  dependent  on  the  steric  accessibility  of  the  alcohol  

OHS N R

R

F F

F+ O SH N

F F R

RO S N

F F R

R+ HF

O S N

F F R

R F-F

+ HF

Proposed

•  Similar  mechanism  to  PBr3  and  SOCl2  

Page 22: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

DAST  

O

O

O

O

O

3.0 equiv DAST

DCM Reflux

3.0 equiv DAST

DCM RT

1.7 equiv DAST

DCM RT

1.7 equiv DAST

DCM RT

F F

F F

FF

FF

FF

95%

94%

63%

85%

Reaction of DAST with Various Carbonyls

O

OH

O

Cl

O

F

Deoxofluor

DCM Oo C

Deoxofluor

DCM Oo C

Deoxofluor

48 hr Neat

O

F

O

F

CF3

96%

95%

58%

Reactions with Acids

Prozonic,  Chem.  Commun.  1999,  215  Cheng,  J.  Org.  Chem.  1999,  64,  7048  Shiji,  2001,  23,  296,  Chem.  Abstr.  136:  183600g  

Prozonic,  Chem.  Commun.  1999,  215  Cheng,  J.  Org.  Chem.  1999,  64,  7048  

•  Aldehydes  and  ketones  can  be  converted  to  the  difluorides    

•  Acids  can  be  converted  to  the  acid  fluoride  or  trifluoromethyl  at  longer  dura)ons    

Page 23: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

DAST  

O DASTFF

F

F+ Gave Mixture of 4 products

Hudlicky, Journal of Fluorine Chemistry, 36 (1987) 373-384

DAST With Epoxides

DASTHOO

O

F

DAST Ring expansion

Gree, Org. Lett. 2002, 4, 451

NSF3

O

O

O

OTMS

O

O

F

16% ee

Enantioselective Variation

Sampson, J. Chem. Soc. Perkin Trans. I 1989, 1650

•  Epoxides  are  difficult    substrates  

•  Unique  c-­‐c  bond  cleavage  of  epoxides  

•  Enan)oselec)ve  nucleophilic  fluorina)on  with  DAST  –  like  compounds  is  ineffec)ve    

Page 24: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Metals  in  Fluorina)on  

•  Selecrluor  and  DAST  can  be  used  for  a  wide  variety  of  fluorina)ons    •  They  are  both  much  more  mild  and  user  friendly  reagents  than  Fluorine  gas  

•  Neither  Selecrluor  or  DAST  translated  very  well  into  an  enan)oselec)ve  process.    

N

N

H

H

HHO FNSF3

O

Page 25: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Electrophilic  Fluorina)on  With  Pt  

In screening a variety of electrophilic !uorine sources, it wasdiscovered that only XeF2 e"ectively competed with !-Helimination. Other less reactive F+ sources showed apredominance to exclusive !-H elimination to 3.13 In additionto the desired 1, over-!uorination to 4 was also observed. Sincecontrols showed that 1 does not react with XeF2 and acid isknown to enhance the F+ potential of XeF2,

14 we surmised thatthe HF byproduct of cyclization was activating the XeF2. Thisproblem was easily solved by the addition of TMSOMe as anHF sponge, which additionally obviates the need for a base.15

Optimization studies included testing multiple bisphos-phines, solvents, and other TMS-X derivatives.15 Once again(S)-xylyl-phanephos was uniquely enantioselective (!75%) forcontrolling the % ee of the cation-ole#n cascades. Of the testedHF scavengers, TMSOMe was the most e"ective inhibitor ofdouble !uorination, and like previous ionic cascades, nitro-methane was the optimum solvent. A catalyst formulationcomprised of 10 mol % (S)-(xylyl-phanephos)PtI2, 25 mol %AgBF4, 30 mol % NCC6F5, and stoichiometric quantities ofXeF2 and TMSOMe at 0 °C provided 1 in 67% yield and with a75% enantiomeric excess.16

