FLORIDA STATE UNIVERSITY · UNIVERSITY OF FLORIDA · LOS ...Lab as a principal investigator . In...

64
VOLUME 17 • NO. 2 SPECIAL EDITION NATIONAL HIGH MAGNETIC FIELD LABORATORY FLORIDA STATE UNIVERSITY · UNIVERSITY OF FLORIDA · LOS ALAMOS LAB 2009 Science Highlights

Transcript of FLORIDA STATE UNIVERSITY · UNIVERSITY OF FLORIDA · LOS ...Lab as a principal investigator . In...

  • VOLUME 17 • NO. 2SPECIAL EDITION

    N AT I O N A L H I G H M AG N E T I C F I E L D L A B O R ATO RY

    F LO R I D A S TAT E U N I V E R S I T Y · U N I V E R S I T Y O F F LO R I D A · LO S A L A M O S L A B

    20

    09

    Sci

    ence

    Hig

    hli

    gh

    ts

  • 2

    tABL

    E O

    F c

    ON

    tEN

    tS 4 . . . IntroductionfromtheDirector

    6 . . . Education,OutreachandDiversity

    COnDEnsEDMattErPhysICsGraphene, Basic Superconductivity, Other Condensed Matter, Qubits & Quantum Entanglement, Quantum Fluids & Solids, Condensed Matter Technique Development, Magnetism & Magnetic Materials

    8 . . . symmetryBreakingoftheZeroEnergyLandauLevelinBilayerGraphene

    9 . . . Many-bodyInstabilityofCoulombInteractingBilayerGraphene

    10 . . Pronouncedhalf-IntegerQuantumhallEffectonEpitaxialGrapheneupto70K

    12 . . halfIntegerQuantumhallEffectinhighMobilitysingleLayerEpitaxialGraphene

    13 . . CyclotronresonanceattheChargeneutralPointofGraphene

    14 . . WhatCanWeLearnfromtheangle-dependenceofQuantumOscillationsinyBa2Cu

    3O

    6+x?

    16 . . LandauLevelPhysicsinanUnderdopedhightemperaturesuperconductoryBa2Cu

    3O

    6 .56

    17 . . highFieldspecificheatofUltracleanyBCO6 .55

    :CoexistingFermiLiquidandd-wavesuperconductingGap

    18 . . topologicalChangeoftheFermisurfaceinternaryIronPnictideswithreducedc/a ratio:adehaas–vanalphenstudyofCaFe

    2P

    2

    19 . . MagneticOrderingoftheRElatticeinREFeasO:theOddCaseofsm .aspecificheatInvestigationinhighMagneticField

    20 . . InterplayofFrustrationandMagneticFieldforthe2DQuantumantiferromagneticCu(tn)Cl2

    21 . . MagnetizationMeasurementsofα-UraniumUsingaPiezoresistiveCantileverinPulsedMagneticFields

    23 . . anElectronicInstabilityinBismuthFarBeyondtheQuantumLimit

    24 . . Electricalreadoutof31PspinQubitsinCrystallinesiliconathighMagneticFields

    25 . . topologicalQuantumComputingwithread-rezayistates

    26 . . nanodropletFormationinsolidsolutionsofVeryDilute3heinsolid4he

    28 . . highresolutionMiniatureDilatometerBasedonaFMPiezocantilever

    29 . . FirstaCheatCapacityMeasurementinCapacitor-Bank-DrivenPulsedFields

    30 . . DecompositiontemperatureofMnBito45tesla

    MaGnEtsCIEnCE&tEChnOLOGyEngineering materials, instrumentation, magnet technology, superconductivity-applied

    32 . . CurrenttransportatGrainBoundariesinsuperconductingBa(Fe1-x

    Cox)

    2as

    2Bicrystals

    33 . . VortexLiquid-glasstransitionUpto60tinnano-engineeredCoatedConductors

    35 . . .DevelopmentofhighCriticalCurrentDensityinMultifilamentaryround-wireBi2sr

    2CaCu

    2O

    8+δby

    strongOverdoping

    36 . . In-situMeasurementsofMagneticallyDrivenMotionofspecificIndividualGrainBoundariesinZnwithahighFieldMagnetMicroscopyProbe

    38 . . MrIEvaluationofadsorbedWaterinsolidsat21 .1t

    39 . . DesignoftheMagnetLabsplitresistiveUserMagnetforscattering

  • 3

    ChEMIstryChemistry, magnetic resonance techniques, geochemistry

    43 . . high-fieldQCPMGnMrofLargeQuadrupolarPatternsUsingresistiveMagnets

    42 . . MrMicroimagingwithaCylindricalCeramicDielectricresonatorat21 .1t

    44 . . EfficientDouble-resonanceCoilforLow-γMrIofLargerodentBrainsat21 .1tesla

    45 . . InfluenceofPb(II)IonsontheEPrPropertiesofthesemiquinoneradicalsofhumicacidsandModelCompounds:highFieldEPrandrelativisticDFtstudies

    47 . . high-FieldEPrandMagneticsusceptibilitystudiesontetranuclearFerromagneticQuinolineadductsofCopper(II)trifluoroacetate

    48 . . ChemicalspeciationofCalciumandsodiumnaphthenateDepositsbyElectrosprayIonizationFt-ICrMassspectrometry

    50 . . arobusttwo-Dimensionalseparationfortop-DowntandemMassspectrometryoftheLowMassProteome

    LIFEsCIEnCEsBiochemistry and biology

    52 . . solid-state35ClnMrspectroscopyofaVarietyofhydrochloridePharmaceuticals

    53 . . ExploitingMarineCyanobacteriaforDrugDiscovery

    55 . . KItKinaseMutantsshownovelMechanismsofDrugresistancetoImatinibandsunitinibinGastrointestinalstromaltumorPatients

    56 . . In vivosodiumandProtonMrImagingofLargerodentsat21 .1t

    58 . . anovelapproachtoDementia:highresolution1hMrIofthehumanhippocampusat21 .1t

    59 . . MrMicroscopyofnerveFiberstructureattheCellularLevel;Validationoftractography

    special edition

    Sign up for an online subscription at http: //www.magnet.fsu.edu/mediacenter/

    publications/subscribe.aspx

    Trying to reduce your carbon footprint?

    Mag lab directorGreg Boebinger

    associate director for ManageMent

    and adMinistrationBrian Fairhurst

    director of public affairs

    Susan Ray

    editorAmy Mast

    art direction and production

    Savoy Brown

    published by:national HigH Magnetic

    field laboratory1800 E. Paul Dirac Drive

    Tallahassee , FL 32310-3706

    Tel: 850-644-0311Fax: 850-644-8350

    www.magnet.fsu.edu

    This document is available in alternate formats upon request. Contact Amy Mast for assistance. If you would like to be added to our mailing list, please write us at the address shown above,

    call 850-644-1933, or e-mail [email protected].

    on the cover:thecoverimagewaspulledfromafigure

    showingangle-dependentquantum-oscillationdatainyBa

    2Cu

    3O

    6 .56takeninthehybridmagnet .thework,

    byP .a .Goddardet al.,hasbeenacceptedasanEditors’suggestioninPhysical Review Bandissummarizedonpage14 .

  • 4 VolUMe 17 · no. 2

    Dir

    EctO

    r’S

    iNtr

    OD

    uc

    tiO

    N Welcometothe2009highlightsIssueFortheMagnetLab,2009wasayearofchangeandprogress–

    changeinsomeofouroperationalproceduresandprogressinourownandourusers’research .thehighlightsof2009’sbreakthroughscienceareincludedinthisissueofMag Lab Reports,whichcanbefoundalongwithpastissuesatwww .magnet .fsu .edu/mediacenter/publications/ .theselectionsinthisissueshowcaseoutstandingresearchthatisrepresentativeofthequality,creativityandbreadthofthelab’sscientificuserprogram .theselectioncriteriaalsofavorresearchthatispublishedand/oradvancesanewtechniqueforuserresearchinhighmagneticfields .

    aftercombingthrough416submittedresearchreportsfrom17categoriesrepresentingcondensedmatterphysics,magnetscienceandtechnology,chemistryandthelifesciences,thelab’sscienceCouncilmaderecommendationstotheDirector(that’sme),resultinginthe38highlightsincludedinthisissue .

    äthisyear,submittedresearchreportsareupto416,roughlya10-percentincrease .

    ä26percentoftheresearchactivities(82reports)werealreadypublishedin2009orareacceptedforpublicationthisyear,manyinprominentjournals .

    äanadditional10percentweresubmittedforpublication;and35percenthavemanuscriptsinpreparation .

    Whatpresentlyisthemostrapidlygrowingresearchtopicinhighmagneticfieldresearch?Inaword(andinasingleorbi-layer):Graphene .DuringthispastyearattheMagLab,grapheneresearchblossomedfromanexcitingnewfieldinvolvingjustafewusergroupstoamajorresearchprogramwith17differentvisitingusergroups .Weareparticularlypleasedthatsixofthe17groupsareheadedbynew principal investigatorsattheMagnetLab,atestimonytothevibrancy(andaccessibility!)ofhighmagneticfieldresearchinouruserprogram .(Checkoutpages8-14forarepresentativesamplingofrecentgrapheneresearch .)

    anewprincipalinvestigatorisdefinedasanyscientistperforminghisorherfirstexperimentattheMagLabasaprincipalinvestigator .In2009,fullyone-thirdofthePIsinouruserprogramwere,thuslydefined,new .theMagnetLabreported118newPIs:28inthePulsedFieldProgram,23intheDCFieldProgram,21inIonCyclotronresonance(ICr),20inElectronMagneticresonance(EMr),15intheadvancedMagneticresonanceImagingandspectroscopyProgram(aMrIs),and11inthenuclearMagneticresonance(nMr) .

    tocomplementthisgrowth,thelablaunchedastreamlinedUser portalforusersofanyoftheMagLabfacilitiestoapplyformagnettime(https://users .magnet .fsu .edu/) .theUserPortalisaccessibleinoneclickfromtheMagnetLabhomepage,andincludesalloftheMagnetLab’suserpoliciesandprocedures,aswellasthensFCooperativeagreementthatgovernsuseroperations .

    InMarchof2009,theMagnetLab’slargestuserprogram,thedc Field program,rolledout“flextime”foritsusers .Magnetshiftswereextendedby2 .5hourseach,providingeachexperimentwith33percentmoremagnettime .Underflextime,eachuserisallocatedanenergybudgetandisfreetobestusethemegawatt-hoursforhisexperiment .DCmagnetusersalsowillwelcome–thoughtheyperhapswillnotevennotice–amulti-million-dollarreplacementoftheMagLab’scryogenicinfrastructure,begunin2009andcontinuingoverthenexttwoyears .Ifwewerenotabletoaddressthis“nuts-and-bolts”issue,thedecrepitsystemwouldhavereachedacrisisstatesoonerratherthanlater .

    theMagLabdirector–speakingofdecrepit–turned50in2009 .

    thepulsed Field Facilityinitiatedthefirstsetofuserexperimentsinthe85-teslamulti-shotmagnet .sixproposalswereselectedformagnettimewithfourbackupproposalsalsoselected .thisuniquemagnetsystemhasalreadyproducedpapersinPhysica B,Physical Review Letters andProceedings of the National Academy of Sciences .

    theHigh B/t FacilityattheUniversityofFloridacommissionedafast-turnarounddilutionrefrigeratorannexadjacenttotheMicrokelvinLaboratory .this10-tesla,10-mKsystemallowsuserstotestsamplesanddebugnewlow-temperatureexperimentaltechniques .Onceeverythingisworking,theexperimentcanbetransferredtothehigh-fieldnuclear-demagnetizationcryostats,inwhichhighB/texperimentscantakeweeksorevenmonthstoperform .

    special edition

  • special edition VolUMe 17 · no. 2 5

    Dir

    EctO

    r’S

    iNtr

    OD

    uc

    tiO

    NtheeMR programwasenhancedinthesummerof2009withextendedfrequencycoverageto1thzandtheadditionofMössbauerspectroscopy .Inaddition,stevehill,directoroftheEMruserprogramsincehisarrivalatFsUin2008,commissionedthefruitsofhisFsUstart-uppackage:asecondEMrlabattheMagLab,featuringtwonewmulti-high-frequency(8-700Ghz)heterodyneinstrumentsforhigh-fieldEMrmeasurements .

    ProbedevelopmentinournMR programcontinuedtosetthestandardin2009 .Magicanglespinning(Mas)triple-resonanceprobesweresuccessfullytestedtooperateat17,000revolutionspersecondononeofthe600-Mhzinstruments,layingthegroundworkfordevelopmentofanewsuiteofMasandalignedtriple-resonanceprobesat400,600,and900Mhzin2010 .

