Florida State University...

180
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 Multiferroic Metal Organic Frameworks with Perovskite Architecture Prashant Jain Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected]

Transcript of Florida State University...

Page 1: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

Florida State University Libraries

Electronic Theses, Treatises and Dissertations The Graduate School

2010

Multiferroic Metal Organic Frameworkswith Perovskite ArchitecturePrashant Jain

Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected]

Page 2: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

MULTIFERROIC METAL ORGANIC FRAMEWORKS WITH PEROVSKITE

ARCHITECTURE

By

PRASHANT JAIN

A Dissertation submitted to the Department of Chemistry and Biochemistry

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Degree Awarded: S Semester, 2010

ummer

Page 3: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

ii

The members of the committee approve the dissertation of Prashant

Jain defended on April 15, 2010.

__________________________________ Harold W. Kroto Professor Directing Dissertation

__________________________________ James Brooks University Representative

__________________________________ Naresh Dalal Committee Member

__________________________________ Lei Zhu Committee Member

Approved:

_____________________________________ Joseph B. Schlenoff, Chair, Department of Chemistry and Biochemistry

The Graduate School has verified and approved the above-named com-

mittee members.

Page 4: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

iii

ACKNOWLEDGEMENTS

I would like to thank my supervisors Prof. Harry Kroto and Prof. Tony

Cheetham who have supported me throughout this dissertation process.

I am also thankful to Prof. Naresh Dalal who has advised me throughout

this PhD. I would also like to thank Cheetham, Kroto, and Dalal group

members, present and past, with whom I was fortunate to work. In par-

ticular, I would like to mention Vasanth Ramachandran, Dr. Steve Ac-

quah, Dr. Crystal Merrill, Dr. Russel K. Feller, Dr. Gautam Gundiah, Dr.

Katherine Page, Dr. Kinson Kam, and Dr. Thirumurugan Alagarsamy. I

am also grateful to various interns who worked with me. I would like to

especially thank Rose who supported me and brought laughter and sta-

bility to my life. Finally, I would like to thank my family for all of their

support all these years.

Page 5: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ................................................................................................ iii

TABLE OF CONTENTS.................................................................................................... iv

LIST OF TABLES ............................................................................................................... ix

LIST OF FIGURES ...............................................................................................................x

ABSTRACT ........................................................................................................................ xiv

CHAPTER 1 .......................................................................................................................... 1

INTRODUCTION ................................................................................................................ 1

1.1 Metal organic frameworks .................................................................................... 1

1.1.1 General introduction ............................................................................................ 1

1.1.2 Open and dense frameworks ............................................................................ 3

1.2 Ferroelectrics and multiferroics ......................................................................... 7

1.2.1 Ferroelectric ............................................................................................................ 7

1.2.1.1 Crystallography and ferroelectrics ............................................................ 9

1.2.2 Multiferroic materials....................................................................................... 11

1.2.3 Glossary of terms ................................................................................................ 12

1.3 Ferroelectric metal organic frameworks ..................................................... 14

Page 6: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

v

1.3.1 Rochelle salt, KDP, and triglycine sulfate (TGS). ................................... 14

1.3.2 Ferroelectric MOFs ............................................................................................ 17

1.4 Summary .................................................................................................................... 26

CHAPTER 2 ....................................................................................................................... 28

EXPERIMENTAL TECHNIQUES AND SYNTHESIS ............................................ 28

2.1 Experimental techniques .................................................................................... 28

2.1.1 Single crystal and powder X-ray diffraction ........................................... 28

2.1.1.1 Single crystal X-ray diffraction .................................................................. 28

2.1.1.2 Synchrotron versus laboratory sources for X-ray diffraction ..... 29

2.1.2 Neutron diffraction ............................................................................................ 31

2.1.2 Magnetic susceptibility measurements using a SQUID

magnetometer ................................................................................................................. 34

2.1.3 Heat capacity measurements ........................................................................ 36

2.1.4 Dielectric properties (capacitance measurements) ............................ 38

2.2 Solvothermal synthesis ....................................................................................... 39

CHAPTER 3 ....................................................................................................................... 42

ORDER – DISORDER PHASE TRANSITION IN [(CH3)2NH2]Zn(HCOO)3 .. 42

3.1 Background ............................................................................................................... 42

Page 7: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

vi

3.2 Synthesis .................................................................................................................... 43

3.3 Structure .................................................................................................................... 45

3.4 Structural phase transition ................................................................................ 46

3.5 Dielectric and heat capacity measurements ............................................... 48

3.6 Summary and conclusions ................................................................................. 51

3.7 Resulting publication and comments ............................................................ 52

CHAPTER 4 ....................................................................................................................... 53

MULTIFERROIC METAL ORGANIC FRAMEWORKS:

[(CH3)2NH2]M(HCOO)3(M=Mn, Ni, Co, & Fe) ...................................................... 53

4.1 Background ............................................................................................................... 53

4.2 Synthesis .................................................................................................................... 54

4.3 Crystal growth mechanism ................................................................................ 55

4.4 Structure .................................................................................................................... 57

4.4.1 Crystallographic data for DMAFeF .............................................................. 58

4.5 Magnetic properties of DMAMF ....................................................................... 61

4.5.1 Magnetic susceptibility .................................................................................... 61

4.6 Structural phase transition ................................................................................ 63

4.6.1 Temperature dependent X-ray diffraction data .................................... 63

Page 8: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

vii

4.7 Low temperature structure ............................................................................... 64

4.8 Dielectric measurements .................................................................................... 70

4.9 Heat capacity measurements ............................................................................ 74

4.10 Summary and conclusions ............................................................................... 77

4.11 Resulting publications and comments ....................................................... 78

CHAPTER 5 ....................................................................................................................... 79

GLASSY BEHAVIOR OF (CH3)2NH2Zn(HCOO)3 .................................................. 79

5.1 Background ............................................................................................................... 79

5.2 Debye law and remnant specific heat ............................................................ 80

5.3 NMR measurements .............................................................................................. 82

5.4 Results and discussion ......................................................................................... 84

5.5 Summary and conclusions ................................................................................. 90

5.6 Resulting publications and comments .......................................................... 91

CHAPTER 6 ....................................................................................................................... 92

SUMMARY AND CONCLUSIONS ............................................................................... 92

APPENDIX ......................................................................................................................... 95

CRYSTALLOGRAPHIC INFORMATION FILES ..................................................... 95

Page 9: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

viii

Dimethylammonium iron formate: ........................................................................ 95

Dimethylammonium zinc formate ....................................................................... 106

Dimethylammonium manganese formate ........................................................ 113

Dimethylammonium nickel formate ................................................................... 123

Low temperature dimethylammonium manganese formate ................... 134

LIST OF REFERENCES .............................................................................................. 144

BIOGRAPHICAL SKETCH .......................................................................................... 160

Page 10: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

ix

LIST OF TABLES

Table 1: 32 point groups. Polar point groups have been highlighted in blue. ..................................................................................................................................... 10

Table 2: Comparison of single crystal and powder diffraction .................. 31

Table 3: Structure parameters for 1 from single crystal X-ray diffraction at room temperature .................................................................................................... 46

Table 4: Structure parameters for DMAFeF ....................................................... 58

Table 5: Atomic parameters of DMAFeF .............................................................. 59

Table 6: Anisotropic displacement parameters for DMAFeF, in Å2 ......... 59

Table 7: Selected geometric information for DMAFeF .................................. 59

Table 8: Structural parameters for the low temperature polar phase of DMAMnF ............................................................................................................................ 66

Table 9: Arrhenius parameters for the CH3 protons in DMAZnF in the PE and FE phases .................................................................................................................. 89

Page 11: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

x

LIST OF FIGURES

Figure 1: MOF-5, a porous cubic zinc terephthalate which is topologically analogous to ReO3. Gray spheres denote carbon, red oxygen, and white hydrogen, with ZnO4 tetrahedra in blue. ......................... 4

Figure 2: Schematic representation of coordination polymers and extended inorganic hybrids; (a) and (b) show 1-D and 2-D coordination polymers, respectively, while (c) shows a system that has inorganic connectivity in two dimensions and is connected in the third ..................... 6

Figure 3: Cubic perovskite structure. The small B cation (in black) is at the center of an octahedron of oxygen anions (in gray). The large A cations (white) occupy the unit cell corners......................................................... 9

Figure 4: Ferromagnets (ferroelectrics) form a subset of magnetically (electrically) polarizable materials such as paramagnets and antiferromagnets (paraelectrics and antiferroelectrics). The intersection (red hatching) represents materials that are multiferroic. (Adopted from ref. 17) ................................................................................................................................ 11

Figure 5: Views of the unit cell content of Rochelle salt (paraelectric phase) (left), KDP (paraelectric phase) (middle) and TGS (ferroelectric phase) (right) .................................................................................................................. 16

Figure 6: Molecular structure of crystal state of [CoCl3(H-MPPA)] and its 3D packing view along the b axis and electric hysteresis loop recorded at room temperature (adopted from ref. 116). ................................................... 18

Figure 7: Molecular structure of [Ni3(TBPLA)2( 3-O)](ClO4)4(H2O)5 where water and ClO4− are omitted for clarity117 ........................................... 20 Figure : Dielectric permittivity εr) of a single crystal of [Ni3(TBPLA)2( 3-O)](ClO4)4(H2O)5 as a function of temperature upon application of an electric field approximately parallel to the a (E//a), b(E//b), and c(E//c) crystal axes directions. The measurements were made at a high frequency of 1 MHz (adopted from ref. 117). ..................... 21

Page 12: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

xi

Figure 9: A schematic illustration of the molecular structure of RbI0.82MnII0.20MnIII0.80[FeII(CN)6]0.80 [FeIII(CN)6]0.14·H2O ................................. 22

Figure 10: (a) Crystal structure of [Mn3(HCOO)6](C2H5OH) viewed along the b-axis: Mn, pink; C, gray; O, blue; H, pale sky blue. The C and O atoms of guest C2H5OH molecules are shown by open circles. (b) The arrangement of guest ethanol molecules along the channel ...................... 23

Figure 11: (a) Temperature dependence of the magnetization of [Mn(HCOO)6](C2H5O( ( = Oe . b Dielectric constants εr) of [Mn(HCOO)6](C2H5OH) for the field E//a (blue), b (green), and c (pink). The red line represents εr (E//a) of the crystal with deuterated ethanol, [Mn(HCOO)6](C2H5OD). (c) The hysteresis loop of [Mn(HCOO)6](C2H5O( E//a . d The /εr vs T curve of [Mn(HCOO)6](C2H5OH). In the dielectric measurements, the relatively high speed of the temperature change − °/min was adopted to avoid the escaping of guest molecules .............................................................................. 25

Figure 12: Difference between the relative sizes of the cross-sections between X-ray and neutron for some elements. .............................................. 33

Figure 13: Scheme of a SQUID magnetometer. ................................................. 35

Figure 14: Cutaway view showing the PPMS -16T magnet and probe. Inset shows a heat capacity puck. ........................................................................... 38

Figure 15: Cutaway of a general purpose (high temperature) 23 mL Parr acid digestion bomb, used in the solvothermal synthesis of all the compounds described in this dissertation. ......................................................... 40

Figure 16: Crystal structure of [(CH3)2NH2]Zn(HCOO)3 , 1. It has the same architecture as an ABX3 perovskite, with A=(CH3)2NH2+, B=Zn2+ and X=HCOO-. .................................................................................................................. 45

Figure 17: Synchrotron powder patterns collected with a wavelength of 0.608Å at APS: red data obtained at room temperature, black data at 100K. ................................................................................................................................... 48

Figure 18: Dielectric constant of 1 measured as a function of temperature. .................................................................................................................... 50

Page 13: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

xii

Figure 19: Heat capacity of 1 as function of temperature. ........................... 51

Figure 20: Optical images of [(CH3)2NH2]Mn(HCOO)3. .................................. 55

Figure 21: AFM image of a multiferroic MOF dimethylammonium manganese formate. Crystals grow layer by layer during the room temperature crystallization. Growth is perpendicular to the <012> plane. ................................................................................................................................... 56

Figure 22: Building block of [(CH3)2NH2]Mn(HCOO)3, DMMnF. The DMA cation (A) is at the center of an ReO3 type cavity, formed by manganese (B) and formate (X) ions. Nitrogen is disordered over three positions. 57

Figure 23: Temperature dependence of χM of DMAMnF at H = 1000 Oe from 2 to 300 K. 142........................................................................................................ 62

Figure 24: Magnetic susceptibility of DMAFeF ................................................. 63

Figure 25: PXRD pattern for DMAMnF, collected at the Advanced Photon Source, ANL = . Ǻ, BM-11) .......................................................................... 64

Figure 26: Rietveld refinement of PXRD data of DMANiF collected at 10 K with monoclinic unit cell of a=14.451(8) Å b=8.376(3) Å c=8.952(4) Å and β= . °. Pattern is in red color, simulated pattern is in blue and difference plot is in orange. .............................................................................. 66

Figure 27: Reietveld refinement of powder neutron data collected at NIST with the low temperature Cc phase of DMAMnF. Black is the experimental data, Red is simulated pattern, Blue is the Bragg positions and Green is the difference between experimental and simulated. ........ 70

Figure 28: Dielectric constant of DMAMnF as a function of temperature with no magnetic field and with that of 5 Tesla. The measurements were done at 1 kHz, using amplitude of 1V. .................................................................. 71

Figure 29: Dielectric constant of DMAMnF measured as a function of temperature and magnetic field. Bottom two plots reveal a magneto-dielectic coupling. .......................................................................................................... 73

Page 14: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

xiii

Figure 30: Heat capacity of DMAMnF as a function of temperature. The anomalies relating to electrical ordering and magnetic ordering are clearly visible. .................................................................................................................. 75

Figure 31: Effect of magnetic field on the magnetic phase transition in DMAMnF on cooling. .................................................................................................... 76

Figure 32: Temperature dependence of Q-Band EPR spectra of DMAMnF. ........................................................................................................................... 77

Figure 33: Temperature dependent of low-temperature specific heat (plotted as C/T3 versus T). ......................................................................................... 81

Figure 34: Crystal structure of [(CH3)2NH2]Zn(HCOO)3 at room temperature. The purple spheres represent the three dynamically disordered sites for the N atom of the dimethylammonium formate moiety. The freezing of these positions is proposed to be the mechanism underlying the ferroelectric transition at 156 K. ............................................. 83

Figure 35: Temperature dependence of the CH3 proton spin-lattice relaxation rate, T1-1, of DMAZnF. A, B and, C refer to the glass, ferroelectric (FE) and, paraelectric (PE) phases, respectively. Solid lines are the theoretical fits to the BPP equation. Arrows indicate the direction of the temperature scan. The inset shows the Arrhenius plot for this path. ..................................................................................................................... 85

Figure 36: Thermal cycles for paths II and III, wherein the spin-lattice relaxation rate jumps back to the main path (path I), are highlighted by arrows. The dashed lines are the projected paths had no jumps occurred. Solid (thick) lines are the theoretical fits to the BPP equation. ............................................................................................................................................... 86

Page 15: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

xiv

ABSTRACT

Multiferroic materials are rare compounds featuring at least two ferroic

properties with a majority of them displaying (anti)ferro – electricity or

magnetism. Currently, the most famous compounds displaying such be-

havior are oxide perovskites. One of the most common mechanisms for

ferroelectric behavior in perovskites, requires an empty d-orbital which

usually means that the material is diamagnetic. Hence there is a need for

multiferroic materials in which two independent mechanisms can de-

termine the electric and magnetic ordering. I was able to achieve this us-

ing hybrid perovskites.

Hybrid perovskites of general formula (CH3)2NH2M(HCOO)3 have a ReO3

type cage made up of formate and metal ions. The metal ions sit at the

corners of the cubes and are connected to each other via coordination

bonding with oxygen of the formate ion. The dimethylammonium cation

is located at the center of this cavity. The amine hydrogen atoms make

hydrogen bonds with the oxygen atoms of the metal formate frame-

work. Because of this hydrogen bonding, the nitrogen of the ammonium

cation is disordered over three equal positions at room temperature.

Cooling down these materials below 180 K leads to a lowering in sym-

metry, a result of the ordering of nitrogen atoms.

This phase transition is associated with a dielectric anomaly. Carefully

done dielectric measurements show that the anomaly is a -type peak

Page 16: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

xv

usually associated with paraelectric to ferroelectric phase transition.

Low temperature single crystal measurements aided by powder X-ray

diffraction and neutron diffraction experiments show that low tempera-

ture phase crystallizes in monoclinic symmetry and Cc space group. Cc

belongs to one of the 10 polar point groups which are requirements for

ferroelectricity. Furthermore, magnetic fields seem to affect this dielec-

tric anomaly, suggesting that these hybrid perovskites have a magneto-

dielectric effect. This phase transition was studied in detail by electron

paramagnetic resonance, heat capacity, and 1H NMR relaxation time

measurements.

Close to 0 K, specific heat data suggest that there is a remnant specific

heat, a classic signature of amorphous or glassy materials. NMR data

shows that these hybrid materials are indeed glassy below 40 K with

many confirmations with close underlying energies. This effect is re-

lated to the rotation of methyl motors. NMR results also show an ano-

maly at the same temperature where dielectric anomaly is present. Me-

thyl protons slow down by a factor to suggest that dielectic anomaly is

indeed due to the ordering of nitrogen atoms.

Page 17: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

1

CHAPTER 1

INTRODUCTION

Hybrid inorganic-organic or metal-organic frameworks (MOFs) are a re-

cently-identified class of crystalline material, consisting of metal ions

linked together by organic bridging ligands, and are a new development

on the interface between molecular coordination chemistry and mate-

rials science.1-10 A range of novel structures has been prepared which

feature amongst the largest pores known for crystalline compounds,

very high absorption capacities and complex sorption behavior not seen

in aluminosilicate zeolites.3, 11-14 Most of the efforts in this field have

been focused on discovering porous MOFs for gas storage applications,

and not much attention has been given to other physical properties for

which oxides are usually known for.15-16 In this dissertation, I focus on

the research that I have conducted in one such field called multifer-

roics.17-18 I have demonstrated that it is possible to achieve multiferroic

behavior in this upcoming class of MOF compounds.19-21 In this opening

chapter, I will give an introduction to metal organic frameworks, multi-

ferroics, and, briefly talk about ferroelectric metal organic frameworks.

1.1 Metal organic frameworks

1.1.1 General introduction

Metal organic frameworks are crystalline materials built from inorganic

and organic building blocks with infinite inorganic−organic connectivity

in at least one dimension.1, 4, 6, 10, 22-27 Sometimes they are referred to as

Page 18: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

2

hybrid inorganic-organic frameworks and a subset of which are inor-

ganic−coordination polymers.28 These framework materials have re-

cently developed into an important new class of solid-state materials

with approximately 2800 ISI web of science papers published in the

year 2009. This is, mainly, due to the infinite possibilities of new frame-

works materials that can be created by varying the inorganic/organic

ratio.16 These materials can also offer wide range of physics and chemi-

stries. Furthermore, it is possible to tailor their properties by changing

metal ions and/or organic ligands despite maintaining the structure to-

pology.