These optimized conditions were subsequently applied to avariety of alcohol and phenol terminated dienes and trienes(Table 2). In most cases, a high conversion of substrateoccurred within 3 h; however, the reactions were allowed toproceed for 24 h at 0 °C to ensure complete consumption ofthe XeF2. For the substrate classes in Table 2, no Brønsted acidderived products such as 5 were observed, and a singlediastereomer consistent with stereoretentive !uorination of theintermediate P2Pt-alkyl cation was observed.As shown in Table 2, variants on the phenol termini were

well tolerated, except for "-naphthol (entry 3), whereincompetitive !uorination of the aryl ether product occurs evenwith TMSOMe. In situ monitoring indicated that aryl!uorination occurred after cyclization/Pt"C !uorination. Inthis case, extra XeF2 was used to compensate for thedi!uorination stoichiometry. Unexpectedly, para-substituentsimproved the ee’s (entries 4"7).Dienyl and trienyl alcohols and phenols were also viable

substrates though they behaved peculiarly. In the case of entries8 and 9, the yields were poor under standard conditions butcould be recovered by exchanging TMSOMe for a polystyrene-bound piperidine base (see Table 1). In contrast, the triene

alcohol in entry 10 performed better under the standardconditions. These base e"ects are not yet understood.In situ monitoring of a cyclization/!uorination of 2 indicated

that the alkyl cation (as the nitrile adduct, 6) serves as thecatalyst resting state (31P NMR). These data support ourcurrent view of the mechanism (Scheme 2) that has 6competitively undergoing !-H elimination or F+ attack togenerate a [Pt]IVR(F) dication, which undergoes a stereo-retentive reductive elimination to 1. Neither the [Pt]IV nor the

Scheme 2. Proposed Catalytic Cycle for ElectrophilicFluorination

Table 2. Catalytic Electrophilic Fluorinationa

aConditions: 10 mol % (S)-(xylyl-phanephos)PtI2, 25 mol % AgBF4,30 mol % NCC6F5, 1.1 equiv of TMS-OMe, 1.1 equiv of XeF2, 0.4 mLof CD3NO2, 0 °C, 24 h. Starting material is mass balance of reaction.bIsolated yield, % ee determined by chiral GC. cGC yield. dReactionrun using 1.6 equiv of XeF2.

ePercentage is !uorinated eliminationspecies only. fReaction with 20 mol % polystyrene-bound piperidinebase run with no TMS-OMe; see SI for details. gDue to the volatilityof this compound, a GC yield is reported. hContains 23% unidenti#edspecies; mass balance is unreacted starting materisl. Cannot separatethe unidenti#ed species from the product; therefore GC yield isreported.

Journal of the American Chemical Society Communication

dx.doi.org/10.1021/ja3116795 | J. Am. Chem. Soc. XXXX, XXX, XXX"XXXB

In screening a variety of electrophilic !uorine sources, it wasdiscovered that only XeF2 e"ectively competed with !-Helimination. Other less reactive F+ sources showed apredominance to exclusive !-H elimination to 3.13 In additionto the desired 1, over-!uorination to 4 was also observed. Sincecontrols showed that 1 does not react with XeF2 and acid isknown to enhance the F+ potential of XeF2,

14 we surmised thatthe HF byproduct of cyclization was activating the XeF2. Thisproblem was easily solved by the addition of TMSOMe as anHF sponge, which additionally obviates the need for a base.15

Optimization studies included testing multiple bisphos-phines, solvents, and other TMS-X derivatives.15 Once again(S)-xylyl-phanephos was uniquely enantioselective (!75%) forcontrolling the % ee of the cation-ole#n cascades. Of the testedHF scavengers, TMSOMe was the most e"ective inhibitor ofdouble !uorination, and like previous ionic cascades, nitro-methane was the optimum solvent. A catalyst formulationcomprised of 10 mol % (S)-(xylyl-phanephos)PtI2, 25 mol %AgBF4, 30 mol % NCC6F5, and stoichiometric quantities ofXeF2 and TMSOMe at 0 °C provided 1 in 67% yield and with a75% enantiomeric excess.16