    BycombiningnationalInstitutesofhealthandamericanrecoveryandreinvestmentact(“stimulus”)funds,aMRiscontractedin2009foranewconsoleandgradientsforthe11 .1-t/40-cmimagingmagnetandanewanimalMrIsystemat4 .7t/33cmwithanactivelyshieldedmagnet .thenewequipmentwillallowaMrIsuserstocapitalizeonstate-of-the-artdigitaltechnologyforpulsesequencegenerationanddataacquisition .theadditionofanimalimagingandspectroscopyspecialisthuadongZeng,whojoinedaMrIsinlate2009,willhelpusersgetthemostoutoftheupgradedsystems .

    theicR user programcontinuedtoimprovetheresolutionformassspectroscopyofsmallmoleculesbyaddinganadditionalpumpingstagetoits14 .5-t,104-mmboresystem .ButthebiggestnewsbyfarforourICruserprogramwasthelateDecemberawardbythenationalscienceFoundationof$15milliontopurchaseastate-of-the-art,21-tsuperconductingmagnetsystem .Onwardtohigherresolution,highersensitivity,andhigherall-things-that-are-good .

    Other2009facts:

    äthe Magnet lab User collaboration Grants program,orUGCP,(viewablehere:www .magnet .fsu .edu/usershub/funding/index .html)supported41ofthe416researchactivitiesin2009 .theUCGPpromotesboldbutriskyresearchandtechniquedevelopmentattheMagLabbyencouragingcollaborationsamonginternalandexternalinvestigatorsandprovidinginitialseedmoneyfornewresearchprograms .UCGPgrantsareourprimary”bottomsup”mechanismforenhancingourmeasurementcapabilitiesandareresponsibleformanypublicationsinhigh-impactjournals,includingthreearticlesinNature,16inPhysical Review Letters,andsixintheJournal of the American Chemical Societyin2009 .

    äthemajorityofuserresearchprojectsin2009werefundedbytheU .s .nationalscienceFoundation(justover50percent,includingtheMagLab’sUCGPgrants),theU .s .DepartmentofEnergy(approximately13percent),andtheU .s .nationalInstitutesofhealth(10percent) .Otherfundingorganizationsincluded:americanheartassociation,BurroughsWellcome,DanishnationalresearchFoundation,theDeutscheForschungsgemeinschaft(Germany),ElectricPowerresearchInstitute,agencenationaledelarecherche(France),IketaniscienceandtechnologyFoundation(Japan),JapansocietyforthePromotionofscience,KeckFoundation,KoreanationalresearchFoundation,nasa,nationalsciencesandEngineeringresearchCouncil(Canada),U .s .airForceOfficeofscientificresearch,U .s .army,U .s .navy,U .s .Departmentofagriculture,andnumerousuniversities .

    asalways,ourprimarythanksgotoourusers,whoprovidethecompellingandvariedstuffthatfillseachannualhighlightsissue .Greatstuff .specialthankstoscienceCouncilChairalbertMiglioriandscienceCouncilmembersrafaelBrüschweiler,MarkEmmett,LevGor’kov,stephenhill,DavidLarbalestier,DenisMarkiewicz,DraganaPopovicandGlennWalter,thescientificbreadththatworkswithKathyhedick,theorganizationalbrawn,todrivetheselectionofthesehighlights .

    rockandroll,

    GrEGOrys .BOEBInGEr

  • 6 VolUMe 17 · no. 2 special edition

    EDu

    cAt

    iON

    hig

    hLi

    gh

    t EDUCatIOn,OUtrEaChanDDIVErsItyCutting-edgescienceistheMagnetLab’scoremission,butitwon’tbeeffectiveiffuturegenerationsdon't

    understandandsupportit .theMagnetLabhasbecomeincreasinglycreativeinitsapproachtoreachingstudents,teachers,andthepublic,andinrecruitingpopulationstraditionallyunderrepresentedinthesciences .

    susan Ray (Mag lab-FsU)

    educationtheLab’sCenterforIntegratingresearch&Learning(CIrL)expandeditsnontraditionaloutreachwith

    thelaunchof“Doingsciencetogether”in2009 .Doingsciencetogetheroffersbothkidsandadultsopportu-nitiestolearnabouttheirworldwithhands-onactivities .CIrLpartneredwithBarnes&noblebooksellersforaseriesofDoingsciencetogethernights,reaching750studentsandparents .

    ·“traditional”outreachwasprovidedto8,104K-12studentsin2009:7,155inclassroomvisitsand949whovisitedtheMagnetLabintallahasseefromsixcountiesinFloridaandGeorgia:Calhoun,Columbia,LeonandWakullacountiesinFlorida,andDecaturandthomascountiesinGeorgia .

    ·theresearchExperiencesforUndergraduatesprogramhosted21undergraduatestudentsfrom13differentcollegesanduniversitiesaroundtheUnitedstates .

    ·theresearchExperiencesforteachersprogramhosted13teachersfromsouthFloridatonorthernUtah .

    ·Partneringwithseveralotherorganizations,CIrLcontinueditsimmersivesummerprogrammingforgirls,calledsciGirls .

    MagnetLabK-12EducationOutreachCoordinatorCarlosVillahostednearly950studentsattheMagLabin2009 .

  • special edition VolUMe 17 · no. 2 7

    EDu

    cAt

    iON

    hig

    hLi

    gh

    tdiversitytheMagnetLabaspirestobecomeanationallyrecognizedleaderinthediversityofitsscientific,

    technical,andengineeringstaff,muchthesamewayitisalreadyrecognizedforitseducationandoutreach .Withthisgoalinmind,thelabin2009continueditsrecruitingpoliciesofincludingatleastonememberoftheMagnetLabDiversityCommitteeoneachsearchcommitteeforscientificandtechnicalstaff,andadvertisedjobopeningsinvenuesthattargetwomenandminorities .

    Followingtherecommendationfromthe2008nsFsiteVisitreport,thelabexploredwaystoestablishtheDependentCaretravelGrantProgram,whichseekstoassistandadvancethecareersofunderrep-resentedgroupsincludingwomenbyprovidinggrantsfortravel-relatedexpensesfordependents .theDiversityCommitteedevelopedtheinitialproposal,andfurtherdiscussionsareunderwaywiththeFsUOfficeofresearch .alsoin2009,theFsUOfficeofDiversity&EqualOpportunityconductedatrainingprogramattheMagnetLab .

    outreachOverthepastfewyears,thelabhasincreasinglylookedforwaystoengagethepublicbygivingthem

    moreopportunitiestovisitthelab .OnJune17,2009,thelablaunchedstandingpublictoursthethirdWednesdayofeverymonthfrom11:30a .m .to12:30p .m .Morethan90peopleattendedthefirststandingtour .VisitorsarenotrequiredtocallaheadorrsVP;theyjustshowup .Previously,tourswereonlyavailableforpre-scheduledgroupsofeightorgreater .

    Openhouse2009continuedthetrendofrecord-breakingattendancewith5,573visitors(seefigure1) .newfor2009wasapartnershipwithamerica’ssecondharvestFoodBankoftheBigBend .Openhouseguestswereaskedtobringacannedgoodorothernon-perishablefooditemastheunofficialpriceofadmission .Inall,theMagnetLabcollectedmorethan2,000poundsoffood .the2009OpenhousealsomarkedthedebutofthewildlypopularKidsZone,whichfeatureddemonstrationsandactivitiesforchildrenforpre-Kthrough5thgradeandopportunitiesforkidstoconnectwithlab’seducationalprogramming .

    Mag lab open House 2009 by the numbers

    number of visitors 5,573

    PoundsoffoodcollectedforsecondharvestFoodBank 2,021

    Cupsofcornstarchusedinoobleck(anon-newtonianfluid!) 1,440

    numberofspectrumglassesgivenoutforvisitorstoseerainbows 1,000

    numberofballoonsblownupinatmosphericpressuredemonstration 200

    numberofPeepsblownupinatmosphericpressuredemonstration 150

    Poundsofpotatoesfiredinpotatocannon 100

    numberofparticipatoryscienceactivities 75

    numberofcometscookedincomet-makingdemonstration 35

    numberofquartersshrunkinshrinkingquartermachine 25

    numberofCommunityClassroomConsortiumpartnersparticipating 14

    Figure 1.

  • 8 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S Understanding of the novel quantum hall effect in graphene, especially the behavior at the chargeneutral point where the density of states vanishes at zero field, remains an active area of research .Earlier transport studies in single layer graphene have shown that high magnetic fields lift the unusualfourfolddegeneracyofthezero-energyLandaulevel(LL)andleadtotheformationofagappedstate .Inbilayergraphene,ontheotherhand,thezero-energyLLhasaneightfolddegeneracy .thisreportdescribestransportmeasurementsonbilayergrapheneonasiO

    2substrate,whichdemonstratethathighmagnetic

    fieldscompletelyliftthedegeneracyandleadtotheinsulatingbehavioratthechargeneutralpoint,similartotheresultsonsinglelayergraphene .althoughthedatasuggestthatelectron-electroninteractionsmightberesponsiblefortheliftingofthedegeneracy,theoriginofthissymmetrybreakinginbilayergrapheneisstillunknownandmorestudiesaresuretofollow .

    •thisworkwaspublishedinPhys. Rev. Lett.,104,066801(2010) .

    symmetryBreakingoftheZeroEnergyLandauLevelinBilayerGrapheneY. Zhao (columbia University, physics); p. cadden-Zimansky (columbia University, physics & Magnet lab); Z. Jiang (Georgia institute of technology, physics); and p. Kim (columbia University, physics)

    intRodUctionItshybridlinear-parabolicbandstructureandtheassociated2πBerryphaseofitschargecarriersmake

    thephysicsofbilayergrapheneasdistinctfrommonolayergrapheneasthelatterisfromconventionaltwo-dimensionalelectronsystems .Inparticular,thesepropertiesleadtotheformationofanunprecedentedeightfolddegenerateLandaulevel(LL)thatformsatthechargeneutralcrossoverpointundersufficientlyhighmagneticfields .thisdegeneracyhaspreviouslybeendetectedbyobservingtheformationofsuccessivequantumhallplateausatν=-4andν=4fillingfactors .

    expeRiMent ResUltsBysubjectinghighmobilitybilayergraphene(lowerinsetFigure1)tomagneticfieldsinexcessof25

    tesla(t),thecompleteliftingofthiseightfolddegenerateLLcanbeobserved1 .asshowninFigure1,thehallconductanceatthelowestfielddisplaystheν=-4andν=4fillingfactorsthatmarktheinitialdegeneracy .asthefieldisincreased,newplateausemergeassuccessivesymmetriesarebroken,withplateauseventuallyappearingateachfillingfactor .

    Figure 1 Figure 2

    thesenewfillingfactorsalsocanbedetectedthroughthemeasurementofnewresistanceminimainthelongitudinalresistance .Byexaminingthebehavioroftheseminimaasthemagnitudeanddirectionoftheappliedfieldischanged,informationabouttheoriginofthesymmetrybreakingthatunderlieseachnewplateaucanbegained .Inparticular,thesensitivityoftheminimaatν=2&3totheperpendicularcomponentoftheappliedfieldratherthantothetotalfield(Figure2)indicatesthatthesestatesarenotformedbyconventionalZeemansplitting .

  • special edition VolUMe 17 · no. 2 9

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    SacKnowledGeMentsthisworkissupportedbytheDOE(no .DE-FG02-05Er46215) .

    ReFeRences 1 .Zhao,y .,etal .,Phys. Rev. Lett .,104,066801(2010) .

    Low-energyelectronicstructureofbilayergrapheneismadeoftwoFermipointswithquadraticdispersions .Usingrenormalizationgroup(rG)theorytostudylow-energyproperties,wefindthatthetwoquadraticFermipointsspontaneouslysplitintofourDiracpointsatzerotemperature .thisresultsinanematicstatethatspontaneouslybreaksthesixfoldlatticerotationsymmetryintoatwofoldone,withafinitetransitiontemperature .Criticalpropertiesofthetransitionandeffectsoftrigonalwarpingarealsodiscussed .

    •thisworkwaspublishedinPhys. Rev. B Rapid Commun .,81(4),041401r(2010) .

    Many-bodyInstabilityofCoulombInteractingBilayerGrapheneoskar Vafek, Kun Yang (FsU/Magnet lab)

    intRodUctionLow-energyelectronicstructureof(unbiased)bilayergrapheneismadeoftwoFermipointswith

    quadraticdispersions,iftrigonal-warpingandotherhighordercontributionsareignored .Weshowthatasaresultofthisqualitativedifferencefromsingle-layergraphene,short-range(orscreenedCoulomb)interactionsaremarginallyrelevant .WeuserGtostudytheireffectsonlow-energypropertiesofthesystem,andshowthatthetwoquadraticFermipointsspontaneouslysplitintofourDiracpointsatzerotemperature .thisresultsinanematicstatethatspontaneouslybreaksthesixfoldlatticerotationsymmetry(combinedwithlayerpermutation)downtoatwofoldone,withafinitetransitiontemperature .Criticalpropertiesofthetransitionandeffectsoftrigonalwarpingarealsodiscussed .

    ResUlts and discUssionInthisworkweapplytherGmethodtothebilayergraphenewithBernalstacking .Whileingeneral,the

    motionofthenon-interactingelectronsinsuchpotentialdoesnotleadtodivergingsusceptibilitiessincetheenergyspectrumhastwosetsoffourDiracpointsinthecornersoftheBrillouinzone(duetotrigonalwarping),ifonlynearestneighborhoppingisconsidered,eachsetoffourDiracpointsmergesintoasingledegeneratepointwithparabolicdispersion .asthenearestneighborhoppingamplitudesarethelargest,thelatteristhenaturalstartingpointoftheoreticalanalysis .

