Fluid-Rock Processes Driving Isolation of Crustal Fluids in...

21
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. Photos placed in horizontal position with even amount of white space between photos and header Fluid-Rock Processes Driving Isolation of Crustal Fluids in Crystalline Basement Systems David C. Sassani, Patrick V. Brady, Kristopher L. Kuhlman, Carlos F. Jove-Colon, and Carlos M. Lopez Sandia National Laboratories August, 2016; SAND2017-8489 C

Transcript of Fluid-Rock Processes Driving Isolation of Crustal Fluids in...

Page 1: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Photos placed in horizontal position with even amount of white space

between photos and header

Fluid-RockProcessesDrivingIsolationofCrustalFluidsinCrystallineBasementSystems

DavidC.Sassani,PatrickV.Brady,KristopherL.Kuhlman,CarlosF.Jove-Colon,andCarlosM.Lopez

SandiaNationalLaboratoriesAugust,2016;SAND2017-8489C

Page 2: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

PresentationOverview§ DeepBoreholeFieldTest(DBFT)Background

§ TheDeepBoreholeDisposal(DBD)Concept§ Feasibilityisbeingevaluated

§ DBFTOverview– ScienceandDatatoEvaluateDBDConcept§ CurrentProjectisBeingWrappedUp

§ GeoscienceGuidelinesforDBFTSite§ ConsideredCharacteristics§ CrystallineBasementCharacteristics/ConceptualProfiles

§ EvaluationofFluid-RockReactionsinCrystallineBasement§ Fluid-RockReactionConceptsandGeochemicalDescription§ GeneralObservationsandResults

§ SummaryandConclusions

2

Sassani,SNL.Goldschmidt2017August14,2017

Page 3: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

DeepBoreholeDisposal(DBD)Concept§ Deepboreholedisposalofhigh-levelradioactivewastehas

beenconsideredintheU.S.andelsewheresincethe1950sandhasbeenperiodicallystudiedsincethe1970s

§ CurrentDBDconceptconsistsofdrillingaborehole(orarrayofboreholes)intocrystallinebasementrock§ Totaldepthabout5,000mdepth§ Lower3000mincrystallinebasement§ Wastecanisterswouldbeemplacedinthelower2,000meters§ Uppercrystallinebasementportionwouldbesealedwithcompacted

bentoniteclay,cementplugs,andcementedbackfill§ Atleast1000m

§ Upperboreholefilled/sealed

3

Sassani,SNL.Goldschmidt2017August14,2017

Page 4: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

WhyConsiderDeepBoreholeDisposal?§ PotentialforRobustIsolation§ GivesDOEtheFlexibilitytoConsiderOptionsforDisposalof

SmallerWasteFormsinDeepBoreholes§ Potentiallyearlierdisposalofsomewastesthanmightbepossibleina

minedrepository§ Possiblereducedcostsassociatedwithprojectedtreatmentsofsome

wastes

§ SeveralDOE-managedSmallWasteFormsarePotentialCandidatesforDeepBoreholeDisposal(SNL2014),e.g.,§ 1,936cesiumandstrontiumcapsulesstoredattheHanfordSite§ UntreatedcalcineHLWcurrentlystoredatINLinsetsofstainlesssteel

binswithinconcretevaults

4

Sassani,SNL.Goldschmidt2017August14,2017

Page 5: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

DeepBoreholeDisposalConcept–SafetyandFeasibilityConsiderations

5

Long-Term Waste Isolation (hydrogeochemical characteristics)

Waste emplacement is deep in crystalline basement• At least 1,000 m of crystalline rock

(seal zone) overlying the waste disposal zone

• Crystalline basement within 2,000 m of the surface is common in many stable continental regions

Deep groundwater in the crystalline basement:• Can have very long residence times – isolated from shallow groundwater• Can be highly saline and geochemically reducing – enhances the sorption and limits

solubility of many radionuclides• Can have density stratification (saline groundwater underlying fresh groundwater) –

opposes thermally-induced upward groundwater convection

Crystalline basement can have very low permeability• limits flow and transport

Sassani,SNL.Goldschmidt2017August14,2017

Page 6: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

DeepBoreholeFieldTest(DBFT)Overview§ AssessDBDFeasibilityViaFieldStudyofSiteandHandling

§ NOTE:ProjectisBeingClosed-outthisFiscalYear

§ ConstructTwo5-kmBoreholes§ CharacterizationBorehole(CB): 21.6cm[8.5”]@TotalDepth§ FieldTestBorehole(FTB): 43.2cm[17”]@TotalDepth