Hybrid frameworks exist for a wide range of metals and involve a di-

verse range of organic ligands. Most of the published work involves

transition metals, including zinc, but there is a growing body of litera-

ture around rare-earth based systems, which are of interest for their

optical properties.29-31 In addition, there has been a certain amount of

effort with p-block elements, especially aluminium, gallium and tin, plus

a recent growth of interest in magnesium, driven by the search for

lightweight materials for hydrogen storage.32-34

In terms of organic ligands, much of the recent focus has been on con-

nectivity through oxygen atoms of carboxylic acid groups.4, 35-36 Rigid di-

carboxylic acids, such as benzene-1,4-dicarboxylic acid, have proved

very versatile, as have the simple but more flexible aliphatic systems,

such as succinic and glutaric acids.37-39 The simplest member of this fam-

ily, oxalic acid, has been used extensively.40-42 As will be discussed later,

Page 19: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

3

monocarboxylic acids can also form hybrids, and there has been some

recent effort with formic and acetic acids.43-50 Nor is the field limited to

carboxylic acids, since phosphonic acids and phenolic acids can also

form hybrid frameworks.51-54 Beyond network formation involving M–O

linkages, there has been a reasonable amount of work with other types

of ligands, such as pyridyls and imidazoles, as well as mixed ligands that

offer the possibility of more than one type of connection, e.g. M–O plus

M–N or M–S.7-8, 22, 26, 55 Much remains to be explored in the area of these

more complex linkages.

1.1.2 Open and dense frameworks

Hybrid frameworks could be divided into two broad categories: open

and dense frameworks. A majority of the publications in the field are

based upon the open frameworks with potential applications in gas sto-

rage, gas separation, catalysis, and sensors. A vast range of coordination

polymers or supramolecular architectures with different dimensionalities – 1-D, 2-D and 3-D – have been discovered in recent years.15 3-D open

frameworks display some of the highest surface areas known and are

widely regarded as the potential hydrogen storage materials for various

energy related applications including the transportation industry. Some

of the most striking examples of porous 3-D coordination polymers can be

found in the work of Yaghi, O'Keeffe and co-workers, in which they have

exploited bridging of simple Zn4O groups via rigid aromatic dicarboxylates

such as benzene-1,4-dicarboxylic acid to build networks with remarkably

low densities and high porosity, such as MOF-5.9 They have shown that

Page 20: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

4

large families based upon the same architecture can be created by altering

the length or other chemical details of the organic linker.56 In addition to

architectures based upon the topologies of simple inorganic structures;

there has also been success in building porous hybrids based upon known

zeolite structures. These include zinc, cadmium and indium coordination

polymers that adopt the ABW, BCT, MTN, RHO and SOD topologies.7 Imida-

zoles-based ligands are particularly effective for this purpose since they

can mimic the Si–O–Si angles that are found in typical zeolites.

Figure 1: MOF-5, a porous cubic zinc terephthalate which is topologically ana-logous to ReO3. Gray spheres denote carbon, red oxygen, and white hydrogen, with ZnO4 tetrahedra in blue.

Focusing on dense hybrid frameworks, only recently has some attention

been paid to these materials. They are frameworks with extended inor-

Page 21: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

5

ganic, for example M-O-M, connectivity in at least one dimension (Figure

2) or with limited porosity, for example, cation templated hybrid

frameworks. These materials show interesting magnetic, optical, elec-

tronic and dielectric properties. They exhibit rich diversity of behavior

in these areas and present some exciting opportunities for the physics

community. Cation-templated hybrid MOFs, described in this text at a

later stage, are an important subclass of dense frameworks. They do not

have extended inorganic connectivity; however, due to the template,

amajority do not have any accessible pores.

Page 22: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

6

Figure 2: Schematic representation of coordination polymers and extended inorganic hybrids; (a) and (b) show 1-D and 2-D coordination polymers, re-spectively, while (c) shows a system that has inorganic connectivity in two dimensions and is connected in the third

Such extended inorganic hybrid materials not only open up a vast area

of new chemical and structural permutations, but they also provide a

basis for creating materials with properties that are traditionally found

Page 23: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

7

in metal oxides. Thus it might be possible to make hybrid materials that

are metallic, superconducting, or high temperature ferromagnets.

1.2 Ferroelectrics and multiferroics

1.2.1 Ferroelectric

A ferroelectric material is one that undergoes a phase transition from a

high-temperature phase that behaves as an ordinary dielectric (so that

an applied electric field induces an electric polarization, which goes to

zero when the field is removed) to a low-temperature phase that has a

spontaneous polarization whose direction can be switched by an ap-

plied field57. Many properties of ferroelectric materials are analogous to

those of ferromagnets, but with the electric polarization, P, correspond-

ing to the magnetization, M; the electric field, E; corresponding to the

magnetic field, H; and the electric displacement, D, corresponding to the

magnetic flux density, B.58 For example, ferroelectric materials also have

domains and show a hysteretic response of both polarization and elec-

tric displacement to an applied electric field. As a result, they also find

applications in data storage. The onset of spontane-

ous electric polarization coincides with a divergence in the stat-

ic dielectric permeability, ε, because at Tc, an infinitesimally small exter-

nal electric field will cause a large polarization. They find application as

capacitors because their concentration of electric flux density results in

high dielectric permeabilities. They are also used in electromechanical

Page 24: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

8

transducers and actuators (because the change in electric polarization is

accompanied by a change in shape).

Early work on ferroelectric materials focused primarily on Rochelle

salt,59 KNa(C4H4O6)·4H2O. Although studies of Rochelle salt were pivotal

in establishing many of the basic properties of ferroelectric materials,

the complex structure and large number of ions per unit cell made it dif-

ficult to elucidate a coherent theory of ferroelectricity from the results

of experiments on this material.60-66 The most widely studied and widely

used ferroelectrics today are perovskite-structure oxides, ABO3, which

have the prototypical cubic structure shown in Figure 3. The cubic pe-

rovskite structure is characterized by a small cation, B, at the center of

an octahedron of oxygen anions, with large cations, A, at the unit cell

corners. Below the Curie temperature, there is a structural distortion to

a lower-symmetry phase accompanied by the shift off-center of the

small cation. The spontaneous polarization derives largely from the

electric dipole moment created by this shift. The comparatively simple

perovskite structure and the small number of atoms per unit cell have

made detailed theoretical studies of perovskite ferroelectrics possible

and resulted in a good understanding of the fundamentals of ferroelec-

tricity.

Page 25: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

9

Figure 3: Cubic perovskite structure. The small B cation (in black) is at the center of an octahedron of oxygen anions (in gray). The large A cations (white) occupy the unit cell corners.

1.2.1.1 Crystallography and ferroelectrics

The crystal classification of a material has immediate implications for

ferroelectric effects.

There are 32 crystal classes

Page 26: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

10

11 of them have a centre of symmetry (centrosymmetric) and

cannot support ferroelectricity

Of the remaining 21, the O-point group (432) also excludes ferroe

lectricity.

The remaining 20 classes all exhibit the piezoelectric effect

Of these, 10 (Table 1) have a unique polar direction.

Table 1: 32 point groups. Polar point groups have been highlighted in blue.

Page 27: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

11

1.2.2 Multiferroic materials

Figure 4: Ferromagnets (ferroelectrics) form a subset of magnetically (electri-cally) polarizable materials such as paramagnets and antiferromagnets (pa-raelectrics and antiferroelectrics). The intersection (red hatching) represents materials that are multiferroic. (Adopted from ref. 17)

Multiferroics are rare materials that exhibit more than one primary fer-

roic order parameter simultaneously within a single phase.17, 67-76 These

ferroic order parameters are ferroelasticity, ferroelectricity and ferro-

magnetism (See glossary of terms at the end of the section).77-78 Howev-

er, the current trend is to exclude the requirement for ferroelasticity79-83

in practice, but to include the possibility of ferrotoroidic order84-85 (glos-

sary of terms) in principle. Moreover, the classification of a multiferroic

has been broadened to include antiferroic order (glossary of terms).

Page 28: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

12

Magnetoelectric coupling73, 75, 86-89, on the other hand, may exist whatev-

er the nature of magnetic and electrical order parameters, and can for

example occur in paramagnetic ferroelectrics90-93 (Figure 4). Magnetoe-

lectric coupling may arise directly between the two order parameters,

or indirectly via strain.72, 94-97 Currently there is a high level of interest in

magnetoelectrics and multiferroics. Given that there are indeed few

multiferroic materials, whatever the microscopic reasons, the relentless

drive towards ever better technology is aided by the study of novel ma-

terials. Aspirations here include transducers and magnetic field sensors,

but tend to centre on the information storage industry. It was initially

suggested that both magnetization and polarization could independent-

ly encode information in a single multiferroic bit. Four-state memory

has recently been demonstrated98, but in practice it is likely that the two

order parameters are coupled. 99 Coupling could in principle permit data

to be written electrically and read magnetically. This is attractive, given

that it would exploit the best aspects of 100-104 (FeRAM) and magnetic da-

ta storage, while avoiding the problems associated with reading FeRAM

and generating the large local magnetic fields needed to write.

1.2.3 Glossary of terms

Ferroics

Ferroelectric materials possess a spontaneous polarization that is sta-

ble and can be switched hysteretically by an applied electric field.

Page 29: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

13

Antiferroelectric materials possess ordered dipole moments that can-

cel each other completely within each crystallographic unit cell.

Ferromagnetic materials possess a spontaneous magnetization that is

stable and can be switched hysteretically by an applied magnetic field.

Antiferromagnetic materials possess ordered magnetic moments that

cancel each other completely within each magnetic unit cell.

Ferroelastic materials display a spontaneous deformation that is stable

and can be switched hysteretically by an applied stress.

Ferrotoroidic materials possess a stable and spontaneous order para-

meter that is taken to be the curl of a magnetization or polarization. By

analogy with the above examples, it is anticipated that this order para-

meter may be switchable. Ferrotoroidic materials have evaded unambi-

guous observation.

Ferrimagnetic materials differ from antiferromagnets because the

magnetic moment cancellation is incomplete in such a way that there is

a net magnetization that can be switched by an applied magnetic field.

Order parameter coupling

Magnetoelectric coupling describes the influence of a magnetic (elec-

tric) field on the polarization (magnetization) of a material.

Page 30: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

14

Piezoelectricity describes a change in strain as a linear function of ap-

plied electric field, or a change in polarization as a linear function of ap-

plied stress.

Piezomagnetism105-107 describes a change in strain as a linear function

of applied magnetic field, or a change in magnetization as a linear func-

tion of applied stress.

Electrostriction108-109 describes a change in strain as a quadratic func-

tion of applied electric field.

Magnetostriction110-112 describes a change in strain as a quadratic

function of applied magnetic field.

1.3 Ferroelectric metal organic frameworks

A summary of recent work is presented in this section describing non-

centrosymmetric or homochiral metal-organic frameworks which be-

longs to 10 polar point groups with potential ferroelectric properties. It

is necessary to give a brief introduction of three typical well-known fer-

roelectrics: Rochelle salt, KDP and triglycine sulfate (TGS).57

1.3.1 Rochelle salt, KDP, and triglycine sulfate (TGS).

The well-known oldest ferroelectric crystal is Rochelle salt59(see Figure

5). The most outstanding property of Rochelle salt is that it exhibits two

Page 31: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

15

curie points. The space group below 255 K and above 297 K is orthor-

hombic P21212, corresponding to the paraelectric phase while between

the temperature range the space group is monoclinic P21, corresponding

to the ferroelectric phase.113 The paraelectric–ferroelectric transition is

of the order–disorder type.

In the crystal structure, there are rows of tartrate ions parallel to

the a axis, linked along the b axis by rows of alternating K and Na ions.

Every tartrate ion is surrounded by six tartrate ions. K and Na ions act

as a bridge among tartrate ions.114 The K ions adopt a bicapped trigonal

prism geometry and the Na ions display a distorted octahedral geometry

via the coordination with the O atoms from acetate, OH and water. The

crystal structure of Rochelle salt is a combination of two kinds of differ-

ent chains along the a axis. The main difference among the ferroelectric

structure and the two paraelectric structures is in the orientation of

each tartrate ion with respect to the crystallographic axes. It is assumed

that the ferroelectricity is produced by two nonequivalent chains along

the a axis, each with a different polarization vector parallel to the a axis.

As well-known hydrogen-bonded ferroelectrics, the pure inorganic

compound KDP has been the most intensively studied over the second

half of the last century57. There are extensive hydrogen bonds in its

structure that gives rise to a diamondoid network (see Figure 5).

Page 32: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

16

Figure 5: Views of the unit cell content of Rochelle salt (paraelectric phase) (left), KDP (paraelectric phase) (middle) and TGS (ferroelectric phase) (right)

KDP undergoes paraelectric–ferroelectric phase transition at 123 K. The

paraelectric phase adopts the tetragonal space group I−42d (point

group D2d) where the ferroelectric phase adopts the orthorhombic space

group Fdd2 (polar point group C2v). The spontaneous polarization of

KDP arises from the collective site-to-site transfer of protons in the O–H O bonds, along with the displacive deformation of PO4 − ions. Upon

deuteration, KDP shows a huge isotopic effect of Curie temperature with

an increase of about 90 K.

TGS is another typical ferroelectric discovered by Matthias et al. in

1956115. It is synthesized from amino acid glycine and sulfuric acid. In

the crystal structure, there are three types of glycine molecules, i.e., I, II

and III (see Figure 5). The structural formula of TGS can be best written

as [(H3N+CH2COOH)2(H3N+CH2COO−)·SO4 −], among which the glycinium

ion H3N+CH2COOH corresponds to glycines I and II while the zwitterion

H3N+CH2COO− to glycine III. The C, N and O atoms in glycine II and III lo-

Page 33: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

17

cate almost in-plane while the N atom in glycine I deviates of ca. 0.27 Å

from the OCO plane. The sulfate exhibits a distorted tetrahedral geome-

try. The glycines and sulfate ions are connected through hydrogen

bonds. The direction of spontaneous polarization Ps is due to the orien-

tation of the polar group NH3+ of glycine I molecule along the b axis.

TGS displays a perfect hysteresis loop along the b axis and its Ps reaches

3.5 C cm− at room temperature. It shows a typical second order fer-

roelectric phase transition at Curie temperature of 322 K. The paraelec-

tric phase is monoclinic P21/m belonging to the centrosymmetrical class

2/m while the ferroelectric phase below the transition temperature is

monoclinic P21 belonging to the polar point group 2. TGS crystal is one

of the best materials for use as a sensitive element in room temperature

infrared detectors and imaging systems due to its excellent ferroelectric

and pyroelectric properties115.

1.3.2 Ferroelectric MOFs

[Co(II)Cl3(H-MPPA)] is one of the successful ferroelectric examples,

where its electric hysteresis loop reaches perfect spontaneous polariza-

tion status, since the exploration of potential ferroelectrics based on

MOFs 116. It was prepared through the reaction of dichloride (R)-2-

methylpiperazine (MPPA) bi-cation with CoCl2. X-ray crystal structural

determination clearly shows that the local coordination environment

around Co center is a distorted tetrahedron composed of three terminal

Cl atoms and one N atom from unprotonated N atom of MPPA (see Fig-

ure 6). One of the N atoms from the MPPA ligand is protonated and loses

Page 34: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

18

its coordination ability. Thus, three H atoms (H1, H2A and H2B) form

hydrogen bonds between three Cl atoms (Cl1, Cl2 and Cl3) to lead to the

formation of 3D framework created through hydrogen bonds as shown

in Figure 6. A careful investigation shows that three bond distances of

Co–Cl are not equal to each other and display some differences (Co–Cl1 = 2.225 Å; Co–Cl1 = 2.283 Å; Co–Cl1 = 2.260 Å). As expected, the

bond distance of Co1–N1 is in the normal range of Co–N bond lengths.

The piperazine ring adopts a stable chair-type conformation.

Figure 6: Molecular structure of crystal state of [CoCl3(H-MPPA)] and its 3D packing view along the b axis and electric hysteresis loop recorded at room temperature (adopted from ref. 116).

[Co(II)Cl3(H-MPPA)] crystallizes in a chiral space group P21 which be-

longs to one of the ten polar point groups (C2), its ferroelectric property

would occur in principle. Figure 6 shows that an electric hysteresis loop

was indeed observed when the applied electric field was set at about

28 kV cm− . A spontaneous polarization (Ps ≈ 6.8 C cm− ) occurred in

the measuring conditions and remanent polarization (Pr ≈ 6.2 C cm− )

was almost equal to that of Ps. Ps of 1 is twice that of TGS

Page 35: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

19

(Ps = 3.5 C cm− ) and significantly larger than that of KDP. The direction

of the spontaneous polarization in the ferroelectric phase might be per-

pendicular to the chains and to the Cl HN hydrogen bonds, analogous

to KDP and other KDP-type ferroelectrics.116

[Ni3(TBPLA)2(μ3-O)](ClO4)4(H2O)5: Another H-bonded discrete homo-

chiral ferroelectric MOF is Ni3(TBPLA)2( 3-O)(ClO4)4(H2O)5 (3)

(TBPLA = (S)- , , -2,4,6-trimethylbenzene-1,3,5-triyl-

tris(methylene)-tris-pyrrolidine-2-carboxylic acid), which is obtained

by the hydrothermal reaction of Ni(ClO4)2·6H2O with TBPLA117. Frame-

work crystallizes in a chiral space group P21 belonging to one of the ten

polar point groups (C2). The TBPLA ligand is a zwitterionic neutral mo-

lecule similar to the amino acid in TGS, and acts as a hexadentate chela-

tor with each of the ligand's bidentate carboxylate moieties coordinated

to the Ni atoms (see Figure 7). The molecular charge is balanced by four

free ClO4− anions and one 3-O atom. The TBPLA ligand takes an all-

cis coordination mode resembling the shape of a parachute. Each Ni cen-

ter displays a slightly distorted octahedron geometry which is com-

posed of six O atoms, i.e., four of the O atoms from four different carbox-

ylate groups and two from the oxo group and H2O. Similarly, 3D frame-

work occurs in this framework through strong H-bond (see Figure 7).

Page 36: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

20

Figure 7: Molecular structure of [Ni3(TBPLA)2( 3-O)](ClO4)4(H2O)5 where wa-ter and ClO4− are omitted for clarity117

Fu et. al reported that this framework displays large permittivity aniso-

tropy along three crystallographic axes (See Figure 8). The dielectric

anisotropy ratios of r//c/ r//b and r//c/ r//a are ca. 3.47 and 2.22, re-

spectively, showing temperature-independence. Polarization − electric field hysteresis curve was of typical ferroelectrics; the spontaneous po-

larization, Ps, reaches a value of ca. 3.4 nC/cm2 at room temperature

while the coercive field is relatively low, reaching ca. 0.8 kV/cm which is

smaller than those typically found in ferroelectric polymers.

Page 37: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

21

Figure 8: Dielectric permittivity εr) of a single crystal of [Ni3(TBPLA)2( 3-O)](ClO4)4(H2O)5 as a function of temperature upon application of an electric field approximately parallel to the a (E//a), b(E//b), and c(E//c) crystal axes directions. The measurements were made at a high frequency of 1 MHz (adopted from ref. 117).