  • 10 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S next,wedeveloptheeffectivetheoryforthelowenergydegreesoffreedom,findingthatifwestartwiththeinteractioninthedensity-densitychannelonly,twoadditionalcouplingconstantsaregenerated .WethereforetracktherGflowofthethreecouplingconstantstofindthattheyalldivergeataspecificenergyscale,whichweassociatewiththetransitiontemperature .Whileallthreecouplingsdiverge,theirratiosflowtonon-trivial(universal)numbersshowninthefigurebelow .

    thesolutionoftherGflowequationsallowsustoanalyzetheflowofthesusceptibilitiestowardvariousbrokensymmetrystates .Wefindthesusceptibilitiesin15particle-holechannelsand16particle-particlechannelstofindthatthemostdivergentoneisthenematicchannel .

    conclUsionsthisleadsustotheinterestingconclusionthatatlowenoughtemperature,theCoulombinteractions

    leadtotheelectronicnematicstateviaacontinuousphasetransition .thisstatebreaksthethreefoldrotationalsymmetry,butdoesnotbreakthe(lattice)translationalsymmetry,makingitdistinctfromstripes .Moreover,whileinthecontinuumapproximationthetransitionwouldbeofKostrelitz-thoulesstype(infiniteorder)thepresenceofthethreefoldsymmetryallowsforathird-orderorderparameterinvariant .thisputsthetransitionintheuniversalityclassofthe3-statePottsmodel,i .e .thetransitionremainscontinuousdespitebeingfirstorderwithinthemean-fieldapproximation .

    ReFeRences 1 .Vafek,O .andyang,K .,Phys. Rev. B Rapid Commun .,81(4),041401r(2010) .

    theremarkablepropertiesofepitaxialgraphene(EG)grownonsiliconcarbidehavemadeitapromisingplatform for graphene-based electronics . an interesting question that remained to be addressed iswhethertheelectricalpropertiesofepitaxialgrapheneonsiCareessentiallythesameasthoseinexfoliatedgraphenefilms,wheretheobservationofthequantumhalleffect(QhE)waspivotalforgrapheneresearch .the group from Purdue examined gated, few-layer EG films grown on the si-face of 4h siC substrates .theyobservedwell-definedQhEthatreproducestheuniquefeaturesexhibitedbyexfoliatedsingle-layergraphene, including a Berry phase of π .the electrical properties of films were retained after gate stackformation without significant degradation . the user group from Georgia tech studied a high-mobilitysingle graphene layer grown on the C-face of the same substrate .the mobility was comparable to thebestexfoliatedgrapheneflakesandanorderofmagnitudelargerthansi-faceEGmonolayers .thegroupdemonstratedthecharacteristicQhEwithaBerryphaseofπ .theresearchershavealsoshownthatQhEisinsensitivetoprocessinginduceddisorder .theseimportantexperimentsbringepitaxialgrapheneyetastepclosertobecomingascalableplatformforgraphene-basedelectronics .

    Pronouncedhalf-IntegerQuantumhallEffectonEpitaxialGrapheneupto70Ktian shen, adam t. neal, Jiangjiang Gu, Min xu, Yanqing wu, Mike Bolen, Michael a. capano, and peide d. Ye (purdue University, electrical and computer engineering); lloyd engel (Magnetlab)

    intRodUctionrecentreportsoflarge-areaepitaxialgraphenebythermaldecompositionofsiCwafershaveprovided

    themissingpathwaytoaviableelectronicstechnology .1-5aninterestingquestionthatremainstobeaddressediswhethertheelectricalpropertiesofepitaxialgrapheneonsiCareessentiallysameasthoseinexfoliatedgraphenefilms .5-7Forexample,thewell-knownquantumhalleffect(QhE),adistinguishingfeatureofatwo-dimensionalelectronicmaterialsystem,isjustbeginningtobediscoveredinepitaxialgraphene .8-10WereportontheobservationoftheQhEingatedepitaxialgraphenefilmsonsiC(0001),alongwithpronouncedshubnikov-dehaas(sdh)oscillationsinmagneto-transport .thelastQhplateauisespeciallypronounced,evenattemperaturesashighas70K,reachingthetemperaturelimitofthepresentexperimentalsetup .

  • special edition VolUMe 17 · no. 2 11

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    SResUlts and discUssion

    Figure1showsthehallresistanceandmagneto-resistancemeasuredatt=0 .8Kwithfloatinggatebias .thehorizontaldashedlinescorrespondtoh/(4n+2)e2values .theQhEoftheelectrongasinepitaxialgrapheneshowsonequantizedplateauandtwodevelopingplateauinr

    xy,withvanishing

    rxx

    inthecorrespondingmagneticfieldregime .Figure2showsthetemperaturedependenceofr

    xxatVg=-5V .Pronouncedsdhminimumremain

    upto70K .Figure3showsthetemperaturedependenceofr

    xyatVg=-5V .apronouncedn=0

    Qhplateauremainsupto70K .ExperimentswereperformedusingsCM-2attheMagnetLab’stallahassee,FL,headquarters .

    Figure 2

    Figure 3

    Figure 1

    conclUsionsInconclusion,ahigh-kgatestackonepitaxialgrapheneisrealizedbyinsertingafullyoxidized

    nanometerthinaluminumfilmasaseedinglayerfollowedbyanatomic-layerdepositionprocess .theelectricalpropertiesofepitaxialgraphenefilmsaresustainedaftergatestackformationwithoutsignificantdegradation .atlowtemperatures,theQhEisobservedinepitaxialgrapheneonsiC(0001),alongwithpronouncedsdhoscillations .thisquantumexperimentconfirmsthatepitaxialgrapheneonsiC(0001)sharesthesamerelativisticphysicsastheexfoliatedgraphene .

    acKnowledGeMentstheauthorswouldliketothankJ .a .CooperJr .andL .P .rokhinsonforvaluablediscussions,andG .

    Jones,t .MurphyandE .PalmattheMagnetLabforexperimentalassistance .PartoftheworkongrapheneissupportedbynanoelectronicsresearchInitiativethroughMidwestInstituteofnanoelectronicsDiscovery,DarPaandIntelCorp .theMagnetLabissupportedbynsFGrantnos .DMr-0084173andECs-0348289,thestateofFlorida,andDOE .

    ReFeRences 1 .y .Q .Wu,et al.,Appl. Phys. Lett.,92,092102(2008) . 2 .G .Gu,et al.,Appl. Phys. Lett ., 90,253507(2007) . 3 .J .s .Moon,et al.,IEEE EDL, 30,650(2009) . 4 .J .Kedzierski,et al.,IEEE TED,55,2078(2008) . 5 .C .Berger,et al.,Science,312,1191(2006) . 6 .K .s .novoselov,et al .,Science,306,666(2004) . 7 .y .Zhang,et al.,Nature,438,201(2005) . 8 .t .shen,et al.,Appl. Phys. Lett.,95,172105(2009) . 9 .J .Jobst,et al.,arXiv:0908 .1900v1 . 10 .X .Wu,et al.,arXiv:0908 .4112 .

  • 12 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S halfIntegerQuantumhallEffectinhighMobilitysingleLayerEpitaxialGraphenexiasong wu (Georgia tech), Yike Hu (Georgia tech), claire Berger (cnRs & Georgia tech), walt de Heer (Georgia tech)

    intRodUctiontheremarkablepropertiesofepitaxialgraphene(EG)grownonsiliconcarbide,likeitshighmobility

    andgrapheneelectronicstructure1andthefactthatitcanbepatterned,havemadeitapromisingplatformforgraphene-basedelectronics2 .however,thequantumhalleffect(QhE)waselusive .theobservationoftheanomalousQhEinmicroscopicexfoliatedgrapheneflakesthatweredepositedonsiliconoxidesubstrates3waspivotalforgrapheneresearch .ItsabsenceinEGledtospeculationsaboutthequalityofEGandtheeffectofthesiliconcarbidesubstrateontransport .thedemonstrationoftheQhEinthepresentexperiment4inpatternedEGisanimportantmilestoneingraphenescience .

    expeRiMentalanEGmonolayerwasgrownonasemi-insulatingsiliconcarbidesubstrate2andcharacterizedby

    atomicforcemicroscopy,ellipsometryandramanspectroscopy .theEGlayerwaselectron-beampatternedtoproduceahallbarstructureandmetalcontactpadswereapplied .thesCM2facilityattheMagnetLabwasused .transport(longitudinalandtransverse–hall-resistance)measurementswereperformedupto18tesla(t)at4K .thechargedensitywascontrolledbyadjustingtheexposuretohumidityaswellasbyexposuretoambientlight .

    ResUlts and discUssionFromthetransportdata,themobilityofthesampleis20,000cm2/V·s .thehigh-fieldexperimentshows

    awellresolvedQhE(seeFigure):quantumhallplateausareobservedinthemagneticfielddependenceofthehallresistance .thehallplateauscorrespondtotransverseresistancesρ

    xy=(h/4e2)/(n+1/2)forn=0to

    3,wheren istheLandaulevelindex,whichestablishesthenontrivialBerry’sphaseofπ .thelongitudinalresistivityρ

    xx showsthecharacteristicshubnikov-dehaasoscillations,inwhichLandaulevelsfromn=0upto

    n=7areeasilyrecognized .theoscillationsdevelopintotheQhEinhighfields,manifestedbycharacteristiczeroresistanceminimaandhallplateaus .DespitethefactthatthegrapheneisdrapedoverseveralsiCsteps,isheavilycontaminatedandhaspleats(seeaFMimageinthefigureinset),themobilityishighandtheanomalousQhEisunambiguouslyobserved .

    Figure 1.Quantumhalleffectinsinglelayerepitaxialgraphene .InsetaFMimageofthepatternedgraphenedrapingoverthesiCsteps .

  • special edition VolUMe 17 · no. 2 13

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    SconclUsionsthequantumhalleffect,withaBerry’sphaseofπisdemonstratedforthefirsttimeonasingle

    graphenelayergrownontheC-faceof4hsiliconcarbide .themobility(20,000cm2/V·sat4K)iscomparabletothebestexfoliatedgrapheneflakesonsiO2andanorderofmagnitudelargerthansi-faceepitaxialgraphenemonolayers .WehavealsoshownthatQhEisinsensitivetoprocessinginduceddisorder .theseresultsandotherpropertiesindicatethatC-faceepitaxialgrapheneisanidealplatformforgraphene-basedelectronics .

    acKnowledGeMentsthisworkwassupportedbynsFunderGrantno .DMr-0820382andtheW .M .KeckFoundation .We

    thankZ .G .Jiangforinsightfuldiscussions,andacknowledgeE .C .Palm,t .P .Murphy,J .-h .Park,G .E .Jonesforexperimentalassistance .

    ReFeRences 1 .Berger,C .,et al .,Science, 3012,1191(2006) . 2 .Berger,C .,et al .,J. Phys. Chem .B,108,19912(2004) . 3 .Zhang .y .B .,et al.,Nature,438,201(2005) .

    4 .X .Wu,et al .,Applied Physics Letters, 95,223108(2009)

    high magnetic fields lift the fourfold degeneracy of the zero-energy Landau level (LL) in single layergrapheneandleadtotheformationofagappedstate .theprecisemechanismhasbeenasubjectofintensetheoreticalstudy,withelectron-electroninteractionsexpectedtoplayacriticalrole .sincetransportmeasurements are not suitable for detailed studies of a gapped state, the authors of this report haveutilizedinfraredmagnetospectroscopytoinvestigatethezero-energyLLinmonolayergrapheneonasiO

    2

    substrate .this technique issensitive to thecyclotronorbitsofchargecarriers that formthroughout theentiregraphenesheet .Unexpectedandsizableshiftsinthecyclotronresonance(Cr)transitionenergiesareobservedasafunctionoftheLLfillingfactorandappliedfield .theshiftsareattributedtoelectron-electroninteractionsthatnucleateagapinthen=0LL,therebyaffectingtheenergiesofCrtransitionstoandfromthislevel .

    •thisworkwaspublishedinPhys. Rev. Lett .,104 (6),067404(2010) .

    CyclotronresonanceattheChargeneutralPointofGraphenee. a. Henriksen (columbia University, physics), p. cadden-Zimansky (columbia University, physics & Magnet lab), Z. Jiang (Georgia institute of technology, physics), Z. Q. li (columbia University), l.-c. tung (Magnet lab), M. e. schwartz (columbia University, physics), M. takita (Barnard college, physics), Y.-J. wang (Magnet lab), p. Kim (columbia University, physics), and H. l. stormer (columbia University, physics & applied physics & alcatel-lucent)

    intRodUctionOneofthecentralproblemsofgrapheneisgaininganunderstandingofitselectronicbehaviorat

    thechargeneutralpoint(CnP),wherethedensityofstatesvanishesatzerofield,auniqueparticle-holesymmetricLLformsatmoderatefields,andadivergentlongitudinalresistanceisobservedathighfields .thedivergentresistanceprecludesaconventionalcharacterizationoftheunique“n=0”LLusingstandardtransporttechniques,butthislevelisamenabletostudythroughCrtransitionsintoandoutofitthatareobservedbyinfrared(Ir)spectroscopy .

    expeRiMental ResUltsByexaminingIrabsorptionofgrapheneathighfieldswhileitsFermilevelistunedthroughtheCnP,the

    energyoftheCrtransitionsintoandoutofthen=0LLcanbeseendirectly .Whileasingle-electronpictureoftransitionsbetweendegenerateLLspredictsaconstantCrenergy,largeshiftsupward,ashighas20meV,areinvariablyseenintheresonanceenergyattheCnP1 .thefielddependenceoftheseshifts,andthelackofsuchshiftsintheinterbandCrtransitionsthatdonotinvolvethen=0LL,suggestthatahigh-fieldenergygapmayformattheCnP(Figure1) .asthenovellineardispersionrelationofthechargecarriersingraphenerendersKohn’stheorem(whichstatesthatCrisinsensitivetoelectron-electroninteractions)inapplicable,detailedmappingoftheseshifts(Figure2)hasthepotentialtorevealunderlyingmanybodyeffects .