§ EvaluateourAbilityto:§ Drilldeep,wide,straightincrystallinerocks(CB+FTB)§ Characterizebedrockviageophysics(CB)§ Conducttestsinbasement≤150oC&50MPa(CB)§ Collectgeochemicalprofiles(CB)§ Emplace/retrievesurrogatewastepackages(FTB)

6

Sassani,SNL.Goldschmidt2017August14,2017

Page 7: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

GeoscienceGuidelinesConsiderations

§ CrystallineBasement§ Depth§ RockFabric&StressState§ RegionalStructure(s)§ HydrologyandGeochemistry

§ HeatFlow§ RecentSeismicity/Volcanism§ Resources§ AnthropogenicContamination

7

Sassani,SNL.Goldschmidt2017August14,2017

Page 8: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

8

DepthtoBasement– NationalScale

Distribution of crystalline basement at a depth of less than 2 km (tan shading) and granitic outcrop (red) in the contiguous US (from Figure 3-2 in Perry et al., 2015)

Sassani,SNL.Goldschmidt2017August14,2017

Page 9: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

DeepBoreholeConceptualProfiles

9

Sassani,SNL.Goldschmidt2017August14,2017

Page 10: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

ObservedProfiles

10DeMaioandBates(2013)

SalinityIncreaseswithDepth

Stober andBucher(2007)

BulkPermeabilityDecreaseswithDepth

HowMuchofaRoleDoesFluid-RockReactionPlayinDriving

IncreasedSalinity?

Sassani,SNL.Goldschmidt2017August14,2017

Page 11: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

Fluid-RockReactionEvaluations§ Analysesforgenericfluid-rockreactionsystemsincrystalline

basement§ Evaluatemechanismsinthecrystallinebasementtoformdeep,

isolatedbrines§ Reactionpathmodelsforgranitemineralreactionswithseawater

– Alterationmineralogy– hydrousphases(H2Osinks)– Evolvedbrinecompositions(majorelements,Cl,Br)

§ Fluidinclusioncontributions(solublesalts)considered§ CalculatingleachatecompositionsfromBlackForestcrystallinebasementrocks

§ ConditionsComparableto~5kmdepth§ GenericGraniteComposition(s)§ SeawaterStartingBrineComposition§ ~100– 150oC,Psat§ PHREEQCReactionPathCalculations

11

Sassani,SNL.Goldschmidt2017August14,2017

Page 12: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

HypotheticalGranite

§ 20%Quartz;40%K-feldspar;15%Plagioclase(Albite);9%Muscovite;8%Biotite;and8%Hornblende(volume%)

§ Representedasa10kg(3.8L)blockhavingamolarmixtureof§ 33.3molesQuartz:14.4molesK-feldspar:5.7molesAlbite:2.2moles

Muscovite:1.8molesBiotite:0.9molesHornblende

§ Graniteis“reacted”with0.1literofseawaterat100oC.§ Thisisa38:1rock:fluid ratiobyvolume,equivalenttoarockwitha

fluid-filledporosityof~3%

12

Sassani,SNL.Goldschmidt2017August14,2017

Page 13: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

GeneralObservations§ CalculatedGenericGraniteHydrologicAlterationResults

§ ReactioncreatesAlbite+K-feldspar+Chlorite+Laumontite +Brine§ Minoramounts(<0.02moles)ofepidote,calcite,andgypsumform§ AlbiteandK-feldsparmassesincreasesubstantially§ Almostallofthequartzisdissolved.

§ ProducesaresidualCa-Na-ClbrineatpHof6.8§ NetLossofwatercausestheionicstrengthofthesolutiontoincrease

– Fromaninitialionicstrengthof0.6upwardsto>5molal– TheCa/Nacalculatedforbrineis1.55– LowMgconcentration

§ End-memberCanadianShieldbrinesfromFrapeetal.(1984)withhighestsaltcontentsof~240– 325g/L§ Haveionicstrengthsof4.5- 6.2§ 0.7<Ca/Na<3§ LowMgconcentration

13

Sassani,SNL.Goldschmidt2017August14,2017

Page 14: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

SolutionandMineralogicEvolution

14

Sassani,SNL.Goldschmidt2017August14,2017

0

1

2

3

4

5

6

0.0

0.1

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Moles/L Biotite, Hornblende Reacted

Mol

es/L

Hyd

rous

Alte

ratio

n M

iner

als

Ionic Strength

Ca/Na

Laumontite

Chlorite

Ioni

c St

reng

th (m

olal

), or

Ca/

Na

Page 15: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

SummaryandConclusions§ PlannedDBFTProjectisEndingthisFiscalYear§ ManySiteswithinU.S.withFunctionalGeology