RbI0.82MnII0.20MnIII0.80[FeII(CN)6]0.80 [FeIII(CN)6]0.14·H2O was reported

by Ohkoshi et al. at low temperature118. It is arguable whether a cyano

bridged compound could be considered a metal organic framework. The

crystal structure resembles that of Prussian blue (see Figure 9). They

used variable-temperature powder x-ray diffraction (PXRD) measure-

ments reveal that the title compound displays phase transition at high

temperature (276 K, a centrosymmetric space group F43m) and low

temperature (184 K, an acentric space group F222 belonging to non-

polar point group D2). The magnetization vs. temperature plots of the

low-temperature phase show ferromagnetism with a Curie temperature

of 11 K. The P–E plot for the low-temperature phase at 77 K, when ap-

Page 38: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

22

plying a field up to 100 kV cm− , shows an electric hysteresis loop with

a Pr of 0.041 C cm− and an Ec of 17.5 kV cm− . The ferroelectricity may

be related to mixing of FeII, FeIII, Fe vacancy, MnII, and Jahn–Teller-

distorted MnIII. One of the possible mechanisms of the ferroelectricity

could be the creation of a local electric dipole moment because of an

iron vacancy. In addition, the difference in ionic radii among four metal

ions and MnIII Jahn–Teller distortion enhance the local structural distor-

tion, for example, the deviation of M–CN–M linkages from a ° confi-guration. Probably, in such a deviated structure, polarization will be in-

duced by the applied electric field, and the polarization can be held by

the structural flexibility of the cyano-bridged 3D network.

Figure 9: A schematic illustration of the molecular structure of RbI0.82MnII0.20MnIII0.80[FeII(CN)6]0.80 [FeIII(CN)6]0.14·H2O

Page 39: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

23

[Mn3(HCOO)6](C2H5OH) 119-120: Research from Kobayashi group

showed, for the first time, a guest induced ferroelectric phase transition

in porous metal organic frameworks. More than often, depending on the

size of the solvent, when porous MOFs are synthesized, their pores con-

tain solvent molecules. Depending on the size and the interaction of the

solvent molecules with the framework body, these solvent molecules

are usually disordered at room temperature.

Figure 10: (a) Crystal structure of [Mn3(HCOO)6](C2H5OH) viewed along the b-axis: Mn, pink; C, gray; O, blue; H, pale sky blue. The C and O atoms of guest C2H5OH molecules are shown by open circles. (b) The arrangement of guest ethanol molecules along the channel

Page 40: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

24

Kobayashi et al. showed that porous Mn3(HCOO)3 is a ferrimangnet be-

low 8.5 K. 119-120. The guest molecules are easily removed under vacuum

and/or by heating. Framework shows a dielectric anomaly below 150 K

when the framework was loaded with polar solvents, for example, H2O,

CH3OH, or C2H5OH. This is due to the ordering of these polar guest mole-

cules which are otherwise randomly disordered at room temperature.

Figure 10 shows the structure of [Mn3(HCOO)6](C2H5OH) viewed along

the b-axis and the arrangement of guest molecules along the channel.

Figure 11 shows the magnetic and structural phase transition leading to

the dielectric anomaly. As expected, dielectric anomaly is highly aniso-

tropic.

Page 41: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

25

Figure 11: (a) Temperature dependence of the magnetization of [Mn(HCOO)6](C2H5O( ( = Oe . b Dielectric constants εr) of [Mn(HCOO)6](C2H5OH) for the field E//a (blue), b (green), and c (pink). The red line represents εr (E//a) of the crystal with deuterated ethanol, [Mn(HCOO)6](C2H5OD). (c) The hysteresis loop of [Mn(HCOO)6](C2H5OH) E//a . d The /εr vs T curve of [Mn(HCOO)6](C2H5OH). In the dielectric measurements, the relatively high speed of the temperature change − °/min was adopted to avoid the escaping of guest molecules

Page 42: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

26

1.4 Summary

Multiferroics are rare compounds with more than one ferroic proper-

ties. Traditionally, metal oxides are known to show this rare but very in-

teresting behavior. Recent years have seen the resurgence of the field

mainly due to the long term technological applications. Metal organic

frameworks, especially the dense MOFs, are capable of showing this be-

havior as they are structurally similar to oxides. Also, it is possible to

make homochiral MOFs by starting with a chiral template or organic

linker. Most of the known MOF ferroelectric materials fall into this cate-

gory of homochiral MOFs. However, homochiral frameworks cannot be

used for many typical multiferroic applications because they do not ex-

hibit a paraelectric to ferroelectric phase transition. As discussed in sec-

tion 1.3.2, some MOFs can also exhibit ferroelectric behavior by creating

a local electric dipole moment because of a vacancy. But these are very

uncommon. Guest induced ferroelectricity is an interesting concept via

which almost all the porous frameworks could potentially be turned in-

to ferroelectrics or into multiferroics if they are made up of paramagnet-

ic ions. Low molecular weight polar guest molecules interact weakly

with the framework lattice and are disordered at room temperature.

Upon lowering the temperature, these molecules order giving rise to net

polarization. However, as the authors pointed out the dielectric and po-

larization values are not reproducible. Volatile guest molecules tend to

evaporate when approaching room temperature or on storing for long

Page 43: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

27

time. Hence, there is a need for new class of multiferroic MOFs which

are stable and can give reproducible results.

Page 44: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

28

CHAPTER 2

EXPERIMENTAL TECHNIQUES AND SYNTHESIS

2.1 Experimental techniques

2.1.1 Single crystal and powder X-ray diffraction

2.1.1.1 Single crystal X-ray diffraction

For sample preparation, a suitable single crystal is usually selected un-

der a polarizing microscope and glued to a thin glass fiber with cyanoa-

crylate (Superglue) adhesive. Crystal structure determinations by single

crystal X-ray diffraction were performed on a Bruker SMART-CCD dif-

fractometer equipped with a normal focus, 2.4kW sealed tube X-ray

source (Mo Kα radiation, = 0.71073Å) operating at 50kV and 40mA. A

hemisphere of intensity data was collected at various temperatures. An

empirical correction on the basis of symmetry equivalent reflections

was applied using the SADABS program121. The structure was solved by

direct methods using SHELXTL and difference Fourier syntheses122. The

relevant details of structure determination are presented in different

chapters. Full matrix least-squares refinement against |F2| was carried

out using the SHELXTL package of programs122. The hydrogen atoms

were found in the Fourier difference map; the proton remaining on the

acid was restrained. The last cycles of refinement included atomic posi-

tions and anisotropic thermal parameters for all atoms except hydrogen,

which used isotropic thermal parameters. At the end of the chapter are

supplementary tables containing atom coordinates, bond lengths and

Page 45: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

29

angles, anisotropic displacement parameters, hydrogen atom coordi-

nates, and hydrogen bonding specifics.

2.1.1.2 Synchrotron versus laboratory sources for X-ray diffraction

All the standard laboratory sources used for X-ray diffraction experi-

ments generate radiation using the same physical principles but can

vary in their technical details. In our case, we have been using a Bragg-

Brentano geometry using a sealed tube generator. The tube of X-rays is

made from a source of electrons and a metallic cathode put in the cham-

ber under high vacuum. The source of electrons is a filament of tungsten

heated by an electric current, which expels electrons by the thermic ef-

fect. A high voltage from 40kV to 60kV is applied between the source of

electrons (cathode) and the metallic anode and accelerates the elec-

trons. Due to the way in which radiation is produced, only a discrete

number of wavelengths and a broad background are available. For con-

ventional X-ray diffraction, we have been using Kα of copper.

The generation of X-rays in a synchrotron radiation source involves a

different technology. From mechanics and the Maxwell equations, it is

well known that charged particles moving under the influence of an ac-

celerating field emit electromagnetic radiation. This radiation can be

used for diffraction purpose if the charged particles have a high accele-

ration corresponding to a speed close to the speed of light. This is rea-

lized in a synchrotron radiation facility where the charged particles

(electrons or positrons) are kept circulating within an evacuated cavity

Page 46: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

30

on a closed path (the ring) by a number of curved magnets (the bending

magnets). The different beamlines used for the different experiments

are tangential to the particle trajectory. The advantage of such facility is

the very bright source which is available and the possibility to tune the

wavelength to the value required for a particular experiment.

Most of the powder X-ray work for this dissertation was done on PANa-

lytical or Brucker machines at University of California, Santa Barbara

and University of Cambridge respectively. Synchrotron data used in this

work were collected at 11BM beamline (advanced photon source) at the

Argonne national laboratory.

Materials were characterized by both single and powder X-ray diffrac-

tion. Paraelectric and ferroelectric phases were solved using single X-

ray technique. Powder X-ray diffraction (PXRD) was usually used to

check the purity of the sample. Synthesis conditions were optimized us-

ing PXRD. In case of low temperature phase, both powder and single

crystal X-ray data were used along with neutron data to solve the struc-

ture. Rietveld refinements were performed wherever required to get

unit cell parameters or to check the purity of a given sample. X’pert Highscore was used for preliminary Rietveld refinements for phase

identification. Fullprof and GSAS were used for more advanced and dif-

ficult refinements.

Page 47: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

31

Table 2: Comparison of single crystal and powder diffraction

Single crystal dif-fraction

Powder diffraction

Determination of the crystal structure with

high precision and accuracy

Identification of compounds or mix-

tures of different compounds

Information on or-dering in crystals

Investigations on homogeneity

Information on thermal motion and dynamics in crystals

Information on stress, strain and crystal size

Very precise bond lengths

Quantitative phase analysis

Imprecise for cell pa-rameters. Precise in

fractional coordi-nates

Determination of the crystal struc-ture (Usually not as precise as from

single crystal structure analysis)

2.1.2 Neutron diffraction

Neutron beams are produced by nuclear reactions, such as nuclear fis-

sion or fusion, or by spallation of nuclei by accelerated particles. Since

for the moment nuclear fusion cannot be controlled sufficiently to pro-

duce stable neutron sources, all neutron centers use nuclear reactors

(fission) and spallation sources. Spallation is the process in which a

Page 48: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

32

heavy nucleus emits a large number of nucleons as a result of being hit

by a high-energy proton.

A number of properties of the neutron make it very useful for the study

of solids. Since, neutrons are uncharged particles and of small dimen-

sions (about 10− the size of an atom), they have a very penetrating

power. While the atomic scattering factors for X-rays increase through-

out the periodic table due to increasing numbers of electrons, this is not

the case for neutrons. For neutrons, although there is a small increase of

nuclear scattering factor with the mass number of the element, it is

largely hidden by resonance effects which vary in a seemingly arbitrary

fashion from atom to atom. As a result, the neutron scattering factors for

different nuclei are in general all of the same order within a factor 4. The

difference between the relative size of cross-sections (scattering factor)

for X-ray and neutron is illustrated in Figure 12.

Page 49: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

33

Figure 12: Difference between the relative sizes of the cross-sections between X-ray and neutron for some elements.

As a consequence, neutron diffraction is more sensitive to the light

atoms like oxygen or hydrogen than X-ray diffraction. In this respect,

these two techniques are complementary. Another main difference be-

tween X-ray and neutron diffraction is related to the size of the electron

cloud/nucleus ratio. While the electron cloud has dimensions of about

1ºA, which is comparable with the X-ray wavelength, the radius of a

nucleus is about 4 orders of magnitude smaller. As a result, the nucleus

may be considered as a point scatterer and there will be no decrease

with Θ of the neutron scattering factor. An additional property of the

neutron is that it carries a spin and, consequently, once it interacts with

the nuclei of the sample studied, it gives information about the magnetic

properties.

Page 50: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

34

Neutron data used in this thesis was collected on high resolution powd-

er diffractometer BT-1 of NIST laboratory.

2.1.2 Magnetic susceptibility measurements using a SQUID magne-tometer

SQUIDs ("Superconducting Quantum Interferometer Device") are very

sensitive sensors for magnetic fluxes, with the ability to measure very

small magnetic fields. SQUIDs are used in several fields from electronics

to biomagnetism. In addition to magnetic fluxes, other physical values

can be measured if they can be adapted to the magnetic flux. Attainable

sensitivities of flux densities (10− T), of electrical current (10− A) and

of electrical resistance (10−12 Ω reflect the high accuracy of a SQUID.

The working principle of a SQUID is based on the quantum interference

of wave functions that describe the state of the superconducting charge

carriers, the so-called Cooper pairs. Each Cooper pair can be treated as a

single particle with a mass and charge twice that of a single electron,

whose velocity is that of the center of mass of the pair. A SQUID is based

on an interferometer loop in which two weak links (Josephson contacts)

are established. A weak link is realized by interrupting a superconduc-

tor by a very thin insulating barrier. The function of the SQUID is to link

the quantum mechanical phase difference of the Cooper pairs wave

functions over a weak link with the magnetic flux penetrating the inter-

ferometer loop.

Page 51: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

35

Figure 13: Scheme of a SQUID magnetometer.

The components of a SQUID magnetometer (Figure 13) typically consist

of the following: a detection coil, which senses changes in the external

magnetic field and transforms them into an electrical current; an input

coil which transforms the resulting current into a magnetic flux in the

SQUID sensor; electronics which transform the applied flux into a room

temperature voltage output; and acquisition hardware and software for

acquiring, storing and analyzing data. Both the SQUID amplifier and the

detection coils are superconducting devices. Thus some type of refrige-

rant (liquid helium or liquid nitrogen) or refrigeration device (cryocoo-

ler) is needed to maintain the SQUID and detection coil in the supercon-

ducting state. Additional signal conditioning electronics may be needed

to improve signal-to-noise. The current work used a MPMS (Magnetic

Property Measurement System based on SQUID) from Quantum Design

having the following characteristics: Hmax=8T and ∆T=1.8 K-400 K.

Page 52: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

36

2.1.3 Heat capacity measurements

Heat capacities of different samples were measured on a Quantum De-

sign PPMS (physical property measurement system) both with and

without magnetic field using a specialized heat capacity puck. Magnetic

fields of up to 9T were used.

The heat capacity puck utilizes the standard PPMS 12-pin format for

electrical connections, and it provides a small microcalorimeter plat-

form for mounting the sample. Samples are mounted to this platform by

a standard cryogenic grease or adhesive such as Apiezon N or H Grease.

The sample platform is suspended by eight thin wires that serve as the

electrical leads for an embedded heater and thermometer. The wires al-

so provide a well-defined thermal connection between the sample plat-

form and the puck. An additional thermometer embedded in the puck

provides a highly accurate determination of the puck temperature, and a

thermal shield aids in maintaining stable sample temperature and un-

iformity. To ensure that heat is not lost via exchange gas, the Heat Ca-

pacity option includes the PPMS High-Vacuum system, which maintains

the sample chamber pressure near 0.01 mbar and is automatically con-

trolled by the software.

The heat capacity mounting station helps protect the sample platform

and its suspending leads when mounting and removing a sample. A

built-in vacuum line securely holds the platform in place so that samples

may be mounted or removed without generating stress on the support-

Page 53: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

37

ing wires. A single heat capacity measurement consists of several dis-

tinct stages. First, the sample platform and puck temperatures are stabi-

lized at some initial temperature. Power is then applied to the sample

platform heater for a predetermined length of time, causing the sample

platform temperature to rise. When the power is terminated, the tem-

perature of the sample platform relaxes toward the puck temperature.

The sample platform temperature is monitored throughout both heating

and cooling, providing (with the heater power data) the raw data of the

heat capacity calculation.

Page 54: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

38

Figure 14: Cutaway view showing the PPMS -16T magnet and probe. Inset shows a heat capacity puck.

2.1.4 Dielectric properties (capacitance measurements)

Capacitance is a measure of the amount of electric charge (Q) stored (or

separated) for a given electric potential (V).

C = Q/V

Page 55: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

39

In a capacitor, there are two conducting electrodes which are insulated

from one to another. The charge on the electrodes is +Q and -Q, and V

represents the potential difference between the electrodes. Capacitance

is measured in the SI unit of the Farad, 1F=1C/V. The capacitance can be

calculated if the geometry of the conductors and the dielectric proper-

ties of the insulator between the conductors are known. For example,

the capacitance of a parallel plate capacitor constructed of two parallel

plane electrodes of area A separated by a distance d is approximately

equal to the following:

C = (A/d)

Where C is the capacitance in farads, is the permittivity of the insulator

used, A is the area of each plane electrode, measured in m2 and d is the

separation between the electrodes, measured in m. This equation is a

good approximation if d is small compared to the other dimensions of

the electrodes. This is this geometry that we have used to measure the

capacitance and thus the dielectric constant of our different samples

(see chapter 3 and 4).

2.2 Solvothermal synthesis

All the metal organic frameworks described in this text were prepared

by solvothermal route at temperatures ranging from 100 °C to 200 °C or

at room temperature. In some cases a mixed approach was used: heat-

ing followed by room temperature crystallization.

Page 56: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

40

Solvothermal synthesis is a batch method of synthesis where-in all reac-

tants are placed in an autoclave and heated under autogenous (self-

induced) pressure at temperatures ranging from 100 °C to 200 °C. Steel

autoclaves lined with a Teflon cup obtained from Parr Instrument Com-

pany (Figure 15) were used for solvothermal synthesis in the present

work. All reagents were used as received.

Figure 15: Cutaway of a general purpose (high temperature) 23 mL Parr acid digestion bomb, used in the solvothermal synthesis of all the compounds de-scribed in this dissertation.

Page 57: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

41

There are many parameters which can be modified in a hydrothermal

synthesis reaction in order to synthesize new or different phases. Often

the first variable to modify is temperature. Broadly speaking, within the

same metal/ligand family, low dimensional structures are formed at

lower temperatures and more condensed phases are formed at higher

temperatures, and the degree of hydration per metal center decreases

with increasing reaction temperature. The effect of reaction time is also

easily investigated. Kinetically accessible structures can be trapped if

the reaction timescale is short (but long enough for a reaction to occur).

Thermodynamically stable phases can be achieved if longer times are

used. Metal:ligand ratios can be adjusted. The concentration of the reac-

tion mixture is often used to control whether the sample is a powder or

single crystals. The head space in the cup (directly related to the pres-

sure) can also be varied. The pH of the reaction solution can be varied,

generally in the acidic to weakly basic range, because if the solution is

too basic then metal hydroxides are the majority phase formed. Tem-

plating molecules or structure directing agents (SDAs) also can be add-

ed.

Page 58: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

42

CHAPTER 3

ORDER – DISORDER PHASE TRANSITION IN

[(CH3)2NH2]Zn(HCOO)3

3.1 Background

The discovery of Order – disorder phase transition in

[(CH3)2NH2]Zn(HCOO)3 is described in this chapter. Materials that exhi-

bit electrical ordering are of great interest because of their technological

importance. The high permittivity123 dielectric constant, ε) properties

of some of these electrically ordered materials have also made them im-

portant in development of dielectric resonators and filters for micro-

wave communication systems. Many of these materials are oxides with

the perovskite structure, such as lead zirconate titanate (PZT)124-128 and

BaTiO367, 129-130 which have found applications in an entire set of tech-

nologies (actuators, sensors, transducers, memory elements, filtering

devices, high performance insulators).126, 131-132 In the case of PZT, the

remarkable electromechanical and electrical properties are associated

with the morphotropic phase boundary, which is formed by doping anti-

ferroelectric PbZrO3 with ferroelectric PbTiO3 and which occurs for the

coexistence of tetragonal (P4mm symmetry FT), monoclinic (Cm sym-

metry FM), and rhombohedral (R3c symmetry FR) polar distortions of

the perovskite structure.133 These properties are technically important,

but concern about the environmental impact of Pb-based systems has

Page 59: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

43

spurred considerable interest in the discovery of lead free fer-

ro/antiferro-electric materials.