  • 14 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S

    Figure 1 Figure 2

    acKnowledGeMentsthisworkissupportedbytheDOE(DE-aIO2-04Er46133,DE-FG02-05Er46215andDE-FG02-07Er46451),

    thensFunderDMr-03-52738,ChE-0117752,andDMr-0820382,Onr(n000150610138),nystar,theKeckFoundation,MicrosoftProject-Q,andthesrC-nrI-MInD .

    ReFeRences 1 .henriksen,E .,et al .,Phys. Rev. Lett .,104 (6),067404(2010) .

    two noteworthy reports come from one and the same group of the authors using the contactlessconductivitymethodforobservationofquantumoscillations(QO) .amongthefindingsare:theshapeoftheFermisurfaceasdeducedfromtheangulardependenceoftheQO-oscillationfrequency;theangularvariationoftheeffectivemass;andtheLIfshitz-Kosevitchformoftheoscillations .resultsfromP .Goddardet al.includetheobservationofcorrugationsoftheFermisurface(Fs)cylindercausedbytheperpendicular-to-planetunneling .additionalanalysisofdatabys .sebastianet al.showstheapplicabilityoftheLandauFermiliquidconcept .

    WhatCanWeLearnfromtheangle-dependenceofQuantumOscillationsinyBa

    2Cu

    3O

    6+x?

    p. a. Goddard (University of oxford); suchitra sebastian (University of cambridge); n. Harrison (Magnet lab-lanl) M. M. altarawneh (Magnet lab-lanl); c. H. Mielke (Magnet lab-lanl); Ruixing liang (University of British columbia); d. a. Bonn (University of British columbia); w. n. Hardy (University of British columbia) and G. G. lonzarich (University of cambridge)

    two-axisrotationinfixedmagneticfieldsisapowerfultoolforinvestigatingthetopologyoflow-dimensionalFermisurfaces .Inparticular,forhighlyanisotropicmaterials,measuringtheresistivitywhilerotatingthesampleinanappliedmagneticfieldisoftentheonlytechniquethatcandeliverinformationontheFermisurface(Fs)shapeandthenatureoftheinter-planetransportinthebulkofthematerial .

    Inlow-dimensionalmetallicsystemstheFsisusuallymadeupofquasi-one-dimensional(Q1D)sheetsand/orquasi-two-dimensional(Q2D)cylinderswithaslightwarpingduetotheinterlayerelectronictransfer .Magneticquantumoscillations(QOs)aresensitivetoclosedquasiparticleorbitsontheQ2DFssectionsandcanbeusedtodeterminethecross-sectionalareaofthesepocketsperpendiculartotheappliedmagneticfield,aswellasprovidinginformationregardingtheeffectivemassesandscatteringrates1 .however,whenthewarpingoftheFsisverysmallitisdifficult,sometimesimpossible,toextractinformationregardingtheshapeofthepocketsfromanangle-dependenceoftheQOs .thisisbecausethechangeinfrequencyoftheQOsonrotationwillbedeterminedsolelybythecosineoftheanglebetweenthecylinderaxisandthemagneticfield,nomatterwhatshapethefootprintoftheQ2DFsmightbe .theserestrictionsarerelaxedwhenthewarpingoftheFsislargerinmagnitudethantheseparationbetweenLandaulevels .atthefieldsatwhichthisistrue,itshould,inprinciple,bepossiblenotonlytoresolveseparateQOsfortheso-calledneckandbellyorbits(originatingfromthenarrowestandwidestcross-sectionsoftheFs),butalso

  • special edition VolUMe 17 · no. 2 15

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    Stodeduceinformationregardingthein-planefootprintoftheFsfromthedeviationsoftheQOsfromthesimplecosineangular-dependence2,3 .Wehaveattemptedtolookforsignaturesofsuchwarpinginanumberofunconventionalsuperconductors .herewepresentpreliminarydataforyBa

    2Cu

    3O

    6+xfortwocompositions:

    x=0 .54and0 .56 .

    thesampleswerepreparedattheUniversityofBritishColumbia .theQOsweredetectedusingthecontactlessconductivitymethod,whichissensitivetochangesinskindepthviachanges(Df)infrequencyofaresonantcircuit4 .thesestudiestakeplaceatlowtemperaturesinordertomaximizetheamplitudeoftheQOs .highfieldsarerequiredtoovercometherobustsuperconductivitydisplayedbythematerialsandallowtheQOstobeseen .Fixedfieldsarenecessaryforcontinuousangularrotation .Forthesereasonsthe45-teslahybridmagnetattheMagnetLabintallahasseeistheonlyplaceintheworldthatexperimentslikethesecanbeperformed .

    thefigureshowsangle-dependentquantum-oscillationdatainyBa2Cu

    3O

    6 .56takeninthehybridmagnet

    atafieldof45tandatemperatureof1 .5Kandafterabackgroundhasbeensubtracted .θistheanglebetweenthec-axisandthemagneticfield .фistheazimuthalangleofrotationandrunsin15°stepsfrom-54°to154°(bottomtotop) .acompleteangle-dependencewasundertaken .thegapsinthedataresultfromacorrectionforasamplemisalignmentof~7° .Becauseofthesizeoftheinterlayertransfer,theeffectwearelookingforinyBa

    2Cu

    3O

    6+xissubtle,butapreliminaryanalysisoftheangle-dependentdatasuggest

    thatatleastoneQ2DFssectionisdetectedthathasasmallbutmeasurablewarpingandafootprintthatdeviatesfromsimplecircularsymmetry .theseresultshavebeenacceptedforpublicationasanEditors’suggestioninPhysical Review B .

    acKnowledGeMentsWeacknowledgethesupportoftheU .s .DepartmentofEnergy,thenationalscienceFoundation,the

    stateofFlorida,theroyalsociety,trinityCollege(UniversityofCambridge),andtheUKEngineeringandPhysicalsciencesresearchCouncil .

    ReFeRences 1 .shoenberg,D .,Magnetic oscillations in metals (CambridgeUniversityPress1984) . 2 .harrison,n .andMcDonaldr .D .,J. Phys.: Condens. Matt ., 21, 192201(2009) . 3 .Wosnitza,J .,Int. J. Mod. Phys. B,7,2707-2741(1993) . 4 .altarawneh,M .M .,et al., Rev. Sci. Instr ., 80,066104(2009) .

  • 16 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S LandauLevelPhysicsinanUnderdopedhightemperaturesuperconductoryBa

    2Cu

    3O

    6 .56suchitra e. sebastian, G. G. lonzarich (U. of cambridge), Moaz altarawneh, chuck Mielke, neil Harrison (Magnet lab-lanl), d. a. Bonn, Ruixing liang, w. n. Hardy (U. of British columbia)

    intRodUctionForthetwodecadessincethediscoveryofhighT

    ccuprate,physicistshavebeenperplexedastothe

    mechanismofsuperconductivitythat’sunconventionalinitsoriginandinitssurprisinglyhighvalue .Itisbelievedthatthestrangepropertiesofthe“normal”stateoutofwhichsuperconductivityoriginatesmayholdthekeytothismystery .Indeed,experimentssuchasphotoemissionandtransporthaveprobedthehigh-energyandhigh-temperaturepropertiesofthequasiparticlesthatprecedeCooperpairinginhighT

    c

    cuprates,yieldingpeculiarpropertiesthatdonotcorrespondtothoseofaconventionalFermiliquid .

    Forthefirsttime,quantum-oscillationmeasurementsinultra-highmagneticfieldshavebeenabletoprobethelowenergypropertiesofnormalquasiparticlesincupratesuperconductorsbysuppressingthesuperconductingdome .Weareabletoprobetheselow-energypropertiesandcomparethemwithconven-tionalLandauquasiparticlestounderstandwhetherinfacttheFermiliquidpicturecompletelybreaksdowninunderdopedcuprates .herewepresentresultsoflowtemperaturedependentquantum-oscillationamplitudemeasurementsinaportabledilutionfridgeinthe45tesla(t)hybridmagnet,andangular-dependentquantum-oscillationfrequencyandeffectivemassmeasurementsinordertocomparethesewithconventionalFermimetalbehavior .

    expeRiMentalthequantum-oscillationamplitudewemeasuredowntotemperaturesof100mK(figureonright)at

    45tisseentosaturateatthelowesttemperaturesasexpectedforstandardFermiliquidbehavior,inwhichtheLifshitz-Kosevichformisobeyed .remarkablywefindthatthisstronglycorrelatedsystemyBa

    2Cu

    3O

    6 .56,

    insteadofcontraveningFermiDiracstatistics,infactobeysthemexactlyasexpected .

    thepredominantquantum-oscillationfrequencyandeffectivemassareshownasafunctionoftheangleofinclinationofthemagneticfieldtothecrystallinec-axis(θ)inthefigureontheleft .heretooweseethatexactlyasexpectedfortheextremalFermisurfaceorbitsinaconventionallayeredsystem,aCosinedependence(greenline)isfollowedbothbythefrequencyandeffectivemassofasingleorbit .

    ResUlts and discUssionLow-temperaturemeasurementsinultra-highmagneticfieldsenabledattheMagnetLabhavebegun

    tooverturnconventionalwisdomintheunderdopedcupratesthathasperhapsstalledprogressinthisfieldforalmosttwodecades .thesequantum-oscillationmeasurementsmayindeedpavethewaytotheultimatebreakthroughinunderstandingunconventionalsuperconductivityinthesematerials .

    ReFeRences 1 .sebastian,s .E .,et al.,http://arxiv .org/abs/0912 .3022(2009) . 2 .sebastian,s .E .,et al.,Phys. Rev. Lett .,103,256405(2009) .

  • special edition VolUMe 17 · no. 2 17

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    Sthe report of s . riggs et al. features the first ever measurements of the specific heat of underdopedyBCO6 .55

    inhighmagneticfieldsupto45tesla(t)andt~10Kthatshowedtheremarkablesquare-rootdependence of the magnetic specific heat, B1/2, on the magnetic field . G .Volovik predicted this specificbehaviorforasystemofvorticesinsuperconductorswithad-waveorderparameterin1993 .theauthorsclaim that the dependence survives abovet

    c giving support to the idea of pre-formed pairs . Quantum

    oscillationsforthespecificheatareseenforthefirsttimeinthepresenceofthisbackgroundandinterpretedqualitativelyintheframeworkoftheLifshitz-Kosevichtheory .

    highFieldspecificheatofUltracleanyBCO6 .55

    :CoexistingFermiLiquidandd-wavesuperconductingGapscott Riggs (FsU, Mag lab); oskar Vafek (FsU, Mag lab); Jon Kemper (FsU, Mag lab); Greg Boebinger (FsU, Mag lab); Jon Betts (lanl, Mag lab); albert Migliori (lanl, Mag lab); doug Bonn (UBc); walter Hardy (UBc); Ruixing liang (UBc)

    intRodUctionthetruenatureofthemagnetic-field-inducedresistivenormalstateinhightemperaturesupercon-

    ductivity(htc)remainsamystery .therearetwoprominentschoolsofthought .Oneisthattheapplicationofmagneticfielddestroysthed-wavesuperconductinggaptouncoveracompetingstatewithlowenergyFermionicdegreesoffreedom .theotheristhatanappliedmagneticfielddestroyslong-rangephasecoherencebutlocalsuperconductivitysurvives .Bymeasuringthespecificheat,abulkthermodynamicprobeonultra-cleanyBaCuO

    6 .55wedeterminethefieldevolutionofthequasi-particledensityofstateswell

    intothemagnetic-field-inducednormalstateandfindco-existenceofbothphases .athighfieldsthespecificheatasafunctionoftemperaturefollowstheconventionalformexpectedforaFermiLiquid;CT = gT + bT

    3

    Ontheotherhandthefieldevolutionoftheelectronicquasi-particledensityofstatesfollowsasqrt(h)behaviorthroughtheentiremagneticfieldrangemeasured,evidencingafullydevelopedd-wavegap .Fromtheverysmallvalueofthespecificheatinthezero-temperaturelimit,weconcludethattheFermiliquidphenomenaarisefromasinglepocketofcarriersthatcoexistswithd-wavesuperconductivityinthecopper-oxygenplanes .thed-wavesuperconductinggappersiststoatleast45tmagneticfields,whichistwicethemagneticfield,h

    irr,atwhichtheresistivetransitionoccurs .