§ MultifacetedObjectivesofDBFTProvideOpportunitiesforSuccess§ ChoosingAnySitewouldbebasedonUncertainGeologicInformation

§ GenerallyRegionsLackingExploration§ EachSitewillhaveitsownGeologicChallenges

§ WouldProvideSubstantialDirectDataandUnderstanding– Characterizationmethods– Feasibilityofimplementation

§ GeochemicalProcessesinGenericCrystallineBasementAppeartobeAbletoAffect/ControlFluidSystemIsolation§ Stilltoevaluate

§ SensitivityofthePHREEQCcalculationstoinputwaterchemistry§ Morethoroughcomparisonofpredicted/observedalteration§ Moredetailedconsiderationofactivitycoefficienteffects

15

Sassani,SNL.Goldschmidt2017August14,2017

Page 16: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

BackupMaterials

16

Sassani,SNL.Goldschmidt2017August14,2017

Page 17: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

DeepGeologicDisposalRemainsanEssentialElementofNuclearWasteManagement

“Theconclusionthatdisposalisneededandthatdeepgeologicdisposalisthescientificallypreferredapproachhasbeenreachedbyeveryexpertpanelthathaslookedattheissueandbyeveryothercountrythatispursuinganuclearwastemanagementprogram.”

BlueRibbonCommissiononAmerica’sNuclearFuture,2012

17

Sassani,SNL.Goldschmidt2017August14,2017

Page 18: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

DeepBoreholeFieldTestObjectives§ TheRD&Dobjectivesfordeepboreholedisposalarebeingmetwith

aboreholefieldtestthatisconductedtoadepthof5kminasuitablelocation(withoutemplacementofradioactivewastes)

§ TheDBFTincludesthefollowingmajoractivities:§ Obtainasuitabletestsite§ Design,drillandconstructtheCharacterizationBorehole(8.5”diameter)

torequirements§ CollectdataintheCharacterizationBoreholetocharacterizecrystalline

basementconditionsandevaluateexpectedhydrogeochemical conditions

§ AccommodateasubsequentFieldTestBorehole(17”diameter)§ Design,drillandconstructtheFieldTestboreholetorequirements§ Designanddevelopsurfacehandlingandemplacementequipment

systemsandoperationalmethodsforsafecanister/wastepackagehandlingandemplacement

18

Sassani,SNL.Goldschmidt2017August14,2017

Page 19: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

PreferredGeologicConditions§ Geohydrological Considerations

§ Nolarge-scaleconnectedpathwaysfromdepthtoaquifersystems§ Nothroughgoingfracture/fault/shearzonesthatprovidefastpaths§ Nostructuralfeaturesthatprovidepotentialconnectivepathways

§ Lowpermeabilityofcrystallinebasementatdepth§ Urach3:(Stober andBucher,2000;2004)

– ~10-19 m2 (intactrock);~10-14 to10-17 m2 (bulk:paralleltooracrossshears)– DecreasingwithDepth

§ Evidenceofancient,isolatednatureofgroundwater§ Salinitygradientincreasingdownwardtobrineatdepth(Parketal.,2009)

– Limitedrecharge/connectivitywithsurfacewaters/aquifers– Providesdensityresistancetoupwardflow

§ Majorelementandisotopicindicationofcompositionalequilibrationwithrock– Crystallinebasementreactingwithwater(Stober andBucher,2004)– Ancient/isolatedgroundwater

» Ages– isotopes,paleoseawater (Stober andBucher,2000)» Radiogenicisotopesfromatmospherelacking:81Kr,129I,36Cl» Radiogenicisotopes/ratiosfromrock:81Kr,87Sr/86Sr;238U/234U» Noblegases(4He,Ne)&stableisotopes(2H,18O)compositionsfromdeep

water:(e.g.,GascoyneandKamineni,1993)

19

Sassani,SNL.Goldschmidt2017August14,2017

Page 20: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

PreferredGeologicConditions(Continued)§ GeochemicalConsiderations

§ Reduced,orreducing,conditionsinthegeosphere(rockandwatersystem)§ Crystallinebasementmineralogical(andmaterial)controls§ Magnetite-hematitebufferlowoxygenpotential

– Oxidesequilibria=>T-lowƒO2 paths(e.g.,SassaniandPasteris,1988;Sassani,1992)§ BiotitecommonFe+2 phase(BucherandStober,2000)

– Rock-reactedfluidcompositions– watersink(Stober andBucher,2004)– Morerockdominatedatdepth(GascoyneandKamineni,1993)

§ Stratificationofsalinity– increasingtobrinedeepincrystallinebasement§ CanadianShieldsalinityincreaseswithdepthto~350g/LTDS;(GascoyneandKamineni,