Much of the recent attention in this field has been focused on developing

devices based upon well-established inorganic compounds such as

KH2PO4 (KDP), BaTiO3, PZT and LiNbO3;3 consequently reports of new

electrically ordered systems have remained sparse.

3.2 Synthesis

[(CH3)2NH2]Zn(HCOO)3, 1 (Figure 16), was synthesized in a reaction be-

tween zinc chloride and water in dimethylformamide (DMF). In a typical

synthesis, 5 ml of DMF, 0.5 ml of water and 1 mmol of zinc chloride were

heated overnight in a Teflon lined autoclave at 125oC. In-situ hydrolysis

of DMF produces formic acid and dimethylammonium cation, which are

the building blocks for 1. The autoclave was taken out after three days and was air−cooled on a metal rack. After, approximately hours the

autoclave was opened and the reaction medium was transferred into

two centrifuge tubes equally. After centrifugation supernatant was

transferred into a clean glass beaker for room temperature crystalliza-

tion. The beaker was covered with parafilm and few holes were created.

It is important to make these holes in order for 1 to crystallize . After

two to three days cubic crystals of 1 were recovered from the bottom of

the glass beaker.

Page 60: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

44

1 could also be synthesized in Teflon lines glass vials at 125 °C. Vials

were taken out of the oven after approximately six hours, and superna-

tant was carefully transferred into another glass vial which was kept

open. Overnight room temperature crystallization usually leads to the

formation of flakes. Powder X-ray diffraction showed that these flakes

are of compound 1. Keeping the vial closed leads to the formation of

regular cubic morphology crystals of 1 after few months.

Page 61: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

45

3.3 Structure

Figure 16: Crystal structure of [(CH3)2NH2]Zn(HCOO)3 , 1. It has the same ar-chitecture as an ABX3 perovskite, with A=(CH3)2NH2+, B=Zn2+ and X=HCOO-.

An analog of 1 was first prepared in 1973,134 but its relationship to the

perovskite structure was not recognized until 2005.135 The structure of

1 at room temperature, as shown in Figure 16, was confirmed by single

crystal X-ray diffraction. Important room temperature unit cell parame-

ters for 1 are displayed in Table 3. 1 has the same architecture as that of

ABX3 perovskite. Zinc (Zn2+) and formate (HCOO−) ions make a ReO3

Page 62: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

46

type net. Dimethylammonium cation (CH3)2NH2+ lies at the center of this

anionic net.

Table 3: Structure parameters for 1 from single crystal X-ray diffraction at room temperature

Formula sum C5 H11 N O6 Zn

Formula weight 246.52 g/mol

Crystal system trigonal

Space-group R -3 c (167)

Cell parameters a=8.1924(8) Å c=22.277(2) Å

Cell ratio a/b=1.0000 b/c=0.3677

c/a=2.7192

Cell volume 1294.76(17) Å3

Z 6

Calc. density 1.89687 g/cm3

3.4 Structural phase transition

We were struck by the observation that the dimethylammonium cation

at the center of the ReO3-type cavity in 1 is disordered with nitrogen

apparently existing in three different possible positions. This is a conse-

quence of disordered hydrogen bonding between the hydrogen atoms of

the NH2 group and oxygen atoms from the formate framework N….O ~

Page 63: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

47

2.9 Å). The knowledge that hydrogen bonding of this type can lead to

ferroelectric (e.g. in KDP) or antiferroelectric (as in NH4H2PO4, ADP)

transitions when ordering takes place on cooling led us to examine the

dielectric and phase transition behavior in this system.

The first evidence of a phase transition was noted when we saw split-

ting of spots while attempting to collect single crystal X-ray data at liq-

uid nitrogen temperatures. Unfortunately, it was not possible to index

the low temperature data set due to complex twinning. However, syn-

chrotron X-ray powder data collected on beamline 11-BM at the Ad-

vanced Photon Source (ANL) gave clear indications of a phase transi-

tion. As shown in Figure 17, peaks at 100K were shifted to higher angles

compared with the room temperature data as a consequence of lattice

contraction on cooling. More importantly, at 100K the main peaks also

had weak satellites due to the formation of a superlattice (features indi-

cated by arrows, see inset in Figure 17).

Although the features are weak, our conclusion is supported by the ob-

servation of analogous features on all the other peaks in PXRD data. This

observation is consistent with ordering of the NH2 hydrogen atoms. It

was not possible to solve the structure of low temperature phase be-

cause of complex twinning. Efforts were made to prepare deuterated

sample to do neutron diffraction experiment as neutron would be much

more sensitive to the ordering of deuterium. Because the deuterium of

the DMA cation can easily exchange with hydrogen, this reaction was

Page 64: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

48

carried out with the vial closed. Unfortunately, it was not possible to

getpure compound from this reaction for a neutron experiment.

Figure 17: Synchrotron powder patterns collected with a wavelength of 0.608Å at APS: red data obtained at room temperature, black data at 100K.

3.5 Dielectric and heat capacity measurements

In order to determine if this phase transition is accompanied by a di-electric anomaly, as expected for a perovskite, the dielectric constant ε of 1 was measured as function of temperature. We used a pellet as sin-

Page 65: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

49

gle crystals were too small to make silver paste contacts. ε showed a clear anomaly around 160K (Figure 18), in agreement with the synchro-tron data. The maximum value of εr real part of ε was found to be ra-

ther sample dependent, ranging from about 15 to 120, but the transition

temperature was essentially reproducible.

There was a clear hysteresis of about 10K, as is usual for pellet samples.

The shape of the dielectric plot around 160 K suggests that 1 becomes

antiferroelectric below 160K on cooling.136 The shape also resembles

the antiferroelectric transition for ADP (at 148K).57 However a close

look in the vicinity of phase transition suggests that the peak could also be a peak, characteristic of a ferroelectric phase transition (This point

will be further discussed in chapter 4.). As seen in Figure 18, εr starts in-

creasing as we approach room temperature, which is usual for pellet

samples,120 but could also arise from ferroelectric domains.

Page 66: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

50

Figure 18: Dielectric constant of 1 measured as a function of temperature.

In order to probe the transition mechanism, specific heat of 1 over the

temperature range 1.8 K – 300K was measured. A clear anomaly is seen

around 156K, in both the increasing and decreasing temperature scans

(Figure 19). The shape of the curve points to a second-order transition.

It is worth reminding that while this shape points to a second order

transition, the dielectric anomaly resembles a first order phase transi-

tion. The area under the Cp/T curve yielded a value of ΔS for the phase transition of 1.1 J/mol-K. For an order-disorder transition, ΔS = R ln(N),

where N is the number of sites for the disordered system. However, for N= , the value of ΔS should be . J/mol-K, i.e. almost an order of magni-

tude larger than the observed value. Clearly the transition is much more

Page 67: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

51

complex than a simple 3-fold disorder model. This transition was fur-

ther studied by 1H NMR and the results are presented in chapter 5.

Figure 19: Heat capacity of 1 as function of temperature.

3.6 Summary and conclusions

In conclusion, an order-disorder type ferroelectric phase transitions

was discovered in [(CH3)2NH2]Zn(HCOO)3(1) at 156K. 1 also falls into

the category of high-dielectric constant material with an εr value of ap-

proximately 15. 1 was characterized by single crystal and powder X-ray

Page 68: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

52

diffraction methods. Phase transitions were studied with synchrotron

radiation, dielectric measurements, and heat capacity measurements.

This type of ferroelectric ordering associated with order-disorder phase

transition was unprecedented in hybrid frameworks and opened up an

exciting new direction in rational synthetic strategies to create extended

hybrid networks for applications in ferroic-related fields.

3.7 Resulting publication and comments

Work resulted into a publication in the Journal of the American Chemical

Society21. This chapter was adopted from the same publication. This

work was also highlighted in Journal Nature’s news and views section19

and was also highlighted in Angew. Chem. Int. Ed.137

Page 69: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

53

CHAPTER 4

MULTIFERROIC METAL ORGANIC FRAMEWORKS:

[(CH3)2NH2]M(HCOO)3(M=Mn, Ni, Co, & Fe)

4.1 Background

In this chapter we demonstrate that multiferroic behavior can be

achieved in metal organic frameworks by using a combination of transi-

tion metal ions with hydrogen-bond ordering. Single-phase multiferroic

materials in which magnetic and electrical ordering co-exist are very

rare.58 This is because the two cooperative phenomena require very dif-

ferent molecular interactions that are difficult to incorporate in the

same compound. In the case of ABX3 perovskites, for example, the con-

ventional mechanism for ferroelectricity in classical systems such as

BaTiO3 involves an off-centering of d0 cations on the B-site. This is in-

compatible with magnetic ordering which requires unpaired spins.58

The d0 requirement can be circumvented if the electrical ordering can

be achieved in a different way. In the classical cases of BiMnO3 and Bi-

FeO3, the electrical ordering is driven by off-centre displacements of the

lone pair Bi3+ ions.58, 138-139 Similarly, in the case of nickel iodine boracite,

Ni3B7O13I, the first ferromagnetic ferroelectric material to be discovered,

the distorted iodine−oxygen octahedron provides the origin for the fer-

roelectricity.140 There are, of course, other ways in which ferroelectric

ordering can be generated. In non-magnetic ferroelectrics such as Na-

CaF3, the driving force involves Coulomb interactions, rather than cova-

Page 70: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

54

lency. On the other hand, in potassium hydrogen phosphate, KDP, hy-

drogen-bond ordering leads to ferroelectricity.141 In CHAPTER 3, we

showed an order disorder structural phase transition at 160K in a ca-

tion-templated MOF with the ABX3 perovskite topology,

[(CH3)2NH2]Zn(HCOO)3 (DMAZnF).21 In this chapter we show that this

same class of materials can become multiferroic when the zinc is re-

placed by a transition metal ion. We also give crystallographic evidence

of phase transitions mechanism and low temperature structure.

4.2 Synthesis

Samples of [(CH3)2NH2]M(HCOO)3 (DMAMF = dimethylammonium metal

formate), where M=Mn (Figure 22), Fe, Co, and Ni, were synthesized un-

der solvothermal conditions at 140°C. Typically 5 mmol of metal chlo-

ride salts were dissolved in a 60 ml solution of 50 volume% DMF in wa-

ter and transferred into a Teflon-lined autoclave. This was heated for 3

days at 140 0C. The autoclaves were air cooled and the supernatants

were transferred into a glass beaker for room temperature crystalliza-

tion. Within a further three days, cubic colorless crystals for Mn and Fe,

red crystals for Co, and green crystals for Ni were obtained. DMAFeF has

not previously been reported in the literature (Structure information is

listed in Table 4, Table 5, Table 6, and Table 7). It was not possible to

make phase pure sample of DMAFeF, but it was possible to separate big

crystals manually under an optical microscope. The manganese analo-

gue was easiest to make and also produced the biggest crystals. It was

also easy to scale up the process to make gram quantities of the frame-

Page 71: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

55

work. Hence, throughout this work DMAMnF has been considered as the

representative of this family and full set of experiments were carried

out on it

4.3 Crystal growth mechanism

Shown in Figure 20 are the optical images of DMAMnF. The growth me-

chanism of these crystals is hypothesized to be layer by layer growth. In

some cases, as seen in the top left optical image in Figure 20, if the crys-

tals are growing on a flat surface, the bottom most surface would be flat.

Figure 20: Optical images of [(CH3)2NH2]Mn(HCOO)3.

Page 72: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

56

Further single crystals of DMAMnF were studied using atomic force mi-

croscopy (AFM) to understand the crystal growth mechanism. It was

found to be layer by layer growth. Shown in Figure 21 is a cross-section

of these layers in which steps of a few microns are clearly visible. Face

indexing using the X-rays followed by the AFM results show that the

growth is perpendicular to the <012> plane.

Figure 21: AFM image of a multiferroic MOF dimethylammonium manganese formate. Crystals grow layer by layer during the room temperature crystalli-zation. Growth is perpendicular to the <012> plane.

Page 73: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

57

4.4 Structure

In DMAMF, the DMA cation at the center of the ReO3-type cavity is dis-

ordered at room temperature with nitrogen distributed over three

equivalent positions (Figure 22), as in the analogous zinc system (Figure

16). This is a consequence of disordered hydrogen bonding between the

hydrogen atoms of the NH2 group and the oxygen atoms of the formate framework N…..O ~ . Ǻ .

Figure 22: Building block of [(CH3)2NH2]Mn(HCOO)3, DMMnF. The DMA cation (A) is at the center of an ReO3 type cavity, formed by manganese (B) and for-mate (X) ions. Nitrogen is disordered over three positions.

Page 74: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

58

4.4.1 Crystallographic data for DMAFeF

Crystallographic data for a multiferroic MOF, DMAFeF, has been pre-

sented in the tables below. This as well as other datasets have been

submitted to Cambridge strutural database and can be requested from

there.

Table 4: Structure parameters for DMAFeF

Formula sum C2.5 H4.5 Fe0.5 N0.5 O3

Formula weight 117.49 g/mol

Crystal system trigonal

Space-group R -3 c (167)

Cell parameters a=8.241(2) Å c=22.545(6) Å

Cell ratio a/b=1.0000 b/c=0.3655 c/a=2.7357

Cell volume 1325.99(48) Å3

Z 12

Calc. density 1.76549 g/cm3

Page 75: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

59

Table 5: Atomic parameters of DMAFeF

Atom Wyck.

Site S.O.F. x/a y/b z/c U [Å2]

Fe 6b -3. 0 1.00000 0 O 36f 1 -0.0084 0.7830 0.0542

C1 18e .2 0.1217 0.7884 0.0833 C2 12c 3. 2/3 1/3 0.0297 N 18e .2 0.33 0.5804 0.2471 0.0833

H1 18e .2 0.231 0.898 0.0833 0.059 H2 36f 1 0.788 0.358 0.0120 0.29

Table 6: Anisotropic displacement parameters for DMAFeF, in Å2

Atom U11 U22 U33 U12 U13 U23 Fe 0.0195 0.0195 0.0299 0.0097 0.0000 0.0000 O 0.0314 0.0324 0.0439 0.0168 0.0062 0.0049

C1 0.0249 0.0249 0.040 0.012 0.0010 0.0010 C2 0.066 0.066 0.046 0.0330 0.0000 0.0000 N 0.032 0.032 0.047 0.021 -0.004 0.004

Table 7: Selected geometric information for DMAFeF

Atoms 1,2 d 1,2 [Å] Atoms 1,2 d 1,2 [Å] Fe—Oi 2.139(2) C1—H1 0.90(8) Fe—Oii 2.139(2) C2—Nvii 1.403(7) Fe—Oiii 2.139(2) C2—N 1.403(7) Fe—Oiv 2.139(2) C2—Nviii 1.403(7) Fe—O 2.139(2) C2—H2 1.002(10) Fe—Ov 2.139(2) N—Nviii 1.23(2) O—C1 1.239(3) N—Nvii 1.23(2)

C1—Ovi 1.239(3) N—C2ix 1.403(7)

Page 76: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

60

Table 7 continued.....

Atoms 1,2,3 Angle 1,2,3 [°]

Atoms 1,2,3 Angle 1,2,3 [°]

Oi—Fe—Oii 180.000 O—C1—Ovi 126.4(5) Oi—Fe—Oiii 90.53(10) O—C1—H1 116.8(2) Oii—Fe—Oiii 89.47(10) Ovi—C1—H1 116.8(2) Oi—Fe—Oiv 89.47(10) Nvii—C2—N 52.1(8) Oii—Fe—Oiv 90.53(10) Nvii—C2—Nviii 52.1(8) Oiii—Fe—Oiv 89.47(10) N—C2—Nviii 52.1(8) Oi—Fe—O 90.53(10) Nvii—C2—H2 84.(4) Oii—Fe—O 89.47(10) N—C2—H2 130.8(18) Oiii—Fe—O 90.53(10) Nviii—C2—H2 120.(8) Oiv—Fe—O 180.00(11) Nviii—N—Nvii 60.000(2) Oi—Fe—Ov 89.47(10) Nviii—N—C2ix 64.0(4) Oii—Fe—Ov 90.53(10) Nvii—N—C2ix 64.0(4) Oiii—Fe—Ov 180.00(11) Nviii—N—C2 64.0(4) Oiv—Fe—Ov 90.53(10) Nvii—N—C2 64.0(4) O—Fe—Ov 89.47(10) C2ix—N—C2 119.1(9) C1—O—Fe 127.4(3)

Atoms 1,2,3,4 Tors. an. 1,2,3,4 [°]

Atoms 1,2,3,4 Tors. an. 1,2,3,4 [°]

O—Fe—O—C1 -28.6(2) Fe—O—C1—Ovi -176.5(2) O—Fe—O—C1 151.4(2) N—C2—N—Nviii 67.6(3) O—Fe—O—C1 -119.08(15) N—C2—N—Nvii -67.6(3) O—Fe—O—C1 118.5(5) N—C2—N—C2ix 33.81(13) O—Fe—O—C1 60.92(15) N—C2—N—C2ix -33.81(13)

(i) 1-y, 2+x-y, z; (ii) -1+y, -x+y, -z; (iii) -1-x+y, 1-x, z; (iv) -x, 2-y, -z; (v) 1+x-y, 1+x, -z; (vi) 0, 0, 0; (vii) 1-y, x-y, z; (viii) 1-x+y, 1-x, z;

(ix) 0, 0, 0.

Page 77: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

61

4.5 Magnetic properties of DMAMF

4.5.1 Magnetic susceptibility

Wang et. al. have shown that DMAMnF, DMACoF, and DMANiF are

canted weak ferromagnets with Tc values of 8.5 K (Figure 23), 14.9 K,

35.6 K, respectively.142 They have also shown that for DMACoF and

DMANiF, spin reorientation takes place at 13.1 K and 14.3 K, respective-

ly. All of the samples show hysteresis loops below their critical tempera-

tures. Using the model developed by Rushbrook and Wood for a Heisen-

berg antiferromagnet on a simple cubic lattice and/or the molecular

field theory for antiferromagnetism, the magnetic coupling parameters J

were estimated to be -0.23/-0.32 cm-1, -2.3 cm-1, and -4.85 cm-1 for Mn,

Co, and Ni, analogues respectively. Their J values indicate that the domi-

nant superexchange mechanism is antiferromagnetic.

Page 78: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

62

Figure 23: Temperature dependence of χM of DMAMnF at H = 1000 Oe from 2 to 300 K. 142

Wang et al. also suggested that the spin canting in these compounds

may originate from the noncentrosymmetric character of the three-

atom formate bridge, CHOO-.142-143 In the present work, we have con-

firmed the findings of Wang et al. and also found that DMFeF is ferro-

magnetic below 20 K. It is important to note that it is possible to syn-

thesize other weak ferromagnets simply by changing the central amine

cation.144

Page 79: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

63

Figure 24: Magnetic susceptibility of DMAFeF

4.6 Structural phase transition

4.6.1 Temperature dependent X-ray diffraction data

Temperature dependent laboratory and synchrotron powder X-ray dif-

fraction (PXRD) data for all samples gave clear indications of a phase

change between room temperature and 100 K (Figure 25). The PXRD

peaks for the DMAMFs at 100 K are shifted to higher angles compared

with those at room temperature as a consequence of lattice contraction

on cooling, and the main peaks in the PXRD pattern showed splitting as-

Page 80: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

64

sociated with a lowering of symmetry. Attempts were made to solve the

structure using synchrotron data but due to the complex twinning na-

ture of the low temperature phase these attempts were unsuccessful.