    Figure 1.LefthandpanelplotsthespecificheatdividedbytemperatureasafunctionofK2for0t(yellowcircles)and45t(bluetriangles) .BothfieldvaluesfollowthenormalFermiliquidformandgivethesameslopevalueforthephonons,establishingbasafieldindependentquantity .therighthandpanelplotstheelectroniccontributiontothespecificheatofyBCO

    6 .55asafunctionofmagneticfield .the

    datashowquantumoscillations(red)consistentwithaFermiliquid(blueoscillationsareafittothedata) .thedataalsoshowasqrt(h)dependenceuptothehighestfieldsmeasured,establishingthepersistenceofafullydevelopedsuperconductingd-wavegapuptoourhighestfieldsmeasured .

  • 18 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S In2009therewerenumerousstudiesoftheironpnictides,recentlydiscoveredmaterialswithratherhightc(upto50Kinsomematerials) .thereportofa .Coldeaet al.deservesrecognition:thenon-superconductingmaterialCaFe

    2P

    2hasthecrystallineparametersclosetotheonesoftheso-calledcollapsedtetragonal(Ct)

    phase of CaFe2as

    2 that sets in under high pressure .the dhva experiments revealed the strongly three-

    dimensionalFermisurfaceinCaFe2P

    2 .theoutcomeisthatnestingfeatures/congruencybetweenthetwo-

    dimensionalelectronandholeFermisurfacesseemtoplaytheessentialroleinthemagnetic,structuralandsuperconductingpropertiesofmostofthehtcsironpnictides .

    •thisworkwaspublishedinPhys. Rev. Lett .,103,026404(2009) .

    topologicalChangeoftheFermisurfaceinternaryIronPnictideswithreducedc/aratio:adehaas–vanalphenstudyofCaFe

    2P

    2

    amalia i. coldea, c. M. andrew, a. F. Bangura, a. carrington (Bristol University, UK); J. G. analytis, J.-H. chu, i. R. Fisher (stanford University); R. d. Mcdonald (Magnet lab-lanl)

    thesuperconductivityinironpnictidescanbeinducedeitherbydoping,appliedpressureorisoelec-tronicsubstitution .theisoelectricsubstitutionofpnictogen(aswithP)doesnotchangethenumberofFe3d electronsbutactslikeapplyingchemicalpressure,whichisequivalenttoappliedhydrostaticpressure .thisisforexamplethecaseofCaFe

    2P

    2,whichisaveryclosestructuralanalogueofthecollapsedtetragonal

    phase(Ct)phaseofCaFe2as

    2,whichoccursonapplyingpressure1 .yildirimhasarguedthattheCtphase

    ofCaFe2as

    2occurswhen,byreducingtheFemoment,theFe-asbondingweakensandthe(interand

    intraplanar)as-asbondinggetsstrongercausingthesignificantstrongreductioninthecaxis2 .similarly,innonmagneticphosphides,thereductioninthec axis(orthec/a ratio)resultsinanincreaseP-Phybrid-izationbetweenpnictogenionsalongthec direction(closetothesinglebonddistance) .ConsequentlytheinterlayerP-Pdistanceapproachesthemolecularbondlength,justastheas-asdistancedoesintheCtphase .thespacerbetweentheironlayers(srorBa)limitsthedegreeofthishybridizationbetweenlayersandsuchastatewithstrongpnictogenbondingisunlikelytooccur .thisstateofreducedc/a ratiohasadifferentFermisurfacetopologycomparedtoLaFePO[3]orsrFe

    2P

    2[4] .

    WehaveexperimentallymeasuredtheFermisurfaceofCaFe2P

    2usinglow-temperaturetorque

    magnetometryupto45tesla(t) .WefindtheFermisurfaceofCaFe2P

    2todifferfromotherrelatedternary

    phosphidesinthatitstopologyishighlydispersiveinthec axis,beingthreedimensionalincharacterandcomposedofalargeholesheetintheformofaflatpillowatthetopofthezonewhereastheelectronsheetsarestronglydistortedquasi-twodimensionalcylinderscenteredonthezonecorners .themassenhancementisidenticalonbothelectronandholepockets(~1 .5)beingmainlydeterminedbyelectron-phononinteraction .Ourresultssuggestthatwhenthebondingbetweenpnictogenlayersbecomesimportantnestingconditionsarenotfulfilledandmayexplainwhythesuperconductivityisabsentinsuchastate .theseresultshavebeenpublishedinPhysical Review Letters5 .

    Figure 1.a)QuantumoscillationsinCaFe

    2P

    2obtainedusingtorque

    magnetometry .b)theangulardependenceofthefundamentalfrequencies(relatedtotheextremalareasoftheFermisurface) .theresultingFermisurfaceofCaFe

    2P

    2 .

  • special edition VolUMe 17 · no. 2 19

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    SacKnowledGeMentsthisworkwassupportedfinanciallybyEPsrC(U .K .)andtheroyalsociety .Workatstanfordwas

    supportedbytheU .s .DOE,OfficeofBasicEnergysciencesundercontractDE-aC02-76sF00515 .WorkperformedattheMagnetLabintallahassee,Florida,wassupportedbynsFCooperativeagreementno .DMr-0654118,bythestateofFlorida,andbytheU .s .DOE .

    ReFeRences 1 .torikachvili,M .s .,et al .,PRL,101,057006(2008) . 2 .yildirim,t .,PRL,102,037003(2009) . 3 .Coldea,a .I .,et al .,PRL,101,216402(2008) . 4 .analytis,J .G .,et al .,PRL,103,076401(2009) . 5 .Coldea,a .I .,et al .,PRL,103,026404(2009) .

    togetherwithusersfromItaly,M .Puttiet al.reporthigh-fieldspecific-heatmeasurementsonthesmandCemembersoftherare-earth(rE)familyrEFeasO,theparentcompoundsofthenowfamousFe-basedoxypnictidehigh-t

    csuperconductors .IncontrasttotheotherrEmembers(Ce,Pr,nd),thelow-temperature

    antiferromagneticphaseassociatedwiththesmcompoundisextremelyrobustagainsttheapplicationoflargemagneticfields .thispropertyisattributedtotheuniaxialanisotropyofthesm3+ ion,whichisalsouniquetothisfamily .

    •thisworkwaspublishedinPhys. Rev. B, 80,214404(2009) .

    MagneticOrderingoftherElatticeinrEFeasO:theOddCaseofsm .aspecificheatInvestigationinhighMagneticFieldM. putti (University of Genova, italy); s. Riggs, c. tarantini, J. Jaroszynski, a. Gurevich (Magnet lab); a. palenzona, t. duc nguyen, M. affronte (University of Modena and Reggio emilia, italy)

    intRodUctionasharppeakinthespecificheatdataofsmFeasOwasfoundat5 .4Krelatedtotheantiferromagnetic

    (aFM)orderingofsm3+ .Preliminarymeasurementsshowedthatthispeakisratherindependentoftheappliedmagneticfield,differentlyfromthecasesofCeFeasOandPrFeasOthatexhibitsimilaraFMtransitionrelatedtotheorderingoftherareearth .Duetothefieldresilience,thestudyoftheaFMorderingofsm3+requiresahigh-fieldinvestigation .

    ResUlts and discUssion

    Figure 1.specificheatversustofsmFeasOupto35t .

    Figure 2.specificheatversustofCeFeasOupto7t .

    specific-heatmeasurementswereperformedinsmFeasOintemperaturerangearoundtheaFMtransitionupto16tesla(t)inaPPMssystemandfrom20tto35tattheMagnetLabandinCeFeasOin

  • 20 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S aPPMssystemupto7t .Figure1showsasharppeakofsmFeasOattn=5 .4KcorrespondingwithaFMtransition .theanomalyremainsverysharpupto16tandbecomesroundedwithlittleshiftintemperatureathigherfields .theinitialslopeoftheorderingcriticalfielddB

    c/dtis160t/KwithB

    c(t)definedatthepeak

    ofthespecificheatanomaly1 .theinsensitivitytotheapplicationofanexternalmagneticfieldisuniquetosmandisnotobservedinCeFeasOwhoseanomalyshiftswithinitialslopedB

    c/dt=5 .7t/K(seeFigure2) .We

    arguethatsmFeasOpresentsanunprecedentedcaseofspinreorientationattheaFMtransition .recentneutrondiffractionscatteringmeasurements2showthatsm3+hasuni-axialorderparalleltothec-axis,withFMorderingintheab-planes,orderedaFMalongthec-axis,whichisalsouniqueinthefamilyofrEFeasOoxypnictideswhereCe3+,Pr3+andnd3+orderaFMwiththespinsalongtheab-planes .

    conclUsionsWehaveperformedspecific-heatmeasurementsonsmFeasOsampleupto35tinordertoinvestigate

    themagnetictransitioninvolvingthesmsublattice .thespecific-heatanomalyinsmFeasOrevealsasurprisinginsensitivitytotheapplicationofstrongmagneticfields .ComparingourresultstoCeFeasOwearguethatthepeculiarityofthesmFeasOisrelatedtotheuniaxialmagneticanisotropy .

    acKnowledGeMentsthisworkwassupportedbynsFCooperativeagreementno .DMr-0654118,thestateofFlorida,the

    DOEandtheItalianForeignaffairsMinistry(MaE) .

    ReFeRences 1 .riggs,s .,et al .,Phys. Rev. B,80214404(2009) . 2 .ryan,D .h .,et al .,Phys. Rev. Binprint .

    Usersfromslovakiareportmagneticsusceptibilitymeasurementsontheantiferromagneticcompound,Cu(tn)Cl2,atthehighB/TfacilityinGainesville .thismaterialhadbeenidentifiedasapotentialmodel

    systemforstudyingeffectsofspin frustrationona two-dimensional (2D) triangular lattice, i .e . thespinscannotsatisfyallnear-neighborinteractionssimultaneouslyinthisgeometry .however,amagneticphasetransformation is observed, which is reminiscent of the so-called Berezinskii-Kosterlitz-thouless (BKt)transitionexpectedforatruly2Dantiferromagnet .

    •thisworkwaspublishedinPhys. Rev. B,80,144418(2009) .

    InterplayofFrustrationandMagneticFieldforthe2DQuantumantiferromagneticCu(tn)Cl

    2a. orendáčová, e. Čižmár, l. sedláková, J. Hanko, M. Kajňaková, M. orendáč, V. Zeleňák, a. Feher (p. J. Šafárik University, Košice, slovakia); J. s. xia, l. Yin, d. M. pajerowski, M. w. Meisel (UF physics and Magnet lab); s. Zvyagin, J. wosnitza (Hochfeld-Magnetlabor dresden, Germany)

    intRodUctionIn2006,the2DquantumantiferromagnetCu(tn)Cl

    2(tn=1,3-diaminopropane=C

    3h

    10n

    2)wasidentified

    asapotentialmodelsystemfortherealizationofthespatiallyanisotropictriangularlatticefromthecollinearnéelphase1 .Inzerofield(B=0),noevidenceforlong-rangemagneticorderwasobserveddownto60mK,andthedatasuggestednearest-neighbor(J/k

    B=3K),frustratingnext-nearest-neighbor(0<J’/J<0 .6),and

    interlayer(|J’’/J|=10-3)interactions .themotivationofthepresentwork2wastoexploretheresponseofCu(tn)Cl

    2inB>0,especiallyatT

  • special edition VolUMe 17 · no. 2 21

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S(B<1t)isdominatedbyabackgroundeffect .the“shoulder”signatureobservedabove6tisassociatedwiththesaturationmagneticfieldBsat

    (t→ 0)=6 .6t .thesedataresolvedacrucialboundaryofthemagneticphasediagram2 .

    Figure 1.MagneticfielddependenceoftheisothermalacsusceptibilityofCu(tn)Cl

    2 .Inset:

    Magneticfielddependenceofthenormalizedmagnetizationat40mK .

    conclUsionstheanalysisofallofthedataallowstheconstructionofthemagneticphasediagram2,whichis

    remarkablyconsistentwiththeonepredictedforaBKtphaseonasquarelatticewithoutafrustratinginteraction3,exceptthatB

    satisshiftedtovalueslowerthanexpected .

    acKnowledGeMentsElementsofthisresearchwereperformedintheMagnetLabhighB/tFacility .thisworkwassupported,

    inpart,byVEGaunderGrantno .1/0078/09,Projectno .aPVV-0006-07,EsFrnPprogram“highlyFrustratedMagnetism,”nsFunderGrantno .DMr-0701400,theMagnetLabviacooperativeagreementnsFunderGrantno .DMr-0654118andthestateofFlorida,DeutschePhysikalischeGesellschaft(DPG),andEuroMagnEtII .MaterialsupportfromU .s .steelKošices .r .o .isgreatlyacknowledged .

    ReFeRences 1 .Zeleňák,V .,et al.,Inorg. Chem.,45,1774-1782(2006) . 2 .Orendáčová,a .,et al.,Phys. Rev. B,80,144418(2009) . 3 .Cuccoli,a .,et al.,Phys. Rev. B,68,060402(r)(2003) .