1993;Parketal.,2009)– MoreCa-richbrineswithfurtherreactionwithdeeperrock

§ Urach3,Germany,~70- g/LTDSNaCl brine(Stober andBucher,1999;2004)§ Subsetofwasteformsandradionuclidesareredoxsensitive

§ Lowerdegradationrates§ Lowersolubility-limitedconcentrations§ Increasedsorptioncoefficients

§ Highersalinity§ Densitygradientopposesupwardflow§ Reduces/eliminatescolloidaltransport

20

Sassani,SNL.Goldschmidt2017August14,2017

Page 21: Fluid-Rock Processes Driving Isolation of Crustal Fluids in ...kris.kuhlmans.net/papers/Sassani_Goldschmidt_2017_final...Fluid-Rock Processes Driving Isolation of Crustal Fluids in

ReferencesAAPG, 1978, Basement map of North America: Am. Assoc. Petroleum Geologists, scale: 1:5,000,000

Blackwell, D.D., P. Negraru, and M. Richards, 2007. Assessment of the enhanced geothermal system resource base of the United States, Natural Resources Research, DOI 10:1007/s11053-007-9028-7.

Bucher K, and Stober I (2000) Hydrochemistry of water in the crystalline basement. In: Hydrogeology of Crystalline Rocks (eds Stober I, Bucher K), pp. 141-75. Kluwer Academic Publishers, Dordrecht.

Bucher, K. and Stober, I. (2002) Water-rock reaction experiments with Black Forest gneiss and granite, Water-Rock Interaction. Springer, pp. 61-95.

Bucher, K. and Stober, I. (2010) Fluids in the upper continental crust. Geofluids 10, 241-253.

DeMaio, W., and Bates, E. (2013). Salinity and Density in Deep Boreholes. Massachusetts Institute of Technology. UROP REPORT: October 29, 2013. 14 p.

Frape, S., Fritz, P. and McNutt, R.t. (1984) Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochimica et Cosmochimica Acta 48, 1617-1627.

Gascoyne, M. and Kamineni, D. C. (1993) The hydrogeochemistry of fractured plutonic rocks in the canadian shield. In: Hydrogeology of Hard Rocks, 440- 449. Banks, S. B. and Banks, D. (editors) Geol. Survey of Norway: Trondheim.

Park, Y.-J., E.A. Sudicky, and J.F. Sykes (2009), Effects of shield brine on the safe disposal of waste in deep geologic environments, Advances in Water Resources 32: 1352-1358.

Perry, F., Kelley, R., Houseworth, J., and Dobson, P., 2015. A GIS Database to Support the Application of Technical Siting Guidelines to a Deep Borehole Field Test. FCRD-UFD-2015-000603. LA-UR-15-22397. Los Alamos , NM: US Department of Energy Used Fuel Disposition Campaign.

Sassani, D.C., 1992. Petrologic and Thermodynamic Investigation of the Aqueous Transport of Platinum-Group Elements During Alteration of Mafic Intrusive Rocks, Ph.D. Dissertation, Washington University, St. Louis, University Microfilms.

Sassani, D.C., and Pasteris, J.D., 1988. Preliminary investigation of alteration in a basal section of the southern Duluth Complex, Minnesota, and the effects on the sulfide and oxide mineralization, in G. Kisvarzanyi and S.K. Grant, eds., North American Conference on Tectonic Control of Ore Deposits and the Vertical and Horizontal Extent of Ore Systems, Proceedings Volume, University of Missouri-Rolla, 280-291.

SNL (Sandia National Laboratories), 2014. Evaluation of Options for Permanent Geologic Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste in Support of a Comprehensive National Nuclear Fuel Cycle Strategy (2 Volumes). FCRD-UFD-2013-000371. Albuquerque, NM: US Department of Energy Used Fuel Disposition Campaign.

Stober I, and Bucher K.,1999, Origin of salinity of deep groundwater in crystalline rocks, Terra Nova, 11, p. 181-189.

Stober I, and Bucher K (2000) Hydraulic Properties of the upper Continental Crust: data from the Urach 3 geothermal well. In: Hydrogeology of Crystalline Rocks (edsStober I, Bucher K), pp. 53-78. Kluwer Academic Publishers, Dordrecht.

Stober I and Bucher K (2004) Fluid sinks within the earth’s crust. Geofluids 4(2): 143–151.

Stober, I. & K. Bucher, 2007. Hydraulic properties of the crystalline basement. Hydrogeology Journal, 15:213 224.

21

Sassani,SNL.Goldschmidt2017August14,2017