Figure 25: PXRD pattern for DMAMnF, collected at the Advanced Photon Source, ANL = . Ǻ, BM-11)

4.7 Low temperature structure

Single crystal x-ray data were collected for DMAMnF at 110 K, well be-

low the transition temperature, but because of twinning it was not poss-

ible to solve and refine the structure to a satisfactory standard. The low

temperature data can be indexed in a monoclinic system and in princi-

ple in two possible space groups: C2/c (centrosymmetric) and Cc (non-

Page 81: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

65

centrosymmetric). The monoclinic unit cell has been confirmed for all

the samples by low temperature powder X-ray diffraction.

When trying to refine the structure in the C2/c space group, a number

of drawbacks were encountered: the agreement factors were worst than

in the case of using the space group Cc; the results suggested disordered

DMA cations with the nitrogen atom apparently in two different posi-tions and with two very different N−C bond lengths . Å and . Å that make no chemical sense for such cation. Because of all these incon-

gruities, the space group (C2/c) was ruled out.

Meanwhile, the low temperature structure could be satisfactorily solved

in the Cc space group with cell parameters of a=14.451(8) Å,

b=8.376(3) Å, c=8.952(4) Å, β= . °. The most relevant structural

information is summarized in Table 8 that also includes bond lengths

and bond angles. In addition, we have to note that the crystal is twinned

and that a racemic twin is observed at low temperature, with a Flack pa-

rameter of 0.43(7).

Page 82: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

66

Figure 26: Rietveld refinement of PXRD data of DMANiF collected at 10 K with monoclinic unit cell of a=14.451(8) Å b=8.376(3) Å c=8.952(4) Å and β= . °. Pattern is in red color, simulated pattern is in blue and differ-ence plot is in orange.

Table 8: Structural parameters for the low temperature polar phase of DMAMnF

Phase data Formula sum C5 H11 Mn N O6

Formula weight 236.09 g/mol Crystal system monoclinic

Space-group C 1 c 1 (9) Cell parameters a=14.451(8) Å b=8.376(3) Å c=8.952(4) Å β= . °

Cell ratio a/b=1.7253 b/c=0.9357 c/a=0.6195 Cell volume 929.97(396) Å3

Z 4 Calc. density 1.68613 g/cm3

RAll 0.0649

Page 83: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

67

Table 8 continued...

Atom Wyck. Site x/a y/b z/c U [Å2] Mn1 4a 1 0.69954 0.25162 0.78210 O1 4a 1 0.75670 0.02930 0.93350 O2 4a 1 0.75270 0.16110 0.60700 O3 4a 1 0.54010 0.14140 0.61640 O4 4a 1 0.65010 0.33650 0.96160 O5 4a 1 0.36080 0.14010 0.44830 O6 4a 1 0.65350 0.51940 1.14780 C1 4a 1 0.44990 0.21050 0.53100 H1 4a 1 0.45700 0.33900 0.52800 0.0210 C2 4a 1 0.72430 -0.02990 1.02810 H2 4a 1 0.67400 -0.00200 1.05600 0.0180 C3 4a 1 0.66410 0.47790 1.02220 H3 4a 1 0.69200 0.55500 0.97500 0.0200

N11 4a 1 0.89750 0.30860 0.52080 H11A 4a 1 0.88750 0.41730 0.50780 0.0230 H11B 4a 1 0.84180 0.26590 0.52970 0.0230 C12 4a 1 0.89510 0.23970 0.36260

H12A 4a 1 0.95670 0.28020 0.35670 0.0410 H12B 4a 1 0.82790 0.27120 0.25730 0.0410 H12C 4a 1 0.89890 0.12300 0.37130 0.0410 C11 4a 1 1.00270 0.27350 0.68460

H11C 4a 1 1.00770 0.15890 0.70970 0.0350 H11D 4a 1 1.00660 0.33340 0.78170 0.0350 H11E 4a 1 1.06250 0.30540 0.66910 0.0350

Atom U11 U22 U33 U12 U13 U23

Mn1 0.0140 0.0121 0.0073 0.0004 0.0039 0.00053

O1 0.0211 0.0172 0.0049 0.0027 0.0057 0.00580

O2 0.0230 0.0210 0.0140 -0.0009 0.0130 0.00190

O3 0.0180 0.0200 0.0220 -0.0015 0.0090 0.00310

O4 0.0240 0.0150 0.0340 -0.0068 0.0160 -0.00900

O5 0.0130 0.0210 0.0210 -0.0010 0.0033 0.00590

O6 0.0320 0.0160 0.0450 -0.0059 0.0270 -0.01040

C1 0.0170 0.0182 0.0180 -0.0100 0.0080 0.00300

Page 84: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

68

Table 8 continued...

Atom U11 U22 U33 U12 U13 U23

C2 0.0211 0.0172 0.0049 0.0027 0.0057 0.0058

C3 0.0120 0.0190 0.0160 0.0040 0.0050 0.0033

N11 0.0160 0.0180 0.0240 -0.0006 0.0109 0.0028

C12 0.0330 0.0290 0.0220 -0.0030 0.0160 -0.0010

C11 0.0170 0.0200 0.0250 -0.0030 0.0050 0.0020

Selected geometric informations Atoms 1,2 d 1,2 [Å] Atoms 1,2 d 1,2 [Å] Mn1—O6i 2.178(5) O4—C3 1.275(8) Mn1—O4 2.186(6) O5—C1 1.255(10) Mn1—O1 2.200(5) O5—Mn1iv 2.216(5) Mn1—O3 2.203(5) O6—C3 1.259(9) Mn1—O2 2.203(5) O6—Mn1v 2.178(5) Mn1—O5ii 2.216(5) C2—O2vi 1.256(8)

O1—C2 1.260(8) N11—C11 1.503(12) O2—C2iii 1.256(8) N11—C12 1.513(14) O3—C1 1.263(10)

Atoms 1,2,3 Angle 1,2,3 [°] Atoms 1,2,3 Angle 1,2,3 [°] O6i—Mn1—O4 89.8(2) O3—Mn1—O5ii 179.3(2) O6i—Mn1—O1 175.7(3) O2—Mn1—O5ii 89.30(19) O4—Mn1—O1 89.0(2) C2—O1—Mn1 126.6(4) O6i—Mn1—O3 94.6(2) C2iii—O2—Mn1 124.7(4) O4—Mn1—O3 90.4(2) C1—O3—Mn1 127.8(4) O1—Mn1—O3 89.56(18) C3—O4—Mn1 125.1(5) O6i—Mn1—O2 91.7(2) C1—O5—Mn1iv 127.7(4) O4—Mn1—O2 178.3(2) C3—O6—Mn1v 126.4(5) O1—Mn1—O2 89.40(18) O5—C1—O3 124.7(4) O3—Mn1—O2 90.2(2) O2vi—C2—O1 126.6(7)

O6i—Mn1—O5ii 85.9(2) O6—C3—O4 124.8(7) O4—Mn1—O5ii 90.1(2) C11—N11—C12 111.3(7) O1—Mn1—O5ii 89.99(19)

(i) x, 1-y, -0.5+z; (ii) 0.5+x, 0.5-y, 0.5+z; (iii) x, -y, -0.5+z; (iv) -0.5+x, 0.5-y, -0.5+z;

(v) x, 1-y, 0.5+z; (vi) x, -y, 0.5+z.

Page 85: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

69

Furthermore, Rietveld refinement of powder neutron data confirms the

low temperature space group. Despite several attempts it was not poss-

ible to synthesize deuterated analogue of DMAMnF. High intensity data

was collected at the NIST national laboratory. Despite the high back-

ground because of the hydrogenated sample, the fit to the low tempera-

ture Cc phase is remarkably good.

Page 86: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

70

Figure 27: Reietveld refinement of powder neutron data collected at NIST with the low temperature Cc phase of DMAMnF. Black is the experimental data, Red is simulated pattern, Blue is the Bragg positions and Green is the difference between experimental and simulated.

4.8 Dielectric measurements

As expected, this phase change is associated with a dielectric εr) ano-

maly. Dielectric constant measurements were carried out on single crys-

tals of DMAMnF, DMAFeF, and DMACoF as well as on a powder sample

of the nickel phase. The dielectric constant of DMAMnF shows a clear

anomaly close to 185 K on cooling (Figure 28). A clear hysteresis of

about 10 K was seen when compared with the transition on heating. The

Page 87: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

71

shape of the dielectric plot suggests that DMMnF is undergoing a parae-

lectric to antiferroelectric phase transition with εr values of around 25

and 9 respectively. This is a result of the structural phase transition due

to the ordering of the nitrogen atoms. No other dielectric anomaly was

observed while cooling the sample down to 1.8 K. The transition is of an

Figure 28: Dielectric constant of DMAMnF as a function of temperature with no magnetic field and with that of 5 Tesla. The measurements were done at 1 kHz, using amplitude of 1V.

order-disorder nature, rather than displacive, and the shape resembles

the antiferroelectric transition for NH4H2PO4 (ADP).136 However the low

temperature structure is a polar structure. Careful experiment does in-deed show a −type peak as shown in Figure 29. Figure 29 also reveals a

magneto-dielectric coupling in DMAMnF. Notice that rate of change sign

Page 88: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

72

has changed from positive to negative for the dielectric constants of

DMAMnF measured below the phase transition temperatures as a func-

tion of magnetic field.

Similar hydrogen bond ordering is responsible for the ADP phase transi-

tion, which is at around 148 K. The dielectric constants for the paraelec-

tric phases of DMFeF, DMCoF, and DMNiF were found to be approx-

imately 45, 50, and 30, respectively; their transition temperatures on

cooling were found to be 160 K, 165 K, and 180 K, respectively. As ex-

pected from their similar structures and the origin of the disorder, the

shapes of the anomalies are essentially the same for the other three ana-

logues.

Page 89: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

73

Figure 29: Dielectric constant of DMAMnF measured as a function of tempera-ture and magnetic field. Bottom two plots reveal a magneto-dielectic coupling.

Page 90: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

74

4.9 Heat capacity measurements

Dielectric constant findings were corroborated by specific heat mea-

surements. The measurements were carried out on 20-30 single crystals

by immersing them inside N-grease on a Quantum Design PPMS sample

holder. Measurements were performed several times to ensure repro-

ducibility and appropriate backgrounds were measured before each ex-

periment. The specific heat of DMAMnF, which was measured as a func-

tion of temperature from 1.8 K to 300 K, shows clear anomalies at 183 K

and 8.4 K corresponding to the transitions leading to electrical and

magnetic ordering, respectively (Figure 30). Both the transition temper-

atures are in agreement with dielectric and magnetic susceptibility

measurements. The area under the Cp/T curve around 183 K yielded a

value for ΔS of 0.9 J/mol-K. For a complete order-disorder transition ΔS

is expected to be given by Rln(N) where N is the number of sites in the

disordered system. For N=3, ΔS would therefore be 9.1 J/mol-K, which is

almost an order of magnitude larger than the observed value. This sug-

gests that the transition is more complex than a simple 3-fold order-

disorder model. It appears, that as the sample is cooled through the

transition, the compound becomes only partly ordered and the long

range ordering takes place over a broad range of temperatures.

Page 91: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

75

Figure 30: Heat capacity of DMAMnF as a function of temperature. The ano-malies relating to electrical ordering and magnetic ordering are clearly visi-ble.

Detailed studies of the specific heat changes for DMAMF (M=Mn, Co, Ni)

through the magnetic phase transition show that Tc decreases from 8.4

K to 6.7 K on increasing the magnetic field from 0 to 9 Tesla, (Figure 31).

This is consistent for the predominantly antiferromagnetic behavior of

these systems. Low temperature Q-Band EPR spectra for DMMnF

(Figure 32) have shed further light on the magnetic phase transition.

Measurements were made on single crystals of DMMnF to find if this

magnetic transition was accompanied by a structural phase transition,

since our PXRD facility did not enable us to reach these temperatures.

As seen in Figure 32 the single EPR peak clearly splits into two, implying

Page 92: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

76

two differently oriented domains below about 6 K. Thus the magnetic

transition is accompanied by a structural change as well.

Figure 31: Effect of magnetic field on the magnetic phase transition in DMAMnF on cooling.

Page 93: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

77

Figure 32: Temperature dependence of Q-Band EPR spectra of DMAMnF.

4.10 Summary and conclusions

In conclusion, we report four multiferroic metal organic frameworks,

((CH3)2NH2)M(HCOO)3, with M= Mn, Fe, Co, and Ni, which belong to the

ABX3 type perovskite family with A = [(CH3)2NH2]+, B= M2+ and X= HCOO-

. The dimethylammonium cation is dynamically disordered in the rhom-

bohedral paraelectric phase and the transition to the monoclinic ferroe-

lectric phase involves hydrogen bond ordering of the DMA cations at

temperatures in the range 160 K - 185 K. On further cooling, these ma-

terials become magnetically ordered (8 K-36 K), and below these tem-

peratures the antiferroelectric order co-exists with weakly ferromagnet-

ic order. Our findings illustrate a new approach to the creation of sys-

Page 94: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

78

tems exhibiting multiferroic behavior whereby electrical order involves

hydrogen bonding. These results suggest a highly promising new me-

chanism for this important behavior and opens up fresh opportunities

for production of lead-free multiferroic structures tailored for specific

technological applications.

4.11 Resulting publications and comments

Work resulted into a publication in the Journal of the American Chemi-

cal Society.20 This chapter was adopted from the same publication. This

work was highlighted in Journal Nature19, 145, and in Angew. Chem. Int.

Ed.137

Page 95: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

79

CHAPTER 5

GLASSY BEHAVIOR OF (CH3)2NH2Zn(HCOO)3

5.1 Background

Glassy behavior related to orientational ordering is observed in fulle-

rides and their rotor-stator complexes, as well as in many polymeric

systems and plastic crystals.146-150 A knowledge of the orientational or-

dering is important because it influences the properties and phase dia-

grams of such systems. For example, the superconducting properties of

A3C60 and Na2AC60 compounds are strongly influenced by the orienta-

tional state of the fulleride anions.151 In the case of C60, following a first

order phase transition around 260 K, a more subtle phase transition is

observed around 90 K.152 The later transition is attributed to the kinet-

ics of molecular reorientation leading to glassy behavior. This glassy

state is obtained when the thermal energy is not sufficient to overcome

the potential energy barrier that separates the orientational configura-

tions. Two energetically distinct orientations exist with the majority of

the molecules being in the lower energy orientation below 90 K. Above

90 K, the population of the dominant orientation decreases with in-

creasing temperature until, at the 260 K transition, there is a disconti-

nuous change of the fractional occupancy from 0.63 to 0.5.

In this chapter, we describe a comparable glassy behavior in a metal or-

ganic framework (MOF) with the perovskite architecture,

Page 96: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

80

[(CH3)2NH2]Zn(HCOO)3 (DMAZnF). We also report a memory effect re-

lated to the temperature dependent relaxation in the same compound.

5.2 Debye law and remnant specific heat

In previous chapters we reported a series of multifunctional metal or-

ganic frameworks exhibiting ferromagnetic and ferroelectric order, si-

multaneously.20-21 During the thermodynamic characterization, we ob-

served an unusually large specific heat at lower temperatures for these

materials. It is well known that at relatively low temperatures, in the

range of 2 - 30 K, glasses also have a phonon heat capacity that is larger

than the simple prediction of the Debye T3 law. This excess specific heat

gives rise to a peak in C/T3 vs T and is generally ascribed to localized vi-

brations, domain wall motions of the glassy mosaic structure, or trans-

verse phonon modes.153-155 These modes are usually seen in Raman scat-

tering as low-frequency peaks. Because these low-frequency states are

observed in glasses of all bonding types (metallic, ionic, covalent, etc.),

they are thought to be a fundamental feature of glass dynamics.156 A

number of crystalline materials also exhibit a low temperature peak in

C/T3. This has been used to study the nature of vibrations and disorder

in materials like quartz SiO2 and the pyrochlore Bi2Ti2O7.153 In the

present case, plotting C/T3 for the DMAZnF also revealed a clearly de-

fined broad peak at 25 K (Figure 33), well below its ferroelectric phase

transition. This observation suggests that the ferroelectric ordering was

not the only cooperative process below the 156 K transition tempera-

ture (Tc), and that there is also another kind of ordering process, such as

Page 97: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

81

glass formation, taking place at a shorter length scale. This prompted us

to study the kinetic behavior of the DMA cation in DMAZnF which is in-

volved in the ferroelectric ordering in this compound.

Figure 33: Temperature dependent of low-temperature specific heat (plotted as C/T3 versus T).

Page 98: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

82

5.3 NMR measurements

For recollection, DMAZnF has the same architecture as that of oxide pe-

rovskites. Metal atoms sit at the corners of a cube and are connected by

formate ligands. The cavity of the cube is occupied by a dimethylammo-

nium cation, the nitrogen of which is disordered over three distinct po-

sitions as a result of hydrogen bonding between the amine hydrogens

and oxygens of the framework (Figure 34). Upon cooling, the compound

goes under a phase transition, due to the ordering of nitrogen, leading to

ferroelectric ordering.

To study the kinetics we measured the NMR spin-lattice relaxation time

(T1) of DMAZnF over a wide temperature range (4-250 K). The sample

consisted of 20-30 sub-millimeter sized single crystals, synthesized as

described in section.21, 142 The nuclear spin-lattice relaxation time, T1, of

the CH3 protons was used as a probe of the local order and molecular dynamics time scale ≈ -10 s) of the (CH3)2NH2+ (DMA) unit.

Page 99: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

83

Figure 34: Crystal structure of [(CH3)2NH2]Zn(HCOO)3 at room temperature. The purple spheres represent the three dynamically disordered sites for the N atom of the dimethylammonium formate moiety. The freezing of these posi-tions is proposed to be the mechanism underlying the ferroelectric transition at 156 K.

The CH3 proton resonance was chosen because it has a strong, sharp

peak, due to the motional narrowing caused by the CH3 group

rotation.157 The NH2 protons were undetectable, very likely because of

broadening due to the 14N quadrupolar interaction. T1 was measured us-

ing a Tecmag Aries/Libra spectrometer with a home-built NMR probe at a field of . T . M(z for protons , using the standard π/ -τ-π/ saturation recovery procedure.158 Small temperature steps of 0.1 K were

utilized around Tc (156 K).

Page 100: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

84

5.4 Results and discussion

Figure 35 summarizes the temperature dependence of the CH3 proton

T1-1 (the spin-lattice relaxation rate). The graph has been divided into

three regions (A, B and C) guided by natural breaks in the slope. In re-

gion C, DMAZnF is in the high-temperature, paraelectric (PE) phase. On

lowering the temperature, T1-1 increases steadily to a maximum around

Tc, whereafter it starts to decrease as DMAZnF enters the ferroelectrical-

ly ordered phase, regions A and B. In region A, T1-1 follows a different

curve, implying a change in the spin-lattice relaxation pathway. This is

because the motion is dominated by slowing of the methyl-group rota-

tions below ~40 K. A similar observation has been reported by Clough

et. al.157 in methyl malonic acid and related compounds.