    Uraniumgoesthroughaseriesoflatticechangeswhilecooling(t~43,37and23K),resultinginachargedensitywave(CDW)stateatlowtemperatures .IthadbeenpreviouslyassumedthattoobservequantumoscillationstheCDWstatemustbesuppressedbyappliedpressure .reportedhereareobservationsofdehaasvanalphen(dhva)oscillationsinα-uraniumatambientpressure, indicatingadensityofelectronicstatesattheFermienergy,inconflictwithasimpleCDWpicture .

    •thisworkwaspublishedinPhysical Review B,80,241101(r)(2009) .

    MagnetizationMeasurementsofa-UraniumUsingaPiezoresistiveCantileverinPulsedMagneticFieldsd. Graf, R. stillwell, R. d. Mcdonald, c. M. Mielke, F. F. Bakariev, s. w. tozer (Magnet lab)

    intRodUctionthealphaphaseofuranium(a-U)providesauniquesettingtounderstandtheroleoff-electronsinthe

    actinides .a-Uundergoesthreelow-temperaturechargedensitywave(CDW)transitionsattemperaturesof43,37,and23K,resultinginthevolumeoftheunitcellbelow23Kgrowingbyafactorof72to6000Å3 .ObservingtheFermisurfaceofthiselementwithoutfirstsuppressingthecomplexstructurecreatedbythe

  • 22 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S CDWtransitionwaspreviouslyconsideredunlikely .highqualitysinglecrystalshavebeenrefinedthroughannealingtoproduceunprecedentedresidualresistivityratiosashighas570 .Improvedmagnetictorquemeasurementtechniquesinpulsedfields1haveallowedtheobservationofquantumoscillationsina-U2 .

    expeRiMentalthemagnetizationofa-Uwasmeasuredwithasampleattachedwithsilicongreasetothe

    measurementarmofapiezoresistivecantilever .thecantileverwasmountedonarotationprobeandcenteredina65tesla(t)short-pulsemagnet .CantileverresistancechangescreatedbytorquefromthesampleweremonitoredbyincorporatingthecantileverintoaWheatstonebridge .themeasurementtemperaturesarefarbelowthelowestCDWtransitionat23K,sothelatticedistortionsleavethesampleinthecomplex“a

    3”state .

    ResUlts and discUssionInfigure1,magnetizationmeasurementsfromfieldpulsesupto65tareshown .Onlythedatafrom

    themagneticfielddownsweepsareshownandoffsetforclarity .ClearquantumoscillationsareobserveduptothemaximumfieldandthefastFouriertransformsareshowninthefigureinset .themeasuredorbitfrequency(F~570t)agreeswellwithDCfieldmeasurementswiththeappliedmagneticfieldalignedbetweentheaandc-axes .

    Figure 1.PrCmeasurementsofthedhvaeffectfora-uranium .Inset:FastFouriertransformoftheshownmagnetizationresults .

    conclUsionsMeasuringtheFermisurface(Fs)ofa-Uatambientpressureisasignificantstepforwardbutleads

    tothequestion,howdotheCDWsaffecttheFstopology?schirberandarkomeasuredtheFsofa-Uunderpressuresabove8kbaralmost30yearsago3,allowingforcomparisonbetweenhigherandambientpressureresults .sofar,littleagreementhasbeenfoundbetweentheorbitsfoundunderpressure(ref .3,F~1300–2400t)andinthepresentmeasurements(80–1500t) .Inadditiontopressure,highmagneticfieldscanbeusedtosuppressCDWstatesbutsofar,wehavenotobservedanysignatureinmagnetizationmeasurementsthatsuggestaphasetransitionfromtheCDWstate .

    acKnowledGeMentsthisworkwassupportbynsFCooperativeagreementDMr-0084713(MagnetLab)andDOE

    DE-FG52-06na26193(sWtgroup) .

    ReFeRences 1 .Ohmichi,E .,et al .,Rev. Sci. Instr .,73,3022(2002) . 2 .Graf,D .,et al .,Physical Review B,80,241101(r)(2009) . 3 .schirber,J .E .,et al .,Physical Review B,21,2175(1980) .

  • special edition VolUMe 17 · no. 2 23

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    SFortrigonal-axismagneticfieldsinbismuth,thelastLandaulevelisexpectedatB=9tesla(t) .however,recent experimental studies uncover a number of enigmatic effects beyond this quantum limit . Fornernstmeasurementsinbismuthupto45t,wefindevidenceforunidentifiedelectronicinstabilitiesbeyondthescopeofasimpleband-structuremodel .tounderstandtheseeffects,theorymustincludeelectronicinteractions,todateneglected,andtobecomesignificantabovethequantumlimit .

    •thisworkwaspublishedintheNew Journal of Physics,11,113012(2009) .

    anElectronicInstabilityinBismuthFarBeyondtheQuantumLimitBenoît Fauqué and Kamran Behnia (espci, paris, France)

    intRodUctionWhenthefieldisappliedalongthetrigonalaxisofabismuthcrystal,nomorecrossingofthechemical

    potentialbyanyknownLandaulevelisexpectedforB>9t .however,recentexperimentalstudiesofvariousphysicalpropertiesofbismuthuncoveranumberofenigmaticfieldscalesbeyondthisquantumlimit1-3 .Wehaveextendedthefieldrangeofthenernstmeasurementsinbismuthupto45tanduncoveredanewfieldscalepointingtoanunidentifiedelectronicinstability4 .

    expeRiMentalnernsteffectwasmeasuredbyaminiatureone-heater-two-thermometerset-upspeciallydesignedto

    workinthe45-thybridmagnet .thenernstdatawerecomplementedwithresistivitymeasurementsupto55tinapulsedfieldperformedintoulouse .

    ResUlts and discUssionFigure1presentsthetransversevoltagegeneratedbyaconstantthermalgradientatt=1 .2Kasa

    functionofmagneticfield .themainnewfindingisthedetectionofanernstpeakatB=37t,almostasdrasticasthechangecausedbythecrossingofthequantumlimitat9tandmuchlargerthanpreviouslydetected1ultraquantumnernstanomalies .

    Figure 1.a. nernstsignalasafunctionofthemagneticfield .thenewpeakat38t(redarrow)ismuchlargerthanpreviouslyresolvedpeaks(blackarrows);b, c:samedataasafunctionofB-1 .Quantumoscillationsarevisiblebelowthequantumlimit(QL)markedbyablueverticalline .thefieldscalesbeyondthislimitarecausedbyunidentifiedmany-particleeffects .

  • 24 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S conclUsionsOurfindingconstitutesthemostsolidexperimentalevidenceforafield-inducedelectronicinstability

    beyondthescopeofthebandpicture .theexplanationofthisfieldscaleimpliesanappropriatetreatmentoftheelectronicinteractions,whichareneglectedinthispictureandareexpectedtobecomesignificantasthequantumlimitiscrossed .

    ReFeRences 1 .K .Behnia,L .Balicasandy .Kopelevich,Science,317,1729(2007) . 2 .L .Li,et al.,Science,321,547(2008) . 3 .B .Fauqué,et al., Phys. Rev. B,79,245124(2009) . 4 .B .Fauqué,et al .,New J. Phys .,11,113012(2009) .

    By combining pulsed electrically detected magnetic resonance (EDMr) and electron nuclear doubleresonance, researchers have realized a significant breakthrough in electrical readout of coherentlycontrollednuclearspins .Forthefirsttime,EDMrexperimentswereperformedathighmagneticfieldswithdevicespatternedbyelectronbeamlithographytohavenanoscalecontacts:just50nm×50nm

    Electricalreadoutof31PspinQubitsinCrystallinesiliconathighMagneticFieldsc. Boehme, d. R. Mccamey (University of Utah, physics); G. w. Morley, p. studer, n. J. curson (University college london and london centre for nanotechnology); G. a. c. Jones, d. anderson (University of cambridge, physics); J. van tol (Magnet lab)

    intRodUctionPhosphorus(31P)dopedsilicon(si:P)isatechnologicallyimportantmaterialwithpossibleusesin

    spintronicandquantuminformationprocessingdevices .thegoaloftheworkdescribedinthefollowingwastocarryoutpulsedEDMrexperimentsathighmagneticfieldsinorderto(i)understandthesensitivitylimitationsofelectricalspinmeasurementson31Pand(ii)demonstrateelectricallydetectednuclearmagneticresonancebycombinationofpulsedEDMrandelectronnucleardoubleresonance .

    iMpRoVinG tHe sensitiVitY oF pUlsed edMREDMrwasmeasuredinsi:Pdeviceswithcontactspatternedwithelectronbeamlithographytohave

    activeareasof50nm×50nm .thesemeasurementsgenerallyreproducedthefeaturesdescribedinourpreviousresearchondeviceswithlargeractiveareas1-3,andusedthesamespectrometer4,5 .

    Figure 1.Continuous-waveEDMratatemperatureof3Kwithabiascurrentof1 .6na .twoGaussianswereusedtofitthedata .

    Figure 2.Conventionallydetected(black)andelectricallydetected(red)pulsedEnDOrof31Pdonorsinsi .theinsetshowsthepulsesequenceusedtomeasuretheelectricalsignal .thetoprowistheGhzradiationresonantwiththe31PelectronandthebottomtherFradiationwhosefrequencywassweptthroughthe31Pnuclearresonance .

  • special edition VolUMe 17 · no. 2 25

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    SFigure1showsaspectrumrecordedwithadevicehavingathicknessof500mmandaphosphorusconcentrationof1-3×1015cm-3 .thetworesonancesareduetothetwopossiblestatesofthephosphorusnuclearspin .theobservationthatoneislargerthantheotherreproducesourpreviousfindingthattheapplicationofwhitelightpolarizesthesenuclearspinsinamagneticfieldof8 .5tandatemperatureoflessthan3K .high-fieldEDMrhasnotpreviouslybeendemonstratedwithcontactssmallerthan10micrometerssoitisimportanttoquantifytheeffectofscalingthecontactsizesdown .Previousscalingstudiesoflow-fieldEDMrexperimentswithsi:Pfoundthatthesignal-to-noisewasapproximatelyindependentofthedevicesize6 .toscaledownfurtherwewilluseasilicon-on-insulator(sOI)waferwithadevicethicknessof100-300nm .

    electRical nUcleaR spin detectionWehavealsodemonstratedpulsed,electricallydetectedelectronnucleardoubleresonance

    (pEDEnDOr)onsi:P .Figure2showsbothaconventionallydetectedandelectricallydetectedsignalobtainedfromapulsedEnDOrexperiment .aresonanceisseenat~206 .7Mhzinbothcases .pEDEnDOrofthe29sinuclearspinsinthenaturallyabundantsiliconhostalsowereobserved .neithersignalhastheexpectedGaussianlineshape .thisisduetotheextremelylongnuclearspinlifetimes(>minutes)ofthe31Pdonors,whichleadtopassageeffectsevenatveryslowsweeprates .Ourproof-of-principledemonstrationofelectricalreadoutofcoherentlycontrollednuclearspinsathighfieldsprovidesapathwaytowardstheelectricalreadoutofnuclearspinqubits .thistechniquealsowillbeofwideruseasatoolforinvestigatingnuclearspinsinmacroscopicelectricaldevices,whichareusuallytoosmalltobeinvestigatedwithconven-tionalresonancetechniques .

    acKnowledGeMentsWeacknowledgesupportfromtheMagnetLabVisitingscientistProgram .

    ReFeRences 1 .McCamey,D .r .,et al.,Phys. Rev. B,78,045303(2008) . 2 .Morley,G .W .,et al .,Phys. Rev. Lett .,101,207602(2008) . 3 .McCamey,D .r .,et al .,Phys. Rev. Lett .,102,027601(2009) . 4 .vantol,J .,et al.,Rev. Sci. Instrum .,76,074101(2005) . 5 .Morley,G .W .,et al .,Rev. Sci. Instrum .,79,064703(2008) . 6 .McCamey,D .r .,et al.,Appl. Phys. Lett.,89,182115(2006) .

    theread-rezayistates–asequenceoftwo-dimensional(2D)topologicallyorderedstates–maydescribeexperimentallyobservedfractionalquantumhalleffectsandmayalsopotentiallyberealizedinrotatingBosegases .theseareamongtheprimecandidatesforrealizingnon-abeliananyons,which, inprinciple,can be used for topological quantum computation . the present work generalizes our earlier work byfindingbraidingpatternsfortopologicalquantumcomputationandbyshowingpreciselyhowonewouldconstruct quantum gates to make realistic estimates of the resources required to carry out topologicalquantumcomputationusingtheseexoticstatesofmatter .

    •thisworkwaspublishedinPhys. Rev. Lett.,103,160501(2009) .

    topologicalQuantumComputingwithread-rezayistatesl. Hormozi (nist), s.H. simon (oxford), n.e. Bonesteel (FsU, physics)

    intRodUctiontheread-rezayistatesaresequenceof2Dtopologicallyorderedstateslabeledbyintegerindexk

    thatmaydescribetheexperimentallyobservedn =5/2(k=2)andn =12/5(k=3)fractionalquantumhalleffects .read-rezayistatesmayalsopotentiallyberealizedinrotatingBosegasesandareamongtheprimecandidatesforrealizingnon-abeliananyons,which,inprinciple,canbeusedfortopologicalquantumcomputation .Inthisworkwehavefoundaprescriptionforefficientlyfindingbraidsthatcanbeusedtocarryoutauniversalsetofquantumgatesonencodedqubitsbasedonanyonsoftheread-rezayistateswithk=3,k>4 .thisworkextendspreviousresults1,2,whichonlyappliedtothecasek=3(theso-calledFibonaccianyons)andclarifieswhy,inthatcase,gateconstructionsaresimplerthanforageneric

    read-rezayistate .