These optimized conditions were subsequently applied to avariety of alcohol and phenol terminated dienes and trienes(Table 2). In most cases, a high conversion of substrateoccurred within 3 h; however, the reactions were allowed toproceed for 24 h at 0 °C to ensure complete consumption ofthe XeF2. For the substrate classes in Table 2, no Brønsted acidderived products such as 5 were observed, and a singlediastereomer consistent with stereoretentive !uorination of theintermediate P2Pt-alkyl cation was observed.As shown in Table 2, variants on the phenol termini were

well tolerated, except for "-naphthol (entry 3), whereincompetitive !uorination of the aryl ether product occurs evenwith TMSOMe. In situ monitoring indicated that aryl!uorination occurred after cyclization/Pt"C !uorination. Inthis case, extra XeF2 was used to compensate for thedi!uorination stoichiometry. Unexpectedly, para-substituentsimproved the ee’s (entries 4"7).Dienyl and trienyl alcohols and phenols were also viable

substrates though they behaved peculiarly. In the case of entries8 and 9, the yields were poor under standard conditions butcould be recovered by exchanging TMSOMe for a polystyrene-bound piperidine base (see Table 1). In contrast, the triene

alcohol in entry 10 performed better under the standardconditions. These base e"ects are not yet understood.In situ monitoring of a cyclization/!uorination of 2 indicated

that the alkyl cation (as the nitrile adduct, 6) serves as thecatalyst resting state (31P NMR). These data support ourcurrent view of the mechanism (Scheme 2) that has 6competitively undergoing !-H elimination or F+ attack togenerate a [Pt]IVR(F) dication, which undergoes a stereo-retentive reductive elimination to 1. Neither the [Pt]IV nor the

Scheme 2. Proposed Catalytic Cycle for ElectrophilicFluorination

Table 2. Catalytic Electrophilic Fluorinationa

aConditions: 10 mol % (S)-(xylyl-phanephos)PtI2, 25 mol % AgBF4,30 mol % NCC6F5, 1.1 equiv of TMS-OMe, 1.1 equiv of XeF2, 0.4 mLof CD3NO2, 0 °C, 24 h. Starting material is mass balance of reaction.bIsolated yield, % ee determined by chiral GC. cGC yield. dReactionrun using 1.6 equiv of XeF2.

ePercentage is !uorinated eliminationspecies only. fReaction with 20 mol % polystyrene-bound piperidinebase run with no TMS-OMe; see SI for details. gDue to the volatilityof this compound, a GC yield is reported. hContains 23% unidenti#edspecies; mass balance is unreacted starting materisl. Cannot separatethe unidenti#ed species from the product; therefore GC yield isreported.

Journal of the American Chemical Society Communication

dx.doi.org/10.1021/ja3116795 | J. Am. Chem. Soc. XXXX, XXX, XXX"XXXB

•  Fluorina)on  outcompetes  B-­‐hydride  elimina)on!  

Cataly)c  Enan)oselec)ve  Cycliza)on  and  C3-­‐Fluorina)on  of  Polyenes,  Gagne,  JACS,  ASAP    

Page 26: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Ques)ons?  

Thanks!  Ques)ons  for  me?  

Page 27: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Ques)ons  for  you  

N OH

AcO

N SF3

S Selectfluor

TEA

OBnOBnOOBn

OHBnO Selectfluor

S

NH

NH

HN

O

O

HN

Selectfluor

OHSelectfluor

1)  Mechanism  and  Product  

2)  Mechanism  and  Product  

3)  Products  

Page 28: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Answers  

N OH

AcO

N SF3

AcO

CH3F

CN

Richards,  Tetrahedron  Lecers,  2000,  41,  9351  

Page 29: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Answers  

S Selectfluor

TEA

S F

Page 30: Fluorinaon*Chemistry:*gbdong.cm.utexas.edu/seminar/old/Organofluorine_Brandon Reinus.p… · Fluorine,*Who*Cares?* HN N F O O O O HN N F O O O O HN N F O O O HN N F O O H2NHN O HN

Answers  

OBnOBnOOBn

OHBnO Selectfluor

S

NH

NH

HN

O

O

HN

Selectfluor

OHSelectfluor

O

F

NH

NN

HN

O

OF

F

OBnOBnOOBn

FBnO