Page 101: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

85

Figure 35: Temperature dependence of the CH3 proton spin-lattice relaxation rate, T1-1, of DMAZnF. A, B and, C refer to the glass, ferroelectric (FE) and, pa-raelectric (PE) phases, respectively. Solid lines are the theoretical fits to the BPP equation. Arrows indicate the direction of the temperature scan. The in-set shows the Arrhenius plot for this path.

In the temperature range 65 K - 250 K, the spin-lattice relaxation time is

completely reversible along the main path (Path I, Figure 35). This re-

versibility holds as long as the sample is not cooled below 40 K. When

cooled below 40 K, T1 follows a different curve on warming. This impor-

tant observation is discussed later.

Page 102: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

86

Figure 36: Thermal cycles for paths II and III, wherein the spin-lattice relaxa-tion rate jumps back to the main path (path I), are highlighted by arrows. The dashed lines are the projected paths had no jumps occurred. Solid (thick) lines are the theoretical fits to the BPP equation.

Temperature dependence of T1 for the paraelectric phase (region C) and

for path I in region B was analyzed using the Bloembergen-Purcell-

Pound (BPP) formalism159, in which the relaxation rate is related to the

correlation time τc. Correlation time is the characteristic time between

significant fluctuations in the local magnetic field experienced by a spin

due to molecular motions or reorientations of a molecule. Relaxation is

caused by the molecular motion of the entity to which the proton is at-

tached and so, we consider the homonuclear dipole-dipole interaction

Page 103: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

87

between the protons in the methyl group in this case. The BPP

equation159 for rigid rotor motion of a methyl group in a rigid solid is

2222

2

3

20

1 41

4

1420

91

c

c

c

c

rT

where γ is the gyromagnetic ratio of 1H, r = 1.67 Å is the distance be-

tween CH3 hydrogens11, and ω is the 1H resonance frequency.

It was assumed that the temperature dependence of τc follows an Arr-

henius-like behavior with τc = τ0exp(Ea/RT), where τ0 is the single par-

ticle correlation time, Ea the activation energy for the dynamic process,

and R the gas constant. τc was extracted by fitting the experimental T1

data to the BPP and Arrhenius equations in the C and B regions, treating

Ea and τ0 as variables. T1 data within a few degrees of Tc were not in-

cluded in the fitting procedure because of the cooperative phenomena

that occur close to Tc. The resulting values of Ea and τ0 enabled us to cal-

culate the correlation times for the protons in the CH3 group; these val-

ues are presented in the inset of Figure 35 as an Arrhenius plot of ln τc

versus 1/T. It is clear that T1 follows Arrhenius-like behavior both above

and below Tc. Table 9 summarizes the Arrhenius parameters obtained in

the PE and FE phases over the reversible range, 65 - 250 K. As can be

seen in Table 9, Ea remains essentially unchanged (8 ± 0.3 kJ/mol) for

this path while τ0 increases by an order of magnitude as the material en-

ters the ferroelectric phase. Consequently, τc shows an anomalous in-

Page 104: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

88

crease below Tc, e.g. it increases from 3.0·10-10 s at 160 K to 1.7·10-9 s at

150 K. Such large anomalous slowing down of the motional fluctuations

(hopping) of the DMA unit coincident with Tc implies that the FE transi-

tion results from a freezing of the DMA hopping motion between its

three possible sites (shown in Fig. 2).

In region B, T1 becomes multi-valued over the range 65 K - Tc, and the

behavior depends on the cooling history. Figure 36 shows two sets of

our T1 measurements (labeled paths II and III), made on raising the

temperature after the sample was cooled down to about 4 K. In general,

T1 shows sudden jumps at unpredictable temperatures depending on

the thermal cycling range and cooling rate. The jumps from a given me-

tastable path (such as II and III) occur at unpredictable temperatures,

implying that the structures attained are very close in energy. This exis-

tence of several different local structures is also consistent with glassy

behavior.

Page 105: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

89

Table 9: Arrhenius parameters for the CH3 protons in DMAZnF in the PE and FE phases

Phase Ea

(kJ/mol)

τ0 (s)

PE 8.0 ± 0.1 (7.4 ± 0.5)·10-13

FE, Path I 7.9 ± 0.2 (2.8 ± 0.4)·10-12

FE, Path II (jump) 6 ± 1 ~ 1·10-10

FE, Path III (jump) 9 ± 1 ~ 4·10-12

FE, Path IV (no jump) 9.7 ± 0.3 (1.8 ± 0.4)·10-12

Paths for which the T1 curve remains smooth without any jumps, but

different from the main path, occurred only when the sample was

cooled rather quickly (>5 K/min). An Arrhenius analysis of one such a

path, following the above BPP procedure, yielded Arrhenius parameters

Ea=9.7±0.3 kJ/mol and τ0=(1.8±0.4)·10-12 s (Path IV in

Page 106: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

90

Table 9, not shown in Figure 36). For this case both τc and Ea increase

significantly as compared to the slow cooling case (path I). Since T1 de-

pends on the local geometry, these data show that the DMA moiety finds

distinctly different local environments depending on the sample cooling

history, a clear signature of a glassy phase.

The relaxation rate, which decreases rapidly between 156 and 65 K,

starts to decrease more slowly at about 40 K, implying that a new relax-

ation pathway begins to operate at this temperature and below. The T1-1

data can be decomposed into three component curves: one following

that of pathway I, the second showing a maximum around 40 K, and a

third essentially constant below about 10 K. The latter two pathways

are analogous to the relaxation processes found in many methyl-

containing solids. The second relaxation curve can be ascribed to ther-

mally activated rotation and the third to a methyl group tunneling

process.

5.5 Summary and conclusions

In summary, we used the specific heat and 1H NMR T1 measurements to

study the motional dynamics of the central amine moiety that is respon-

sible for ferroelectric ordering of DMAZnF at 156 K. In particular, we

were able to study the long-range and short-range ordering behavior

using spin lattice relaxation rates. Both behaviors appear to be related

to the motional dynamics of the DMA moiety. Below 156 K, the moiety

starts becoming more ordered with decreasing temperature. Initially,

Page 107: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

91

this involves ordering of the amine NH2 group. Further, below 40 K, ro-

tations of the associated methyl groups start freezing, leading to mul-

tiple states with close underlying energies showing a glass-like effect.

Local coordination environments in the framework remain unchanged

as no other anomalies were observed in the specific heat. Warming up

from 4 K, results in a memory effect, leading to different random paths

in the temperature range of 65 -140 K due to the glass-like behavior of

the framework below 40 K. To the best of our knowledge, this is the first

report of a MOF showing glassy behavior and memory effect related to

dynamics. These effects could potentially be used for manipulating oth-

er properties, such as gas absorption, catalysis, and electronic behavior,

for which the MOFs are well known.15, 160

5.6 Resulting publications and comments

This work has been adopted from a manuscript which will be submitted

shortly. Work has been presented in American physical society and

American chemical society meetings.

Page 108: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

92

CHAPTER 6

SUMMARY AND CONCLUSIONS

During the course of this dissertation, I worked on several projects re-

lated to the field of metal organic frameworks. I was able to synthesize a

new family of nickel-1,4-cyclohexanedicarboxylate. This family was stu-

died in detail and I found that, akin to zeolite synthesis, kinetic control

could also be applied to the synthesis of metal organic frameworks. I al-

so proposed a new method to make nanoparticles of MOFs by using na-

no-channels of anodized alumina template. This method was viable and

30-60 nm size nanorods of a nickel-1,4cyclohexanedicarboxylate

framework.were synthesized I also spent considerable time of my PhD

towards depositing a single monolayer of a two dimensional metal or-

ganic framework. This project was challenging as metal organic frame-

work are usually synthesized at higher temperatures. However, I was

able to make some beautiful nanostructures during my attempts to de-

posit a single monolayer of a MOF.

During this PhD, I discovered approximately 15 new structures or phas-

es of metal organic frameworks. These materials were thoroughly cha-

racterized and relevant properties were measured. Some of this work is

still in progress and will likely result into further publications.

For this dissertation, I have focused on frameworks with perovskite ar-

chitecture. Perovskites are arguably the most important inorganic class

Page 109: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

93

of materials with applications ranging from surfactants to superconduc-

tivity. I was able to synthesize six different metal organic frameworks

with this famous topology, though four of them are previously know. I

have deliberately left one of them out of this dissertation as it did not

fall into the overall theme of multiferroic/multifunctional metal organic

frameworks.

Multiferroic materials are rare compounds featuring at least two ferroic

properties with a majority of them displaying (anti)ferro – electricity or

magnetism. Currently, the most famous compounds displaying such be-

havior are oxide perovskites. One of the most common mechanism for

ferroelectric behavior requires an empty d-orbital which usually means

that the material is diamagnetic. Hence there is a need for multiferroic

materials in which two independent mechanisms can determinethe

electric and magnetic ordering. I was able to achieve this using the hybr-

id perovskites.

Hybrid perovskites of general formula (CH3)2NH2M(HCOO)3 have a ReO3

type cage made up of formate and metal ions. The metal ions sit at the

corners of the cubes and they are connected to each other via coordina-

tion bonding with oxygen of the formate ion. The dimethylammonium

cation is located at the center of this cavity. The amine hydrogen atoms

make hydrogen bonds with the oxygen atoms of the metal formate

framework. Because of this hydrogen bonding, the nitrogen of the am-

monium cation is disordered over three equal positions at room tem-

Page 110: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

94

perature. Cooling down these materials below 180 K, leads to a lowering

in symmetry, a result of the ordering of nitrogen atoms.

This phase transition is associated with a dielectric anomaly. Carefully done dielectric measurements show that the anomaly is a -type peak

usually associated with paraelectric to ferroelectric phase transition.

Low temperature single crystal measurements aided by powder X-ray

diffraction and neutron diffraction experiments show that low tempera-

ture phase crystallizes in monoclinic symmetry and Cc space group. Cc

belongs to one of the 10 polar point groups which are requirements for

ferroelectricity. Furthermore, magnetic fields seem to affect this dielec-

tric anomaly, suggesting that these hybrid perovskites have a magneto-

dielectric effect. This phase transition was studied in detail by electron

paramagnetic resonance, heat capacity, and 1H NMR relaxation time

measurements.

Close to 0 K, specific heat data suggest that there is a remnant specific

heat, a classic signature of amorphous or glassy materials. NMR data

shows that these hybrid materials are indeed glassy below 40 K with

many confirmations with close underlying energies. This effect is re-

lated to the rotation of methyl motors. NMR results also show an ano-

maly at the same temperature where dielectric anomaly is present. Me-

thyl protons slow down by a factor to suggest that dielectic anomaly is

indeed due to the ordering of nitrogen atoms.

Page 111: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

95

APPENDIX

CRYSTALLOGRAPHIC INFORMATION FILES

Dimethylammonium iron formate:

# Methyl Moiety X-C-H Angles are unusual because of the disorder

data_Dimethylammoniumironformate

_audit_creation_method SHELXL-97

_chemical_name_systematic

_chemical_name_common Dimethylammoniumironformate

_chemical_formula_moiety 'C9 H9 Fe3 O18, 3(C2 H6 N)'

_chemical_formula_sum 'C15 H27 Fe3 N2.97 O18'

_chemical_formula_weight 704.53

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'N' 'N' 0.0061 0.0033

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

Page 112: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

96

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'Fe' 'Fe' 0.3463 0.8444

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting Hexagonal

_symmetry_space_group_name_H-M R-3c

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

'-y, x-y, z'

'-x+y, -x, z'

'y, x, -z+1/2'

'x-y, -y, -z+1/2'

'-x, -x+y, -z+1/2'

'x+2/3, y+1/3, z+1/3'

'-y+2/3, x-y+1/3, z+1/3'

'-x+y+2/3, -x+1/3, z+1/3'

'y+2/3, x+1/3, -z+5/6'

'x-y+2/3, -y+1/3, -z+5/6'

'-x+2/3, -x+y+1/3, -z+5/6'

'x+1/3, y+2/3, z+2/3'

'-y+1/3, x-y+2/3, z+2/3'

'-x+y+1/3, -x+2/3, z+2/3'

'y+1/3, x+2/3, -z+7/6'

'x-y+1/3, -y+2/3, -z+7/6'

'-x+1/3, -x+y+2/3, -z+7/6'

'-x, -y, -z'

Page 113: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

97

'y, -x+y, -z'

'x-y, x, -z'

'-y, -x, z-1/2'

'-x+y, y, z-1/2'

'x, x-y, z-1/2'

'-x+2/3, -y+1/3, -z+1/3'

'y+2/3, -x+y+1/3, -z+1/3'

'x-y+2/3, x+1/3, -z+1/3'

'-y+2/3, -x+1/3, z-1/6'

'-x+y+2/3, y+1/3, z-1/6'

'x+2/3, x-y+1/3, z-1/6'

'-x+1/3, -y+2/3, -z+2/3'

'y+1/3, -x+y+2/3, -z+2/3'

'x-y+1/3, x+2/3, -z+2/3'

'-y+1/3, -x+2/3, z+1/6'

'-x+y+1/3, y+2/3, z+1/6'

'x+1/3, x-y+2/3, z+1/6'

_cell_length_a 8.241(2)

_cell_length_b 8.241

_cell_length_c 22.545(6)

_cell_angle_alpha 90.00

_cell_angle_beta 90.00

_cell_angle_gamma 120.00

_cell_volume 1326.2(5)

_cell_formula_units_Z 2

_cell_measurement_temperature 273(2)

Page 114: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

98

_cell_measurement_reflns_used ?

_cell_measurement_theta_min ?

_cell_measurement_theta_max ?

_exptl_crystal_description Cube

_exptl_crystal_colour colorless

_exptl_crystal_size_max 0.2

_exptl_crystal_size_mid 0.1

_exptl_crystal_size_min 0.1

_exptl_crystal_density_meas ?

_exptl_crystal_density_diffrn 1.765

_exptl_crystal_density_method 'not measured'

_exptl_crystal_F_000 720

_exptl_absorpt_coefficient_mu 1.705

_exptl_absorpt_correction_type 'multi scan'

_exptl_absorpt_correction_T_min ?

_exptl_absorpt_correction_T_max ?

_exptl_absorpt_process_details 'SADABS'

_exptl_special_details

_diffrn_ambient_temperature 273(2)

_diffrn_radiation_wavelength 0.71073

_diffrn_radiation_type MoK\a

_diffrn_radiation_source 'fine-focus sealed tube'

_diffrn_radiation_monochromator graphite

_diffrn_measurement_device_type 'CCD area Detector'

_diffrn_measurement_method 'Omega scan'

_diffrn_detector_area_resol_mean ?

Page 115: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

99

_diffrn_standards_number ?

_diffrn_standards_interval_count ?

_diffrn_standards_interval_time ?

_diffrn_standards_decay_% ?

_diffrn_reflns_number 1107

_diffrn_reflns_av_R_equivalents 0.0560

_diffrn_reflns_av_sigmaI/netI 0.0493

_diffrn_reflns_limit_h_min -10

_diffrn_reflns_limit_h_max 10

_diffrn_reflns_limit_k_min -10

_diffrn_reflns_limit_k_max 7

_diffrn_reflns_limit_l_min -26

_diffrn_reflns_limit_l_max 22

_diffrn_reflns_theta_min 3.38

_diffrn_reflns_theta_max 26.71

_reflns_number_total 301

_reflns_number_gt 228

_reflns_threshold_expression >2sigma(I)

_computing_data_collection ?

_computing_cell_refinement ?

_computing_data_reduction ?

_computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)'

_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

_computing_molecular_graphics ?

_computing_publication_material ?

_refine_special_details

Page 116: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

100

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR

and goodness of fit S are based on F^2^, conventional R-factors R are

based on F, with F set to zero for negative F^2^. The threshold expres-

sion of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt)

etc. and is not relevant to the choice of reflections for refinement. R-

factors based on F^2^ are statistically about twice as large as those

based on F, and R-factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd

_refine_ls_matrix_type full

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.0503P)^2^+0.0000P]

where P=(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary direct

_atom_sites_solution_secondary difmap

_atom_sites_solution_hydrogens geom

_refine_ls_hydrogen_treatment mixed

_refine_ls_extinction_method none

_refine_ls_extinction_coef ?

_refine_ls_number_reflns 301

_refine_ls_number_parameters 31

_refine_ls_number_restraints 3

_refine_ls_R_factor_all 0.0561

_refine_ls_R_factor_gt 0.0403

Page 117: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

101

_refine_ls_wR_factor_ref 0.0930

_refine_ls_wR_factor_gt 0.0883

_refine_ls_goodness_of_fit_ref 1.074

_refine_ls_restrained_S_all 1.069

_refine_ls_shift/su_max 0.002

_refine_ls_shift/su_mean 0.000

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_disorder_assembly

_atom_site_disorder_group

Fe Fe 0.0000 1.0000 0.0000 0.0229(4) Uani 1 6 d S . .

O O -0.0084(3) 0.7830(3) 0.05427(11) 0.0355(7) Uani 1 1 d . . .

C1 C 0.1217(6) 0.7884(6) 0.0833 0.0298(12) Uani 1 2 d S . .

C2 C 0.6667 0.3333 0.0297(3) 0.059(2) Uani 1 3 d SD . .

N N 0.5804(14) 0.2471(14) 0.0833 0.035(3) Uani 0.33 2 d SPD . .

H1 H 0.231(10) 0.898(10) 0.0833 0.059(19) Uiso 1 2 d S . .

Page 118: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

102

H2 H 0.788(10) 0.358(19) 0.012(3) 0.29(6) Uiso 1 1 d D . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

Fe 0.0195(4) 0.0195(4) 0.0299(7) 0.000 0.000 0.0097(2)

O 0.0314(14) 0.0324(15) 0.0439(15) 0.0049(12) -0.0062(12)

0.0168(12)

C1 0.0249(19) 0.0249(19) 0.040(3) -0.0010(12) 0.0010(12) 0.012(2)

C2 0.066(3) 0.066(3) 0.046(4) 0.000 0.000 0.0330(16)

N 0.032(5) 0.032(5) 0.047(8) 0.004(3) -0.004(3) 0.021(5)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are

only used when they are defined by crystal symmetry. An approximate

(isotropic) treatment of cell esds is used for estimating esds involving

l.s. planes.

;

loop_

Page 119: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

103

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag

Fe O 2.139(2) 2_675 ?

Fe O 2.139(2) 20_455 ?

Fe O 2.139(2) 3_465 ?

Fe O 2.139(2) 19_575 ?

Fe O 2.139(2) . ?

Fe O 2.139(2) 21_665 ?

O C1 1.239(3) . ?

C1 O 1.239(3) 16_454 ?

C1 H1 0.90(8) . ?

C2 N 1.403(7) 2_655 ?

C2 N 1.403(7) . ?

C2 N 1.403(7) 3_665 ?

C2 H2 1.002(10) . ?

N N 1.23(2) 3_665 ?

N N 1.23(2) 2_655 ?

N C2 1.403(7) 16_544 ?

loop_

_geom_angle_atom_site_label_1

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

Page 120: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

104

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

O Fe O 180.0 2_675 20_455 ?

O Fe O 90.53(10) 2_675 3_465 ?

O Fe O 89.47(10) 20_455 3_465 ?

O Fe O 89.47(10) 2_675 19_575 ?

O Fe O 90.53(10) 20_455 19_575 ?