  • 26 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S ResUlts and discUssionalthoughthereareformalmathematicalproofsthatuniversalquantumcomputationispossibleusing

    theread-rezayistateswithk>4,ourrecentwork3isthefirsttoshowpreciselyhowonewouldtranslateagivenquantumalgorithmintoabraidingpatternusingthem .Figure1showsoneofthebraidingpatternswehavefoundthatindicateshowacontrolled-Phasegatebetweentwoqubitsencodedusingfouranyonseachwouldbecarriedoutforthek=5read-rezayistate3 .

    Figure 1.Braidingpatterntakenfrom[3]thatcanbeusedtorealizeacontrolled-Phasegatefornon-abeliananyonsdescribedbysU(2)

    5Chern-simonstheory(theappropriatemathematicaldescriptionofanyonsinthek=5read-rezayistate) .Qubitsareencodedusingquadrupletsofanyonsandtimeflowsfromlefttoright .(Fordetailsofthenotationused,see[3]) .

    conclUsionsthepresentworkgeneralizesourearlierworkonfindingbraidingpatternsfortopologicalquantum

    computation,whichonlyappliedtoasingletypeofanyon(k=3),toaninfiniteclassofanyons(allintegerk>4) .Byshowingpreciselyhowonewouldcarryoutquantumgatesbybraidingtheseanyonsitbecomespossibletomakerealisticestimatesofthe(demanding)resourcesthatwillberequiredtocarryouttopologicalquantumcomputationusingtheseexoticstatesofmatter .

    acKnowledGeMentsWorksupportedbyUsDOEGrantno .DE-FG02-97Er45639 .

    ReFeRences 1 .Bonesteel,n .E .,et al.,Phys. Rev. Lett .,95,140503(2005) . 2 .hormozi,L .,et al.,Phys. Rev. B,75,165310(2007) . 3 .hormozi,L .;Bonesteel,n .E .;simon,s .h .,Phys. Rev. Lett.,103,160501(2009) .

    UsersatthehighB/tfacilityperformednuclearmagneticresonance(nMr)studiestoprobethelocaldynamicsofverydilute 3he impurities insolid 4he,withthegoalof testing forchanges in the localmotionsnearthetemperaturesforwhichnon-classicalrotationalinertiafractionsmaypointtomacroscopicsupersolidflow .Previousexperimentsconfirmedthatthe3heimpuritiesdiffusebyquantummechanicaltunneling .thisworkisdesignedtotestwhether3heatomsbecomelocalizedatdislocationsorotherdefectsitesinthe“supersolid”region .thefindingsshowthatnanodroplets,ratherthanasolutionofliquid3he,areformedattheselowconcentrations .

    nanodropletFormationinsolidsolutionsofVeryDilute3heinsolid4hes. s. Kim (UF, physics), c. Huan (UF, physics), l. Yin (UF, physics), J. s. xia (UF, physics), n. s. sullivan (UF, physics); d. candela (physics, Univ. of Mass.)

    intRodUctionnMrstudieshavebeencarriedouttoprobethelocaldynamicsofverydilute3heimpuritiesinsolid

    4he .thegoaloftheexperimenthasbeentotestforchangesinthelocalmotionsnearthetemperaturesforwhichnon-classicalrotationalinertiafractionshavebeenobserved1 .Itisthoughtthatthesefractionspointtomacroscopicsupersolidflow .additionof3heimpuritieshasbeenshownbyothers2tosuppresstheso-called“supersolid”effectsandourpreviousexperiments3haveconfirmedthatthe3heimpurities(atleastforconcentrationsdownto250ppm)diffusebyquantummechanicaltunneling4 .thenMrexperimentsaredesignedtoobservethemotionsdowntoapproximately10ppmandtotestwhether3heatomsbecomelocalizedatdislocationsorotherdefectsitesinthe“supersolid”region .

  • special edition VolUMe 17 · no. 2 27

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    SexpeRiMentaltwochallengeshadtobeovercometocarryouttheexperiments .First,becauseoftheweakthermal

    relaxationprocessesforthenuclearspins,weneededtocarryouttheexperimentsatlowLarmorfrequenciesinordertokeeptheestimatedrelaxationratesbelowtheorderof104s .atlowtemperatures .second,becauseofthelowconcentrationandlowmagnetizationduetotherequiredlowLarmorfrequency,wedevelopedaspeciallowtemperaturepreamplifierthatcouldbeplacedadjacenttothenMrcoiltosignificantlyimprovethenMrsignaltonoise5 .Furthermoreanultra-quietradiofrequency(rF)environmentwasneedednecessitatingtheuseofthehighB/tFacility,whichisspeciallyequippedforrFshielding .

    ResUlts and discUssiontheamplitudesofthenMrsignal(asmeasuredbytheamplitudeofasolidecho)areshowninFigure1 .

    above120mKatypicalCurielaw(t-1)dependenceisobservedasexpectedfortheparamagneticbehaviorofthenuclearspins .Below120mK(atatemperaturethatvarieswith3heconcentration)oneobservesasharpchangewithaflattemperatureindependentbehavioratlowtemperatures .thistemperatureindependenceisunderstoodintermsoftheformationofnanodropletsofliquid3he .hysteresisisobservedoncyclingthroughthephaseseparationtemperature .

    Figure 1.3heinsolid4he .temperaturedependenceofnMrechoamplitudeshowingphaseseparationandformationof3henanoclustersbelow150mK .

    conclUsionsCarefulnMrstudiesof3heimpuritiesinsolid4hehaveshowntheformationofdropletsofliquid3hein

    solid4heforverydilutesolutionsof3heinsolid4he .

    acKnowledGeMentstheresearchwassupportedbytheMagnetLabthroughtheawardfromtheUserCollaborationGrants

    Program .

    ReFeRences 1 .Kim,E .,et al .,Nature,427,225(2004) . 2 .Kim,E .,et al .,Phys. Rev. Lett .,100,065301(2008) . 3 .Kim,s .s .,et al .,J. Low Temp. Phys .,158,584-589(2010) . 4 .richard,M .G .,et al .,J. Low Temp. Phys .,47,289(1982) .

  • 28 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S thermal expansion is a fundamental thermodynamic quantity . Its accurate measurement in confinedspaces coupled with low temperatures and rapidly changing high magnetic fields suggests a newsensitivemillimeter-scaledilatometerthathaslittleornotemperatureandfielddependence .theauthorsdesignedanultracompactdilatometerusinganatomicforcemicroscope(aFM)piezoresistivecantilever(PrC)asthesensingelementanddemonstrateditsversatilitybystudyingthechargedensitywaves(CDWs)inalphauraniumtohighmagneticfieldsupto31tesla(t) .

    •thisworkwaspublishedinRev. Sci. Instrum .,80,116101,2009 .

    highresolutionMiniatureDilatometerBasedonaFMPiezocantileverJ.-H. park, d. Graf, t.p. Murphy, s.w. tozer (Magnet lab); G.M. schmiedeshoff (occidental college, physics)

    intRodUctionthermalexpansion,ordilationofamaterial,iscloselyrelatedtothespecificheat,andprovidesuseful

    informationregardingmaterialproperties .theaccuratemeasurementofdilationinconfinedspacescoupledwithotherlimitingenvironmentssuchaslowtemperaturesandrapidlychanginghighmagneticfieldsrequiresanewsensitivemillimeterscaledilatometerthathaslittleornotemperatureandfielddependence .WehavedesignedanultracompactdilatometerusinganaFMPrCasthesensingelementanddemonstrateditsversatilitybystudyingthechargedensitywaves(CDWs)inalphauraniumtohighmagneticfieldsupto31t1 .

    desiGn and opeRationtheprincipleofoperationistomeasurethechangeinresistanceofanaFMPrCwhenthesample

    dimensionschange .asschematicallyshowninFigure1(leftpanel),foraz-directiondilationmeasurement,thesampleandPrCaregluedtoasubstrate .thetipofthePrCgentlyrestsonthesamplewiththeaFMtipfacingupsuchthata1%changeinnominalresistanceisgeneratedtherebyassuringthatthetipandsamplewillnotseparateasthesamplecontractsuponcooling .theresistancesofthepiezoelementandthereferencepiezoelementthencanbemonitoredusingaWheatstonebridgeconfiguration .UsingthisPrC,chargedensitywavetransitionsofdepletedalphauranium(thickness0 .04mm)weremeasuredinthe31-tresistivemagnet(cell9,DCfacility,MagnetLab)andtheresult(Figure1,rightpanel)showsthreedistinctCDWtransitions(denotedasα

    1,α

    2,andα

    3)andprovesthecapabilityofthisnewdilatometer .

    Figure 1.schematicdiagramofpiezoresistivecantileverdilatometer(left)andchargedensitywavetransitionsinalpha-uraniumprobedbypiezoresisitivedilatometer(right) .

    acKnowledGeMentssupportforthisworkwasprovidedbytheDOE/nnsaunderDE-FG52-06na26193 .Workwasperformed

    attheMagnetLab,whichissupportedbynsFCooperativeagreementno .DMr-0654118andbythestateofFlorida .WorkatOccidentalCollegewassupportedbythensFunderDMr-0704406 .

    ReFeRences1 . Park,J .-h .,et al .,Rev. Sci. Instrum .,80,116101(2009) .

  • special edition VolUMe 17 · no. 2 29

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    Stheabilitytomeasurespecificheatatveryhighmagneticfieldsrepresentsalong-standingobjectiveofMagLabuserprograms .Untilnow,suchmeasurementshavenotbeenpossibleintheshorterpulsedhigh-fieldmagnets .thereportbyy .Kohamaet al .describesanewaCspecificheatmeasurementtechniqueanditssuccessfulimplementationtodetectafieldinducedphasetransitionabove30tesla(t)inthespin-dimercompoundsr

    3Cr

    2O

    8 .

    FirstaCheatCapacityMeasurementinCapacitor-Bank-DrivenPulsedFieldsYoshimitsu Kohama (Magnet lab-lanl), christophe Marcenat (cea-Grenoble, institut nanosciences et cryogenie, spsMs-lateQs), Marcelo Jaime (Magnet lab-lanl)

    intRodUctionspecificheat(C

    p)athighfieldsisoneofthefundamentaltechniquesforunderstandingthemechanisms

    andphysicsatplayincorrelatedelectronandmagneticmaterials .sofar,anumberofspecificheatmeasurementsinveryhighDCandlongpulsedmagneticfieldshavebeenreported .here,applyinganaC-C

    p

    techniquerunninginthekhzrange,wereportthedevelopmentofanewcalorimeterformeasurementinmid(250msec)pulsedmagneticfields .1

    expeRiMentalWeusedruO

    2barechips(stateoftheartInc .)asthermometersformid-pulsedmagneticfields,which

    showamonotonic6-7%magnetoresistance .theruO2thermometerwasgluedtoasiplatewithGE7031

    varnish .thesamplewasmountedontheruO2thermometerandgluedwithsilverpaint .aniCrfilmheater

    withathicknessof10nm,~10kohm,wasdirectlydepositedonthesample .ByapplyingaCcurrentatafrequencyof~1khztotheheater,wecoulddetectthesecondharmonicoscillationwithanin-housedigitallock-insystem .asatestsample,wechoosesr

    3Cr

    2O

    8andsisinglecrystals .Whilesishowsnophasetransition

    inmagneticfieldsupto50t,sr3Cr

    2O

    8showsamagneticorderedstatebetweenH

    c1≈30 .4andH

    c2≈62t .2

    ResUlts and discUssionFigure1showstheresultingaC-C

    pdatainsr

    3Cr

    2O

    8andsisinglecrystalsamples .sr

    3Cr

    2O

    8showsa

    sharppeakath≈Hc1

    ,whilethesisinglecrystaldoesnotshowanyanomaly .Inthefigureinset,thepeakalsoshowstemperaturedependence,whichisconsistentwiththepreviousmagnetocaloriceffect(MCE)studies .1althoughitisdifficulttocomparetheshapeofpeakwiththedatatakeninDCfields(redcurve)duetothetemperaturedifference,theDCfielddataalsoshowpeakasafunctionfield .asimilartemperature-suppressionoftheanomalyinC

    p(h)wasrecentlyobservedinniCl

    2-4sC(nh

    2)

    2 .3

    Figure 1.Cp(h)measuredinsr

    3Cr

    2O

    8

    withanewaCcalorimeterformid-pulsedmagnets .

  • 30 VolUMe 17 · no. 2 special edition

    cO

    ND

    ENSE

    D m

    AttE

    r ph

    ySic

    S conclUsionsanewcalorimeterwasbuiltforaC-C

    pmeasurementina50tcapacitor-bank-drivenmid-pulsedmagnet .

