Fluid -Structure Interaction Problems

19
Universität Dortmund Fakultät für Mathematik IAM technische universität dortmund Fluid Fluid - - Structure Interaction Problems: Structure Interaction Problems: FEM FEM Multigrid Multigrid Techniques and Benchmarking Techniques and Benchmarking S. Turek with support by the FEAST Group Institut für Angewandte Mathematik, TU Dortmund http://www.mathematik.uni-dortmund.de/LS3 http://www.featflow.de

Transcript of Fluid -Structure Interaction Problems

Page 1: Fluid -Structure Interaction Problems

Universität DortmundFakultät für Mathematik

IAM

technische universität

dortmund

FluidFluid--Structure Interaction Problems:Structure Interaction Problems:

FEM FEM MultigridMultigrid Techniques and BenchmarkingTechniques and Benchmarking

S. Turek with support by the FEAST Group

Institut für Angewandte Mathematik, TU Dortmundhttp://www.mathematik.uni-dortmund.de/LS3

http://www.featflow.de

Page 2: Fluid -Structure Interaction Problems

2

Multiphase FSI Problems: Elastic Solids

Liquid – Rigid Solid

– Particulate Flow

– Robofish

Liquid – Elastic Solid

– Biomechanics

– Medical applications

– Aeroelasticity

Page 3: Fluid -Structure Interaction Problems

3

Multiphase FSI Problems: Rigid Solids

Liquid – Rigid Solid

– Particulate Flow

– Robofish

Liquid – Elastic Solid

– Biomechanics

– Medical applications

– Aeroelasticity

Page 4: Fluid -Structure Interaction Problems

4

Required: Special Numerics for FSI

Computational mesh (can be) independent of ‘internal objects’

Special FEM Techniques

Space-Time AdaptivityImplicit Approaches

Stabilization for high Re, Pe, We,… Numbers

Multigrid Solvers

GPU Computing

Grid Deformation Methods Fictitious Boundary Methods

Page 5: Fluid -Structure Interaction Problems

5

Challenges for Numerics

5

Special FEM discretization techniques to handle thefollowing challenging points Stable FE spaces for velocity and pressure fields, and velocity and

extra-stress fields

Q2/P1/Q2, Q1(nc)/P0/Q1(nc) (new: Q2(nc)/P1/Q2(nc))

Special treatment of the „convective“ terms

edge-oriented/interior penalty EO-FEM, TVD/FCT

Special treatment of the „reactive" terms in viscoelastic problems

LCR + EO-FEM

Special (nonlinear) solvers to deal with different sources

of nonlinearity nonlinear operators Newton method via divided differences

stiff coupling of equations monolithic/operator splitting multigrid

complex geometries and meshes

Page 6: Fluid -Structure Interaction Problems

66

Nonlinear Solvers

Solve for the residual of the nonlinear system algebraic equations

Use Newton method with damping results in iterations of the form

Continuous Newton: on variational level (before discretization)

The continuous Frechet operator can be analytically calculated

Inexact Newton: on matrix level (after discretization)

The Jacobian matrix is approximated using finite differences as

( ) ( )pR , , u, x ,0 x σΘ==

( ) ( )n

1n

nn1n xx

x x x R

R−

+

∂+= ω

( ) ( ) ( )ε

εε

2

e x e x

xnnn

jiji

ij

RR

x

R −−+≈

Page 7: Fluid -Structure Interaction Problems

77

Multigrid Solvers

Standard geometric multigrid approach with full FEM grid transfer

Smoother: Local/Global MPSC

Local MPSC via Vanka-like smoother

Monolithic multigrid solver

Global MPSC

solve for an intermediate u (generalized momentum equation)

solve for p (pressure Poisson equation)

update of u and p

solve for (tracer equation)

solve for (constitutive equation)

Decoupled multigrid solver

[ ]