O Fe O 89.47(10) 3_465 19_575 ?

O Fe O 90.53(10) 2_675 . ?

O Fe O 89.47(10) 20_455 . ?

O Fe O 90.53(10) 3_465 . ?

O Fe O 180.00(11) 19_575 . ?

O Fe O 89.47(10) 2_675 21_665 ?

O Fe O 90.53(10) 20_455 21_665 ?

O Fe O 180.00(11) 3_465 21_665 ?

O Fe O 90.53(10) 19_575 21_665 ?

O Fe O 89.47(10) . 21_665 ?

C1 O Fe 127.4(3) . . ?

O C1 O 126.4(5) . 16_454 ?

O C1 H1 116.8(2) . . ?

O C1 H1 116.8(2) 16_454 . ?

N C2 N 52.1(8) 2_655 . ?

N C2 N 52.1(8) 2_655 3_665 ?

N C2 N 52.1(8) . 3_665 ?

N C2 H2 84(4) 2_655 . ?

Page 121: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

105

N C2 H2 130.8(18) . . ?

N C2 H2 120(8) 3_665 . ?

N N N 60.000(2) 3_665 2_655 ?

N N C2 64.0(4) 3_665 16_544 ?

N N C2 64.0(4) 2_655 16_544 ?

N N C2 64.0(4) 3_665 . ?

N N C2 64.0(4) 2_655 . ?

C2 N C2 119.1(9) 16_544 . ?

loop_

_geom_torsion_atom_site_label_1

_geom_torsion_atom_site_label_2

_geom_torsion_atom_site_label_3

_geom_torsion_atom_site_label_4

_geom_torsion

_geom_torsion_site_symmetry_1

_geom_torsion_site_symmetry_2

_geom_torsion_site_symmetry_3

_geom_torsion_site_symmetry_4

_geom_torsion_publ_flag

O Fe O C1 -28.6(2) 2_675 . . . ?

O Fe O C1 151.4(2) 20_455 . . . ?

O Fe O C1 -119.08(15) 3_465 . . . ?

O Fe O C1 118.5(5) 19_575 . . . ?

O Fe O C1 60.92(15) 21_665 . . . ?

Fe O C1 O -176.5(2) . . . 16_454 ?

N C2 N N 67.6(3) 2_655 . . 3_665 ?

Page 122: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

106

N C2 N N -67.6(3) 3_665 . . 2_655 ?

N C2 N C2 33.81(13) 2_655 . . 16_544 ?

N C2 N C2 -33.81(13) 3_665 . . 16_544 ?

_diffrn_measured_fraction_theta_max 0.941

_diffrn_reflns_theta_full 26.71

_diffrn_measured_fraction_theta_full 0.941

_refine_diff_density_max 0.401

_refine_diff_density_min -0.487

_refine_diff_density_rms 0.092

Dimethylammonium zinc formate

Crystal data and structure refinement for dimethylammonium zinc

formate.

Empirical formula C5 H11 N O6 Zn

Formula weight 246.52

Temperature 273(2) K

Wavelength 0.71073 A

Crystal system, space group Hexagonal, R-3c

Unit cell dimensions a = 8.1924(8) A alpha = 90 deg.

b = 8.192 A beta = 90 deg.

c = 22.277(2) A gamma = 120 deg.

Volume 1294.81(18) A^3

Z, Calculated density 6, 1.897 Mg/m^3

Page 123: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

107

Absorption coefficient 2.845 mm^-1

F(000) 756

Crystal size 0.25 x 0.1 x 0.05 mm Θ range for data collection 3.40 to 27.32 deg.

Limiting indices 10<=h<=10, -8<=k<=10, -27<=l<=28

Reflections collected / unique 2979 / 318 [R(int) = 0.0230]

Completeness to theta = 27.32 96.4 %

Absorption correction Multi scan

Refinement method Full-matrix least-squares on F^2

Data/restraints/parameters 318 / 2 / 31

Goodness-of-fit on F^2 1.145

Final R indices [I>2sigma(I)] R1 = 0.0236, wR2 = 0.0581

R indices (all data) R1 = 0.0277, wR2 = 0.0602

Largest diff. peak and hole 0.378 and -0.247 e.A^-3

Page 124: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

108

Atomic coordinates ( x 10^4) and equivalent isotropic

displacement parameters (A^2 x 10^3) for dimethylammonium zinc

formate.

U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

________________________________________________________________

x y z U(eq)

________________________________________________________________

Zn 0 0 0 23(1)

O(1) -79(2) 2086(2) 538(1) 34(1)

C(1) 1236(4) 3333 833 30(1)

C(2) 6667 3333 1376(2) 57(1)

N 6667 2462(11) 833 43(2)

________________________________________________________________

Page 125: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

109

Bond lengths [Å] and angles [°] for dimethylammonium zinc for-

mate

_____________________________________________________________

Zn-O(1)#1 2.1149

Zn-O(1)#2 2.1149

Zn-O(1)#3 2.1149

Zn-O(1) 2.1149

Zn-O(1)#4 2.1149

Zn-O(1)#5 2.1149

O(1)-C(1) 1.2390

C(1)-O(1)#6 1.2390

C(1)-H(1) 0.8400

C(2)-N 1.4040

C(2)-N#7 1.4040

C(2)-N#8 1.4040

C(2)-H(2) 0.9980

N-N#7 1.2370

N-N#8 1.2370

N-C(2)#9 1.4040

O(1)#1-Zn-O(1)#2 91.02

O(1)#1-Zn-O(1)#3 180.00

O(1)#2-Zn-O(1)#3 88.98

O(1)#1-Zn-O(1) 88.98

O(1)#2-Zn-O(1) 180.00

Page 126: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

110

O(1)#3-Zn-O(1) 91.02

O(1)#1-Zn-O(1)#4 88.98

O(1)#2-Zn-O(1)#4 88.98

O(1)#3-Zn-O(1)#4 91.02

O(1)-Zn-O(1)#4 91.02

O(1)#1-Zn-O(1)#5 91.02

O(1)#2-Zn-O(1)#5 91.02

O(1)#3-Zn-O(1)#5 88.98

O(1)-Zn-O(1)#5 88.98

O(1)#4-Zn-O(1)#5 180.00

C(1)-O(1)-Zn 127.02

O(1)#6-C(1)-O(1) 125.7

O(1)#6-C(1)-H(1) 117.17

O(1)-C(1)-H(1) 117.17

N-C(2)-N#7 52.3

N-C(2)-N#8 52.3

N#7-C(2)-N#8 52.3

N-C(2)-H(2) 87.9

N#7-C(2)-H(2) 117

N#8-C(2)-H(2) 138

N#7-N-N#8 60.0

N#7-N-C(2) 63.9

N#8-N-C(2) 63.9

N#7-N-C(2)#9 63.9

N#8-N-C(2)#9 63.9

C(2)-N-C(2)#9 118.9

Page 127: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

111

_____________________________________________________________

Symmetry transformations used to generate equivalent atoms:

#1 x-y,x,-z #2 -x,-y,-z #3 -x+y,-x,z

#4 -y,x-y,z #5 y,-x+y,-z #6 x-y+1/3,-y+2/3,-z+1/6

#7 -y+1,x-y,z #8 -x+y+1,-x+1,z #9 y+1/3,x-1/3,-z+1/6

Anisotropic displacement parameters (A^2 x 10^3) for dimethyl-

ammonium zinc formate

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

_____________________________________________________________________

U11 U22 U33 U23 U13 U12

____________________________________________________________________

Zn 23 23 23 0 0 12

O(1) 32 33 37 -11 -5 16

C(1) 28 27 34 1 1 14

C(2) 68 68 35 0 0 34

N 38 31 62 3 6 19

_____________________________________________________________________

Hydrogen coordinates ( x 10^4) and isotropic displacement pa-

rameters (A^2 x 10^3) for dimethylammonium zinc formate

Page 128: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

112

________________________________________________________________

x y z U(eq)

________________________________________________________________

H(2) 7100(200) 2550(160) 1577(13) 350(50)

H(1) 2260(40) 3333 833 12(7)

________________________________________________________________

Torsion angles [°] for dimethylammonium zinc formate

________________________________________________________________

O(1)#1-Zn-O(1)-C(1) -152.22(15)

O(1)#2-Zn-O(1)-C(1) -148(58)

O(1)#3-Zn-O(1)-C(1) 27.78(15)

O(1)#4-Zn-O(1)-C(1) 118.81(9)

O(1)#5-Zn-O(1)-C(1) -61.19(9)

Zn-O(1)-C(1)-O(1)#6 177.27(14)

N#8-C(2)-N-N#7 67.68(19)

N#7-C(2)-N-N#8 -67.68(19)

N#7-C(2)-N-C(2)#9 -33.84(9)

N#8-C(2)-N-C(2)#9 33.84(9)

________________________________________________________________

Symmetry transformations used to generate equivalent atoms:

#1 x-y,x,-z #2 -x,-y,-z #3 -x+y,-x,z

Page 129: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

113

#4 -y,x-y,z #5 y,-x+y,-z #6 x-y+1/3,-y+2/3,-z+1/6

#7 -y+1,x-y,z #8 -x+y+1,-x+1,z #9 y+1/3,x-1/3,-z+1/6

Dimethylammonium manganese formate

_audit_creation_method SHELXL-97

_chemical_formula_sum 'C3 H9 Mn N O2'

_chemical_formula_weight 146.05

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'N' 'N' 0.0061 0.0033

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'Mn' 'Mn' 0.3368 0.7283

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting ?

_symmetry_space_group_name_H-M "R -3 c"

Page 130: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

114

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

'-y, x-y, z'

'-x+y, -x, z'

'y, x, -z+1/2'

'x-y, -y, -z+1/2'

'-x, -x+y, -z+1/2'

'x+2/3, y+1/3, z+1/3'

'-y+2/3, x-y+1/3, z+1/3'

'-x+y+2/3, -x+1/3, z+1/3'

'y+2/3, x+1/3, -z+5/6'

'x-y+2/3, -y+1/3, -z+5/6'

'-x+2/3, -x+y+1/3, -z+5/6'

'x+1/3, y+2/3, z+2/3'

'-y+1/3, x-y+2/3, z+2/3'

'-x+y+1/3, -x+2/3, z+2/3'

'y+1/3, x+2/3, -z+7/6'

'x-y+1/3, -y+2/3, -z+7/6'

'-x+1/3, -x+y+2/3, -z+7/6'

'-x, -y, -z'

'y, -x+y, -z'

'x-y, x, -z'

'-y, -x, z-1/2'

'-x+y, y, z-1/2'

'x, x-y, z-1/2'

Page 131: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

115

'-x+2/3, -y+1/3, -z+1/3'

'y+2/3, -x+y+1/3, -z+1/3'

'x-y+2/3, x+1/3, -z+1/3'

'-y+2/3, -x+1/3, z-1/6'

'-x+y+2/3, y+1/3, z-1/6'

'x+2/3, x-y+1/3, z-1/6'

'-x+1/3, -y+2/3, -z+2/3'

'y+1/3, -x+y+2/3, -z+2/3'

'x-y+1/3, x+2/3, -z+2/3'

'-y+1/3, -x+2/3, z+1/6'

'-x+y+1/3, y+2/3, z+1/6'

'x+1/3, x-y+2/3, z+1/6'

_cell_length_a 8.3279(8)

_cell_length_b 8.3279(8)

_cell_length_c 22.881(5)

_cell_angle_alpha 90.00

_cell_angle_beta 90.00

_cell_angle_gamma 120.00

_cell_volume 1374.3(3)

_cell_formula_units_Z 9

_cell_measurement_temperature 273(2)

_exptl_crystal_description Cubic

_exptl_crystal_colour light pink

_exptl_crystal_density_diffrn 1.588

_exptl_crystal_density_method 'not measured'

_exptl_crystal_F_000 675

Page 132: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

116

_exptl_absorpt_coefficient_mu 2.059

_diffrn_ambient_temperature 273(2)

_diffrn_radiation_wavelength 0.71073

_diffrn_radiation_type MoK\a

_diffrn_radiation_source 'fine-focus sealed tube'

_diffrn_radiation_monochromator graphite

_diffrn_reflns_number 2288

_diffrn_reflns_av_R_equivalents 0.0294

_diffrn_reflns_av_sigmaI/netI 0.0178

_diffrn_reflns_limit_h_min -10

_diffrn_reflns_limit_h_max 8

_diffrn_reflns_limit_k_min -10

_diffrn_reflns_limit_k_max 10

_diffrn_reflns_limit_l_min -27

_diffrn_reflns_limit_l_max 28

_diffrn_reflns_theta_min 3.34

_diffrn_reflns_theta_max 26.41

_reflns_number_total 321

_reflns_number_gt 277

_reflns_threshold_expression >2sigma(I)

_computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)'

_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR

and goodness of fit S are based on F^2^, conventional R-factors R are

Page 133: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

117

based on F, with F set to zero for negative F^2^. The threshold expres-

sion of

F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and

is not relevant to the choice of reflections for refinement. R-factors

based on F^2^ are statistically about twice as large as those based on F,

and R- factors based on ALL data will be even larger.

;

refine_ls_structure_factor_coef Fsqd

_refine_ls_matrix_type full

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.0716P)^2^+21.3666P]

where P=(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary direct

_atom_sites_solution_secondary difmap

_atom_sites_solution_hydrogens geom

_refine_ls_hydrogen_treatment mixed

_refine_ls_extinction_method SHELXL

_refine_ls_extinction_coef 0.0028(11)

_refine_ls_extinction_expression

'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^'

_refine_ls_number_reflns 321

_refine_ls_number_parameters 32

_refine_ls_number_restraints 3

_refine_ls_R_factor_all 0.0405

Page 134: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

118

_refine_ls_R_factor_gt 0.0334

_refine_ls_wR_factor_ref 0.0865

_refine_ls_wR_factor_gt 0.0781

_refine_ls_goodness_of_fit_ref 0.609

_refine_ls_restrained_S_all 0.608

_refine_ls_shift/su_max 0.000

_refine_ls_shift/su_mean 0.000

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_disorder_assembly

_atom_site_disorder_group

Mn Mn 0.0000 1.0000 0.0000 0.0263(4) Uani 1 6 d S . .

O1 O -0.0103(3) 0.7792(3) 0.05449(8) 0.0417(6) Uani 1 1 d . . .

C1 C 0.1174(5) 0.7840(5) 0.0833 0.0346(9) Uani 1 2 d S . .

Page 135: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

119

C2 C 0.6667 0.3333 0.1362(3) 0.0626(17) Uani 1 3 d SD . .

H1 H 0.223(5) 0.889(5) 0.0833 0.015(8) Uiso 1 2 d S . .

H2 H 0.68(3) 0.445(12) 0.1571(7) 0.33(6) Uiso 1 1 d D . .

N N 0.6667 0.4211(12) 0.0833 0.044(2) Uani 0.33 2 d SPD . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

Mn 0.0258(4) 0.0258(4) 0.0272(6) 0.000 0.000 0.0129(2)

O1 0.0396(11) 0.0392(12) 0.0463(11) 0.0086(8) -0.0076(9) 0.0197(9)

C1 0.0316(15) 0.0316(15) 0.040(2) 0.0008(8) -0.0008(8) 0.0157(17)

C2 0.072(3) 0.072(3) 0.043(3) 0.000 0.000 0.0361(14)

N 0.034(5) 0.031(4) 0.067(7) 0.003(2) 0.006(5) 0.017(3)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are

only used when they are defined by crystal symmetry. An approximate

Page 136: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

120

(isotropic) treatment of cell esds is used for estimating esds involving

l.s. planes.

;

loop_

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag

Mn O1 2.1878(18) 20_455 ?

Mn O1 2.1878(18) 2_675 ?

Mn O1 2.1878(18) . ?

Mn O1 2.1878(18) 21_665 ?

Mn O1 2.1878(18) 3_465 ?

Mn O1 2.1878(18) 19_575 ?

O1 C1 1.234(3) . ?

C1 O1 1.234(3) 16_454 ?

C1 H1 0.88(4) . ?

C2 N 1.412(6) 3_665 ?

C2 N 1.412(6) 2_655 ?

C2 N 1.412(6) . ?

C2 H2 0.998(10) . ?

N N 1.265(17) 2_655 ?

N N 1.265(17) 3_665 ?

N C2 1.412(6) 16_544 ?

loop_

Page 137: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

121

_geom_angle_atom_site_label_1

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

O1 Mn O1 180.00(8) 20_455 2_675 ?

O1 Mn O1 89.26(8) 20_455 . ?

O1 Mn O1 90.74(8) 2_675 . ?

O1 Mn O1 90.74(8) 20_455 21_665 ?

O1 Mn O1 89.26(8) 2_675 21_665 ?

O1 Mn O1 89.26(8) . 21_665 ?

O1 Mn O1 89.26(8) 20_455 3_465 ?

O1 Mn O1 90.74(8) 2_675 3_465 ?

O1 Mn O1 90.74(8) . 3_465 ?

O1 Mn O1 180.0 21_665 3_465 ?

O1 Mn O1 90.74(8) 20_455 19_575 ?

O1 Mn O1 89.26(8) 2_675 19_575 ?

O1 Mn O1 180.00(10) . 19_575 ?

O1 Mn O1 90.74(8) 21_665 19_575 ?

O1 Mn O1 89.26(8) 3_465 19_575 ?

C1 O1 Mn 127.3(2) . . ?

O1 C1 O1 126.9(4) 16_454 . ?

O1 C1 H1 116.54(19) 16_454 . ?

O1 C1 H1 116.54(19) . . ?

Page 138: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

122

N C2 N 53.2(6) 3_665 2_655 ?

N C2 N 53.2(6) 3_665 . ?

N C2 N 53.2(6) 2_655 . ?

N C2 H2 126(8) 3_665 . ?

N C2 H2 133(6) 2_655 . ?

N C2 H2 87.8(9) . . ?

N N N 60.0 2_655 3_665 ?

N N C2 63.4(3) 2_655 . ?

N N C2 63.4(3) 3_665 . ?

N N C2 63.4(3) 2_655 16_544 ?

N N C2 63.4(3) 3_665 16_544 ?

C2 N C2 117.7(8) . 16_544 ?

loop_

_geom_torsion_atom_site_label_1

_geom_torsion_atom_site_label_2

_geom_torsion_atom_site_label_3

_geom_torsion_atom_site_label_4

_geom_torsion

_geom_torsion_site_symmetry_1

_geom_torsion_site_symmetry_2

_geom_torsion_site_symmetry_3

_geom_torsion_site_symmetry_4

_geom_torsion_publ_flag

O1 Mn O1 C1 152.20(19) 20_455 . . . ?

O1 Mn O1 C1 -27.80(19) 2_675 . . . ?

O1 Mn O1 C1 61.46(12) 21_665 . . . ?

Page 139: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

123

O1 Mn O1 C1 -118.54(12) 3_465 . . . ?

O1 Mn O1 C1 131(100) 19_575 . . . ?

Mn O1 C1 O1 -176.96(19) . . . 16_454 ?

N C2 N N 68.0(2) 3_665 . . 2_655 ?

N C2 N N -68.0(2) 2_655 . . 3_665 ?

N C2 N C2 34.00(11) 3_665 . . 16_544 ?

N C2 N C2 -34.00(11) 2_655 . . 16_544 ?