    InitialresultsareconsistentwithpreviousDCmeasurements .additionaltestsareunderway .

    acKnowledGeMentsWeareindebtedtoa .a .aczelandG .Lukeforprovidingthesr

    3Cr

    2O

    8singlecrystalsusedforthethese

    experiments .thisworkwassupportedbythenationalscienceFoundation,theU .s .DepartmentofEnergyandthestateofFlorida .

    ReFeRences 1 .Kohama,y .,et al., Rev. Sci.Inst.,tobepublished(arXiv:1003 .3184) . 2 .aczel,a .a .,et al .,Phys. Rev. Lett .,103,207203(2009) . 3 .Zapf,V .s .,et al .,(unpublished) .

    K . Koyama et al . report high temperature (> 350oC) differential thermal analysis (Dta) measurementsonthetechnologically important ferromagneticbinaryalloyMnBi inthe45tesla (t)hybridmagnet .aremarkablefielddependenceofthetemperature(T

    t)atwhichthealloydecomposes intoamixtureof

    paramagneticandliquidphasesisreported;ΔTt=80oCat45t .theobservedbehaviorismainlyattributed

    thefield-inducedmagneticmomentoftheferromagneticphase .

    DecompositiontemperatureofMnBito45teslaK. Koyama (tohoku U, institute for Materials Research); Y. Mitsui (tohoku U, iMR); e.s. choi (FsU, Magnet lab); Y. ikehara (tohoku U, iMR); K. watanabe (tohoku U, iMR); e. palm (FsU, Magnet lab)

    intRodUctionscientistsallovertheworldusesteady,high-fieldmagnetstostudytheeffectsofhighmagneticfields

    onmagneticphasetransitions,chemicalreactions,physicalprocesses,andsolidifications .Inordertostudythesephenomena,thermalanalysisunderhighmagneticfieldsisoneofthemostimportantexperiments .recently,Koyamaet al .observedthatthedecompositiontemperatureT

    t(=355oC,628Katazeromagnetic

    field)ofMnBiincreaseslinearlywithincreasingmagneticfieldsupto14tattherateof~2oC/t1 .thisresultindicatesthattheequilibriumdiagramoftheMn-Bibinarysystemisaffectedandcontrolledbyahighmagneticfield .thepurposeofthisstudyistoperformahigh-fieldDtaexperimentforferromagneticMnBiinhighmagneticfieldsandhightemperaturesbycombiningDtaandthe45-thybridmagnet(theworld’shigheststeadymagnetfield)togetthefirstdataonmagneticfieldeffectsondecompositionprocessandacorrespondingphasediagram .

    Figure 1.typicalresultsofDtacurvesofMnBiundervariousmagneticfieldsupto45t .

    Figure 2.PhasediagramofMnBi .theredsolidcirclesindicatettdeterminedbyDta .thedashedlinesareeyeguides .

  • special edition VolUMe 17 · no. 2 31

    mA

    gN

    Et S

    ciE

    Nc

    E &

    tEc

    hN

    OLO

    gyexpeRiMental

    aDtasignalwasmeasuredforpowderMnBi(~100mg)inmagneticfieldsupto45tusingthe45t-hybridmagnetinthetemperaturerangeof20-500oC(293-773K) .themeasurementwasperformedintheheatingprocessattherateof~5 .oC/min .

    ResUlts and discUssionFigures1and2showthetypicalresultsofDtacurvesofMnBiundervariousmagneticfieldsupto45t

    andthephasediagram,respectively .themeltingpointofBi(TBi

    )isnotchangedbymagneticfield .Ontheotherhand,thedecompositiontemperatureT

    t(MnBiàMn

    1 .08Bi+Liq .Bi)increaseslinearlywithincreasing

    Bupto~20t,butthedataover20tdeviatefromthestraightline(~2oC/t) .Inaddition,wefoundthattheperitetictemperatureT

    mincreaseswithincreasingB,whichisclearlyobservedover40t .thesephenomena

    (thedeviationofTtfromthestraightlineandtheincreaseofT

    m)areprobablyduetothefield-induced

    magneticmomentofMn1 .08

    Bi .WearenowcalculatingtheequilibriumdiagramoftheMn-Bibinarysysteminahighmagneticfieldtochecktheobtainedexperimentalresults .

    conclUsionsthehF-Dtaexperimentwasperformedinhighmagneticfieldsupto45tforthefirsttime .theobtained

    resultsclearlyshowthatthedecompositiontemperatureandperitectictemperatureofMn-Biincreasewithincreasingmagneticfield .

    acKnowledGeMentsthisworkwaspartlysupportedbytheIketaniscienceandtechnologyFoundation .

    ReFeRences 1 .K .Koyama,et al .,Mater. Trans .,48,2414-2418(2007) .

  • 32 VolUMe 17 · no. 2 special edition

    mA

    gN

    Et S

    ciE

    Nc

    E &

    tEc

    hN

    OLO

    gy this work reports both the first truly epitaxial pnictide films and bicrystals that enable the propertiesofgrainboundariestobemeasured .sadlyasimilardepressionofsuperconductingpropertiestothat

    foundinthecupratesisseen,suggestingthatthispropertyisintrinsictosuperconductorsformedbydopingcarriersintoaparentnon-superconductingstate .

    •thisworkwaspublishedinAppl. Phys. Lett.,95,21/212505(2009) .

    CurrenttransportatGrainBoundariesinsuperconductingBa(Fe

    1-xCo

    x)

    2as

    2Bicrystals

    J. Jiang, J. d. weiss, c. tarantini, a. xu, d. abraimov, a. polyanskii, a. Yamamoto, F. Kametani,e. e. Hellstrom, a. Gurevich, d. c. larbalestier (Mag lab-FsU); s. lee, c. M. Folkman, c. w. Bark, s. H. Baek, H. w. Jang, c. B. eom (U. of wisconsin); c. t. nelson, Y. Zhang, x. Q. pan (U. of Michigan)

    intRodUctionGrainboundaries(GBs)transparenttocurrentareintrinsictonb-ti,nb

    3snandMgB

    2 .theferropnictide

    superconductorshaveimportantapplicationproperties,namelytcupto55K,h

    c2of100tesla(t)ormore,

    strongvortexpinning,moderateanisotropy,andhirr

    closetohc2,leavingopenonlythekeyquestion

    whetherGBscantransmitcurrent .herewereporttheexplicitstudyofthisvitalproperty,usingextensivetransport,magneto-optical(MO),low-temperaturelaserscanningmicroscopy(LtLsM),andhighresolutiontransmissionelectronmicrocopy(hrtEM)investigationsofBa(Fe

    1-xCo

    x)

    2as

    2(Ba-122)epitaxialthinfilm

    bicrystals .

    Figure 1.Depressedsuperconductivityatthegrainboundary(GB)addsdissipation .(a)LtLsMimageofthelocalelectricfielddevelopedat6°GB .(b)Magneto-opticalimageandthecurrentstreamlinesturningduetotheblockingeffectof9°GB

    Figure 2.DependenceofthecriticalcurrentdensityJc(12K,0 .5t,hperpendiculartothefilm)asafunctionoftheGBmisorientationangletheta .theinsertshowssummarydataforyBCOGBs .therapiddropinJgb(θ)withincreasingthetaintheBa-122bicrystalsexhibitsasimilarqualitativedependenceonthemisorientationangleθ .

  • special edition VolUMe 17 · no. 2 33

    mA

    gN

    Et S

    ciE

    Nc

    E &

    tEc

    hN

    OLO

    gyexpeRiMental

    Epitaxial~350nmthickBa-122thinfilmsweregrownin-situon[001]tilt(100)srtiO3bicrystalsubstrates .

    Four-circleX-raydiffractionshowedexcellentepitaxywithcube-on-cube,in-planeepitaxialrelationshipwiththesubstrates .WeperformeddetailedstudiesofthegrainandGBcriticalcurrentdensitiesJ

    c(t,B)andJ

    gb

    (t,B)forthebicrystals .

    ResUltsshowninFigure1arerepresentativeLtLsMandMOimagesof6oand9obicrystals,whichdemonstrate

    thesignificantcurrent-blockingeffectofevenlow-angleGBs .theMOimageinFigure1bshowsthatthe9o[001]tiltGBcantransmitonlyabout10%oftheintragraincriticalcurrent .Figure2showsthatJ

    gb(12K,0 .5t)

    fallsoffbyanorderofmagnitudeasqincreasesfrom3to24o .thisqualitativebehaviorissimilartoJgb

    (q)for[001]tiltGBsinyBCO .the3oGBinBa(Fe

    1-xCo

    x)

    2as

    2doesnotobstructsupercurrent,whileathigheranglesJ

    gb

    (q)becomesmuchsmallerthanthegrainJc .

    conclUsionWehavedevelopedaprocessforgrowingpnictideBa-122singlecrystalthinfilms .J

    gbacross[001]tilt

    GBsofthinfilmBa(Fe1-x

    Cox)

    2as

    2bicrystalsisstronglydepressed,similartohigh-t

    ccuprates .Ourresultsraise

    thequestionastowhetherweak-linkedGBsarecharacteristicofhigh-tcsuperconductingcompoundsdevelopedfromparentnon-superconductingstateswithcompetingorders,lowcarrierdensity,andunconventionalpairingsymmetry .

    acKnowledGeMentsWorkattheMagnetLabwassupportedundernsFCooperativeagreementDMr-0084173,by

    thestateofFlorida,andbyaFOsrgrantFa9550-06-1-0474 .WorkatUWwassupportedbyDOEgrantDE-FG02-06Er463 .WorkattheUniversityofMichiganwassupportedbytheDepartmentofEnergyundergrantDE-FG02-07Er46416 .

    ReFeRences 1 .s .Lee,et al.,Appl. Phys. Lett .,95,212505(2009) .

    It is now clear thatyBCO can be used not just for magnets of great strength at 4 K, but also to makemagnetsthatgeneratemoreusualfieldsof5to15tesla(t)inthetemperaturerangeupto65Kormore .thelimitstooperationaresetbytheirreversibilityfieldatwhichthecriticalcurrentdensitygoestozero .InthisrecentApplied Physics Letter, it isshownthattheverystrongpinningcentersthatnowcanbeputintoyBCOcoatedconductorsenhancetheirreversibilityfieldoverabroadangularrange,theeffectsbeinglargestathighertemperatureswheretheyareofgreatestpracticaluse .

    •thisworkwaspublishedinAppl. Phys. Lett .,96,072506(2010) .

    VortexLiquid-glasstransitionUpto60tinnano-engineeredCoatedConductorsM. Miura (Japan society for the promotion of science; superconductivity Research laboratory-international superconductivity technology center, Japan; Mpa-stc, lanl); s.a. Baily, B. Maiorov, l. civale, J.o. willis, K. Marken (Mpa-stc, lanl); t. izumi, K. tanabe, Y. shiohara (sRl-istec)

    intRodUctionhigherirreversibilityfields(H

    irr)increasetheupperboundforapplicationsofhighT

    csupercon-

    ductorsandcouldexpandtheirmarketpenetration1 .Weperformedthefirstpulsed-fieldstudiesoftheresistivetransitioninsuperconductingfilmsonflexiblemetalsubstrates,knownascoatedconductors(CC) .WeinvestigatedtheeffectofdisorderonH

    irrandtheuppercriticalfield(H

    c2)atdifferentorientations

    ofthemagneticfield(H)foryBa2Cu

    3O

    y(yBCO)andBaZrO

    3-nanoparticledispersedy

    0 .77Gd

    0 .23Ba

    2Cu

    3O

    y

    (yGdBCO+BZO) .

    expeRiMentalthetwosamplesusedinthisstudyarebridgesof0 .5mm-thickCCofyBCOandyGdBCO+BZOgrown

    byatrifluoroacetatemetalorganicdepositionprocessonIBaDmetaltemplates2 .alowaCcurrentdensity

  • 34 VolUMe 17 · no. 2 special edition

    mA

    gN

    Et S

    ciE

    Nc

    E &

    tEc

    hN

    OLO

    gy J~400a/cm2wasappliedalongthebridge .IntheDCfieldstudies(upto15t)arotatingstagewasusedtorotatetheCCwithrespecttoH .sixty-fivetpulsed-fieldmeasurementswereperformedwhilemaintaining

    thesampleatfixedangles .InallcasesJ^H(maximumLorentzforce) .theHc2

    andHirr

    weredeterminedusing0 .9r

    nand0 .01r

    ncriteriarespectively,wherer

    nisthenormalstateresistivity .

    Figure 1temperaturedependenceof(a) H

    c2

    and(b)Hirr

    withH||c,H||ab,andH||45°foryBCOandyGdBCO+BZOCCs .(c)normalizedresistivityvs .magneticfieldatH||cforyBCOCCusingbothpulsed(lines)andDCfields(circles) .(d)temperaturedependenceofg,foryBCO(opensymbols)andyGdBCO+BZO(solidsymbols)CCs,calculatedusingHab

    c2 , Hc

    c2

    (diamonds)&H45 c2

    , Hc c2

    (stars) .

    ResUlts and discUssionsincethesefilmsaregrownonmetalsubstrates,eddycurrentheatinginpulsedfieldswasaconcern .

    BycomparingresultsobtainedusingpulsesofvariousmagnitudesandDCfields,heating