Tp

TT

l

l

l

l

l

l

l

l

l

JK

pp

h

|

u

1

|

1

1

1

1

Res

Res

Res

Res

u

u

+Σ+

Θ=

Θ Θ

+

+

+

+

σ

τωσσ

Θ

σ

Page 8: Fluid -Structure Interaction Problems

88

1) Aspects of (Elastic) FSI Problems

incompressible Newtonian fluid (with nonlinear extensions)

hyperelastic material, incompressible

where and

or St. Venant-Kirchhoff material, compressible

where

D2 I νσ +−= pf

,FF

2F I Tfp

Ψ∂+−=σ 1 det =F

( ) ( ) Hook-Neo3 I FC

−=Ψ α

( ) ( ) ( ) ( ) canisotropi Rivlin -Mooney 1 Fe 3 I 3 I F2

3C2C1+−+−+−=Ψ ααα

TFF C = trC, IC

= ( )( )22

CtrC trC

2

1 I −=

( )( ) Tsss

JFE ItrEF

1 µλσ +=

( )I FF2

1 E −= T

Page 9: Fluid -Structure Interaction Problems

99

Monolithic ALE-FEM Approach

( ) 0 x =R

( ) ( )n

h

n

hh

f

h

s

hvuuLvM

kMu ,rhs

2 =+−

( ) ( ) ( ) ( ) ( )( ) ( )n

h

n

h

n

hhh

f

h

s

hhhhh

sfpvukBpvSuS

kuvNuvN

kvMM , ,rhs

2,

2

1,

2

21=−+++++ β

( ) 1=+h

Tf

hvBuC

( ) ( ) ( )

∂+

+∂+

∂++

∂+

++∂

=∂

0

22

1

2

1

02

2

xx

2

121

Tf

h

h

fs

h

f

h

fs

h

hh

fs

sf

Bvu

BB

kBv

SNk

v

NMMp

u

Bk

u

SSN

Mk

Lk

M

R

T

T

β

( ) hhhhhh PVUpvu , , x ××∈=

Page 10: Fluid -Structure Interaction Problems

1010

Typical discrete saddle-point problem

( ) ( )n

h

n

hh

f

h

s

hvuuLvM

kMu ,rhs

2 =+−

( ) ( ) ( ) ( ) ( )( ) ( )n

h

n

h

n

hhh

f

h

s

hhhhh

sfpvukBpvSuS

kuvNuvN

kvMM , ,rhs

2,

2

1,

2

21=−+++++ β

( ) 1=+h

Tf

hvBuC

=

p

T

fv

T

su

vvvu

uvuu

fp

v

u

BcBc

kBSS

SS

u

u

f

f

0

0

Monolithic ALE-FEM Approach

( ) 0 x =R ( ) hhhhhh PVUpvu , , x ××∈=

Page 11: Fluid -Structure Interaction Problems

1111

Multigrid Solver for Q2/Q2/P1

standard geometric multigrid approach

smoother by local MPSC-Ansatz (Vanka-like smoother

full inverse of the local problems by LAPACK (39 x39 systems)

alternatives: simplified local problems (3x3 systems) or ILU(k)

combination with GMRES/BiCGStab methods possible

full (canonical) FEM prolongation, restriction by

Very accurate, flexible and highly efficient FSI solver

( FSI Benchmarks)

TP R =

=

Ω

ΩΩ

ΩΩΩ

ΩΩ

+

+

+

iPatch

1

||

|||

||

1

1

1

def

def

0

0

l

p

l

v

l

u

T

fv

T

su

vvvu

uvuu

l

l

l

l

l

l

defBcBc

kBSS

SS

p

v

u

p

v

u

ii

iii

ii

ω

Page 12: Fluid -Structure Interaction Problems

12

2) Aspects of Particulate Flow

Fluid flow is modelled by the Navier-Stokes equations:

,fuut

u=⋅∇−

∇⋅+

∂σρ 0=⋅∇ u ( ) ( ) ][,

TuupItX ∇+∇+−= µσ

Motion of particles is described by the Newton-Euler equations, i.e., the

translational velocities and angular velocities of the p-th particle satisfy:

( ) ,'gMFF

dt

dUM ppp

p

p ∆++= ( ).pppp

p

p TIdt

dI =×+ ωω

ω

,

and are the hydrodynamical forces and the torque at mass center

acting on the p-th particle and are the collision forcespF pT

'

pF

∫Γ Γ⋅−=p

ppp dnF ,σ ( ) ( )∫Γ Γ⋅×−−=p

pppp dnXXT σ

Page 13: Fluid -Structure Interaction Problems

13

No slip boundary conditions at interface between particles and fluid

i.e., for any , the velocity u(X) is defined by:

The position of the p-th particle and its angle are obtained

by integration of the kinematic equations:

pX Γ∈

( ) ( )ppp XXUXu −×+= ω

pX pθ

,p

pU

dt

dX= p

p

dt

θ=

Particle-Fluid Interaction

Page 14: Fluid -Structure Interaction Problems

14

Idea: ‘Replace the surface integral by a volume integral’

and use indicator functions ( )

+Fictitious Boundary Method on Generalized

Tensorproduct Meshes

Hydrodynamic forces and torque acting on the i-th particle

∫∂ Γ⋅−=iP

iii dnF ,σ ( ) ( )∫∂ Γ⋅×−−=iP

iiii dnXXT σ

How to Calculate the Forces?

∫∫ ΩΓΩ∇⋅−=Γ⋅−=

TpTpppp ddnF ασσ

ppn α∇≈

Page 15: Fluid -Structure Interaction Problems

15

Idea : construct transformation with

local mesh area

1. Compute monitor function and

3. Solve the ODE system

new grid points:

Grid deformation preserves the (local) logical structure of the grid

( )tx ,, ξφφ = f=∇φdet

f≈

( ) 1,0, Cftxf ∈>

( ) ,,1 Ω=∫Ω− dxtxf

( )( )

,,

1,

∂−=∆

tfttv

ξξ

]1,0[∈∀ t

2. Solve ])1,0[( ∈t

0=∂

Ω∂n

v

( ) ( )( ) ( )( )ttvttftt

,,,,, ξφξφξφ ∇=∂

( )1,iix ξφ=

Grid Deformation Methods

Page 16: Fluid -Structure Interaction Problems

16

(Semi-explicit) Operator-Splitting Approach

→ Required: efficient calculation of hydrodynamic forces

→ Required: efficient treatment of (many) particle interaction

→ Required: efficient (dynamic) grid alignment

→ Required: fast (nonstationary) Navier-Stokes solver FEASTFLOW

1.

2.

4.

3.

Fluid velocity and pressure :

Calculate hydrodynamic forces:

Calculate velocity of particles:

Update position of particles:

The algorithm for consists of the following 5 substeps

5. Align new mesh

1+→ nntt

( ) ( )n

p

n

p

nn

f uBCpuNSE ,, 11 Ω=++

1+n

pF

( )11 ++ = n

p

n

p Fgu

( )11 ++ =Ω n

p

n

p uf

Page 17: Fluid -Structure Interaction Problems

17

Dynamic Adaptation: 2D Sedimentation

Page 18: Fluid -Structure Interaction Problems

18

3D Examples

Page 19: Fluid -Structure Interaction Problems

19

3) Benchmarking of Multiphase CFD

0 0.5 1 1.5 2 2.5 3

0.9

0.92

0.94

0.96

0.98

1

1.02

TP2D

FreeLIFE

MooNMD

Comsol

Fluent

• Initiative “Rising Bubble”

quantitative validation and comparison of

multiphase codes

1.75 1.8 1.85 1.9 1.95 2 2.05

0.896

0.898

0.9

0.902

0.904

0.906

TP2D

FreeLIFE

MooNMD

Comsol

Fluent• Initiative “Elastic FSI”

quantitative validation and

comparison of monolithic vs.

decoupled approaches

• Initiative “Particulate Flow”

quantitative validation and

comparison with experimental

configurations