_diffrn_measured_fraction_theta_max 1.000

_diffrn_reflns_theta_full 26.41

_diffrn_measured_fraction_theta_full 1.000

_refine_diff_density_max 0.397

_refine_diff_density_min -0.230

_refine_diff_density_rms 0.067

Dimethylammonium nickel formate

_audit_creation_method SHELXL-97

_chemical_formula_sum 'C5 H11 N Ni O6'

_chemical_formula_weight 239.86

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

Page 140: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

124

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'N' 'N' 0.0061 0.0033

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'Ni' 'Ni' 0.3393 1.1124

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting Hexagonal

_symmetry_space_group_name_H-M 'R -3 c'

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

'-y, x-y, z'

'-x+y, -x, z'

'y, x, -z+1/2'

'x-y, -y, -z+1/2'

'-x, -x+y, -z+1/2'

'x+2/3, y+1/3, z+1/3'

'-y+2/3, x-y+1/3, z+1/3'

'-x+y+2/3, -x+1/3, z+1/3'

'y+2/3, x+1/3, -z+5/6'

'x-y+2/3, -y+1/3, -z+5/6'

'-x+2/3, -x+y+1/3, -z+5/6'

'x+1/3, y+2/3, z+2/3'

Page 141: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

125

'-y+1/3, x-y+2/3, z+2/3'

'-x+y+1/3, -x+2/3, z+2/3'

'y+1/3, x+2/3, -z+7/6'

'x-y+1/3, -y+2/3, -z+7/6'

'-x+1/3, -x+y+2/3, -z+7/6'

'-x, -y, -z'

'y, -x+y, -z'

'x-y, x, -z'

'-y, -x, z-1/2'

'-x+y, y, z-1/2'

'x, x-y, z-1/2'

'-x+2/3, -y+1/3, -z+1/3'

'y+2/3, -x+y+1/3, -z+1/3'

'x-y+2/3, x+1/3, -z+1/3'

'-y+2/3, -x+1/3, z-1/6'

'-x+y+2/3, y+1/3, z-1/6'

'x+2/3, x-y+1/3, z-1/6'

'-x+1/3, -y+2/3, -z+2/3'

'y+1/3, -x+y+2/3, -z+2/3'

'x-y+1/3, x+2/3, -z+2/3'

'-y+1/3, -x+2/3, z+1/6'

'-x+y+1/3, y+2/3, z+1/6'

'x+1/3, x-y+2/3, z+1/6'

_cell_length_a 8.1101(14)

_cell_length_b 8.110

Page 142: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

126

_cell_length_c 21.986(4)

_cell_angle_alpha 90.00

_cell_angle_beta 90.00

_cell_angle_gamma 120.00

_cell_volume 1252.4(3)

_cell_formula_units_Z 6

_cell_measurement_temperature 273(2)

_exptl_crystal_description cube

_exptl_crystal_colour green

_exptl_crystal_size_max 0.1

_exptl_crystal_size_mid 0.1

_exptl_crystal_size_min 0.08

_exptl_crystal_density_diffrn 1.908

_exptl_crystal_density_method 'not measured'

_exptl_crystal_F_000 744

_exptl_absorpt_coefficient_mu 2.323

_exptl_absorpt_correction_type 'emperical'

_exptl_absorpt_correction_T_min 0.329

_exptl_absorpt_correction_T_max 0.432

_exptl_absorpt_process_details 'Psi scan'

_exptl_special_details

_diffrn_ambient_temperature 273(2)

_diffrn_radiation_wavelength 0.71073

_diffrn_radiation_type MoK\a

_diffrn_radiation_source 'fine-focus sealed tube'

_diffrn_radiation_monochromator graphite

Page 143: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

127

_diffrn_measurement_device_type 'CCD area detector'

_diffrn_measurement_method 'Omega scan'

_diffrn_reflns_number 1930

_diffrn_reflns_av_R_equivalents 0.0491

_diffrn_reflns_av_sigmaI/netI 0.0361

_diffrn_reflns_limit_h_min -9

_diffrn_reflns_limit_h_max 9

_diffrn_reflns_limit_k_min -7

_diffrn_reflns_limit_k_max 10

_diffrn_reflns_limit_l_min -27

_diffrn_reflns_limit_l_max 21

_diffrn_reflns_theta_min 3.44

_diffrn_reflns_theta_max 26.51

_reflns_number_total 291

_reflns_number_gt 227

_reflns_threshold_expression >2sigma(I)

_computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)'

_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR

and goodness of fit S are based on F^2^, conventional R-factors R are

based on F, with F set to zero for negative F^2^. The threshold expres-

sion of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt)

etc. and is not relevant to the choice of reflections for refinement. R-

Page 144: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

128

factors based on F^2^ are statistically about twice as large as those

based on F, and R-factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd

_refine_ls_matrix_type full

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.0680P)^2^+0.0000P]

where P=(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary direct

_atom_sites_solution_secondary difmap

_atom_sites_solution_hydrogens geom

_refine_ls_hydrogen_treatment mixed

_refine_ls_extinction_method none

_refine_ls_number_reflns 291

_refine_ls_number_parameters 29

_refine_ls_number_restraints 2

_refine_ls_R_factor_all 0.0532

_refine_ls_R_factor_gt 0.0405

_refine_ls_wR_factor_ref 0.1056

_refine_ls_wR_factor_gt 0.0994

_refine_ls_goodness_of_fit_ref 1.081

_refine_ls_restrained_S_all 1.078

_refine_ls_shift/su_max 0.000

_refine_ls_shift/su_mean 0.000

loop_

Page 145: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

129

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_disorder_assembly

_atom_site_disorder_group

Ni Ni 1.0000 1.0000 0.0000 0.0228(4) Uani 1 6 d S . .

O O 0.7925(4) 0.7865(4) 0.05342(12) 0.0324(7) Uani 1 1 d . . .

C1 C 0.6667 0.7939(7) 0.0833 0.0298(13) Uani 1 2 d S . .

C2 C 0.6667 0.3333 0.0288(4) 0.052(2) Uani 1 3 d SD . .

N N 0.7536(17) 0.4203(17) 0.0833 0.041(4) Uani 0.33 2 d SPD . .

H1 H 0.6667 0.896(10) 0.0833 0.050 Uiso 1 2 d S . .

H2 H 0.614(6) 0.201(3) 0.0132(13) 0.050 Uiso 1 1 d D . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

Page 146: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

130

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

Ni 0.0227(5) 0.0227(5) 0.0231(6) 0.000 0.000 0.0113(2)

O 0.0322(16) 0.0323(16) 0.0340(14) 0.0051(12) 0.0083(12)

0.0170(12)

C1 0.023(3) 0.034(2) 0.029(3) -0.0007(11) -0.001(2) 0.0116(14)

C2 0.059(3) 0.059(3) 0.037(4) 0.000 0.000 0.0293(16)

N 0.036(6) 0.036(6) 0.045(8) 0.003(3) -0.003(3) 0.014(6)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are

only used when they are defined by crystal symmetry. An approximate

(isotropic) treatment of cell esds is used for estimating esds involving

l.s. planes.

;

loop_

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

Page 147: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

131

_geom_bond_publ_flag

Ni O 2.073(2) 20_565 ?

Ni O 2.073(2) 2_765 ?

Ni O 2.073(2) 21_655 ?

Ni O 2.073(2) 3_675 ?

Ni O 2.073(2) 19_775 ?

Ni O 2.073(2) . ?

O C1 1.241(4) . ?

C1 O 1.241(4) 18_654 ?

C1 H1 0.83(8) . ?

C2 N 1.392(10) 3_665 ?

C2 N 1.392(10) . ?

C2 N 1.392(10) 2_655 ?

C2 H2 0.998(10) . ?

N N 1.22(2) 2_655 ?

N N 1.22(2) 3_665 ?

N C2 1.392(10) 16_544 ?

loop_

_geom_angle_atom_site_label_1

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

Page 148: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

132

O Ni O 180.00(12) 20_565 2_765 ?

O Ni O 91.05(10) 20_565 21_655 ?

O Ni O 88.95(10) 2_765 21_655 ?

O Ni O 88.95(10) 20_565 3_675 ?

O Ni O 91.05(10) 2_765 3_675 ?

O Ni O 180.00(12) 21_655 3_675 ?

O Ni O 91.05(10) 20_565 19_775 ?

O Ni O 88.95(10) 2_765 19_775 ?

O Ni O 91.05(10) 21_655 19_775 ?

O Ni O 88.95(10) 3_675 19_775 ?

O Ni O 88.95(10) 20_565 . ?

O Ni O 91.05(10) 2_765 . ?

O Ni O 88.95(10) 21_655 . ?

O Ni O 91.05(10) 3_675 . ?

O Ni O 180.0 19_775 . ?

C1 O Ni 127.1(3) . . ?

O C1 O 125.2(5) 18_654 . ?

O C1 H1 117.4(3) 18_654 . ?

O C1 H1 117.4(3) . . ?

N C2 N 52.1(9) 3_665 . ?

N C2 N 52.1(9) 3_665 2_655 ?

N C2 N 52.1(9) . 2_655 ?

N C2 H2 82(2) 3_665 . ?

N C2 H2 132.6(17) . . ?

N C2 H2 111(2) 2_655 . ?

N N N 60.000(1) 2_655 3_665 ?

Page 149: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

133

N N C2 64.0(4) 2_655 16_544 ?

N N C2 64.0(4) 3_665 16_544 ?

N N C2 64.0(4) 2_655 . ?

N N C2 64.0(4) 3_665 . ?

C2 N C2 119.1(10) 16_544 . ?

loop_

_geom_torsion_atom_site_label_1

_geom_torsion_atom_site_label_2

_geom_torsion_atom_site_label_3

_geom_torsion_atom_site_label_4

_geom_torsion

_geom_torsion_site_symmetry_1

_geom_torsion_site_symmetry_2

_geom_torsion_site_symmetry_3

_geom_torsion_site_symmetry_4

_geom_torsion_publ_flag

O Ni O C1 -61.10(15) 20_565 . . . ?

O Ni O C1 118.90(15) 2_765 . . . ?

O Ni O C1 -152.2(3) 21_655 . . . ?

O Ni O C1 27.8(3) 3_675 . . . ?

O Ni O C1 -131(58) 19_775 . . . ?

Ni O C1 O 177.5(2) . . . 18_654 ?

N C2 N N -67.6(3) 3_665 . . 2_655 ?

N C2 N N 67.6(3) 2_655 . . 3_665 ?

N C2 N C2 -33.81(14) 3_665 . . 16_544 ?

Page 150: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

134

N C2 N C2 33.81(14) 2_655 . . 16_544 ?

_diffrn_measured_fraction_theta_max 0.990

_diffrn_reflns_theta_full 26.51

_diffrn_measured_fraction_theta_full 0.990

_refine_diff_density_max 0.899

_refine_diff_density_min -0.541

_refine_diff_density_rms 0.123

Low temperature dimethylammonium manganese formate

_audit_creation_method SHELXL-97

_chemical_formula_sum 'C5 H11 Mn N O6'

_chemical_formula_weight 236.09

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'N' 'N' 0.0061 0.0033

Page 151: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

135

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'Mn' 'Mn' 0.3368 0.7283

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting 'monoclinic'

_symmetry_space_group_name_H-M 'Cc'

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

'x, -y, z+1/2'

'x+1/2, y+1/2, z'

'x+1/2, -y+1/2, z+1/2'

_cell_length_a 14.451(8)

_cell_length_b 8.376(3)

_cell_length_c 8.952(4)

_cell_angle_alpha 90.00

_cell_angle_beta 120.879(7)

_cell_angle_gamma 90.00

_cell_volume 930.0(7)

_cell_formula_units_Z 4

_cell_measurement_temperature 103(2)

_exptl_crystal_size_max 0.18

_exptl_crystal_size_mid 0.14

_exptl_crystal_size_min 0.08

Page 152: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

136

_exptl_crystal_density_diffrn 1.686

_exptl_crystal_density_method 'not measured'

_exptl_crystal_F_000 484

_exptl_absorpt_coefficient_mu 1.419

_exptl_absorpt_correction_T_min 0.7843

_exptl_absorpt_correction_T_max 0.8974

_diffrn_ambient_temperature 103(2)

_diffrn_radiation_wavelength 0.71073

_diffrn_radiation_type MoK\a

_diffrn_radiation_source 'fine-focus sealed tube'

_diffrn_radiation_monochromator graphite

_diffrn_reflns_number 3697

_diffrn_reflns_av_R_equivalents 0.0506

_diffrn_reflns_av_sigmaI/netI 0.0671

_diffrn_reflns_limit_h_min -18

_diffrn_reflns_limit_h_max 18

_diffrn_reflns_limit_k_min -11

_diffrn_reflns_limit_k_max 11

_diffrn_reflns_limit_l_min -11

_diffrn_reflns_limit_l_max 11

_diffrn_reflns_theta_min 2.93

_diffrn_reflns_theta_max 28.76

_reflns_number_total 2035

_reflns_number_gt 1841

_reflns_threshold_expression >2sigma(I)

_computing_structure_solution 'SHELXS-97(Sheldrick, 2008)'

Page 153: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

137

_computing_structure_refinement 'SHELXL-97(Sheldrick, 2008)'

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR

and goodness of fit S are based on F^2^, conventional R-factors R are

based on F, with F set to zero for negative F^2^. The threshold expres-

sion of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt)

etc. and is not relevant to the choice of reflections for refinement. R-

factors based on F^2^ are statistically about twice as large as those

based on F, and R-factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef Fsqd

_refine_ls_matrix_type full

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.1010P)^2^+3.5096P]

where P=(Fo^2^+2Fc^2^)/3'

_atom_sites_solution_primary direct

_atom_sites_solution_secondary difmap

_atom_sites_solution_hydrogens geom

_refine_ls_hydrogen_treatment mixed

_refine_ls_extinction_method SHELXL

_refine_ls_extinction_coef 0.002(2)

_refine_ls_extinction_expression

'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^'

Page 154: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

138

_refine_ls_abs_structure_details

'Flack H D (1983), Acta Cryst. A39, 876-881'

_refine_ls_abs_structure_Flack 0.43(7)

_refine_ls_number_reflns 2035

_refine_ls_number_parameters 125

_refine_ls_number_restraints 2

_refine_ls_R_factor_all 0.0649

_refine_ls_R_factor_gt 0.0614

_refine_ls_wR_factor_ref 0.1723

_refine_ls_wR_factor_gt 0.1693

_refine_ls_goodness_of_fit_ref 1.086

_refine_ls_restrained_S_all 1.086

_refine_ls_shift/su_max 0.001

_refine_ls_shift/su_mean 0.000

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

Page 155: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

139

_atom_site_disorder_assembly

_atom_site_disorder_group

Mn1 Mn 0.69954(17) 0.25162(10) 0.7821(3) 0.0119(3) Uani 1 1 d . . .

O1 O 0.7567(4) 0.0293(5) 0.9335(5) 0.0148(7) Uani 1 1 d . . .

O2 O 0.7527(3) 0.1611(5) 0.6070(5) 0.0178(10) Uani 1 1 d . . .

O3 O 0.5401(4) 0.1414(6) 0.6164(7) 0.0207(10) Uani 1 1 d . . .

O4 O 0.6501(4) 0.3365(5) 0.9616(7) 0.0238(12) Uani 1 1 d . . .

O5 O 0.3608(4) 0.1401(5) 0.4483(7) 0.0209(11) Uani 1 1 d . . .

O6 O 0.6535(4) 0.5194(6) 1.1478(8) 0.0278(12) Uani 1 1 d . . .

C1 C 0.4499(7) 0.2105(6) 0.5310(13) 0.0178(9) Uani 1 1 d . . .

H1 H 0.457(9) 0.339(7) 0.528(16) 0.021 Uiso 1 1 d . . .

C2 C 0.7243(6) -0.0299(7) 1.0281(8) 0.0148(7) Uani 1 1 d . . .

H2 H 0.674(7) -0.002(9) 1.056(11) 0.018 Uiso 1 1 d . . .

C3 C 0.6641(5) 0.4779(8) 1.0222(8) 0.0168(12) Uani 1 1 d . . .

H3 H 0.692(6) 0.555(10) 0.975(10) 0.020 Uiso 1 1 d . . .

N11 N 0.8975(4) 0.3086(6) 0.5208(7) 0.0191(9) Uani 1 1 d . . .

H11A H 0.8875 0.4173 0.5078 0.023 Uiso 1 1 calc R . .

H11B H 0.8418 0.2659 0.5297 0.023 Uiso 1 1 calc R . .

C12 C 0.8951(11) 0.2397(8) 0.3626(18) 0.027(3) Uani 1 1 d . . .

H12A H 0.9567 0.2802 0.3567 0.041 Uiso 1 1 calc R . .

H12B H 0.8279 0.2712 0.2573 0.041 Uiso 1 1 calc R . .

H12C H 0.8989 0.1230 0.3713 0.041 Uiso 1 1 calc R . .

C11 C 1.0027(8) 0.2735(11) 0.6846(15) 0.023(2) Uani 1 1 d . . .

H11C H 1.0077 0.1589 0.7097 0.035 Uiso 1 1 calc R . .

H11D H 1.0066 0.3334 0.7817 0.035 Uiso 1 1 calc R . .

H11E H 1.0625 0.3054 0.6691 0.035 Uiso 1 1 calc R . .

Page 156: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

140

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

_atom_site_aniso_U_12

Mn1 0.0140(4) 0.0121(4) 0.0073(4) 0.00053(19) 0.0039(3) 0.0004(2)

O1 0.0211(17) 0.0172(17) 0.0049(13) 0.0058(11) 0.0057(12)

0.0027(13)

O2 0.023(2) 0.021(2) 0.014(2) -0.0019(17) 0.013(2) -0.0009(18)

O3 0.018(2) 0.020(2) 0.022(3) 0.0031(18) 0.009(2) -0.0015(17)

O4 0.024(2) 0.015(2) 0.034(3) -0.009(2) 0.016(2) -0.0068(19)

O5 0.013(2) 0.021(3) 0.021(2) 0.0059(18) 0.0033(19) -0.0010(16)

O6 0.032(3) 0.016(2) 0.045(3) -0.0104(19) 0.027(2) -0.0059(19)

C1 0.017(2) 0.0182(19) 0.018(2) 0.003(5) 0.0080(17) -0.010(5)

C2 0.0211(17) 0.0172(17) 0.0049(13) 0.0058(11) 0.0057(12)

0.0027(13)

C3 0.012(3) 0.019(3) 0.016(3) 0.0033(19) 0.005(2) 0.0040(19)

N11 0.016(2) 0.018(2) 0.024(2) 0.0028(19) 0.0109(19) -0.0006(17)

C12 0.033(5) 0.029(4) 0.022(5) -0.001(3) 0.016(4) -0.003(3)

C11 0.017(4) 0.020(3) 0.025(5) 0.002(3) 0.005(3) -0.003(3)

_geom_special_details

Page 157: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

141

;

All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are

only used when they are defined by crystal symmetry. An approximate

(isotropic) treatment of cell esds is used for estimating esds involving

l.s. planes.

;

loop_

_geom_bond_atom_site_label_1

_geom_bond_atom_site_label_2

_geom_bond_distance

_geom_bond_site_symmetry_2

_geom_bond_publ_flag

Mn1 O6 2.178(5) 2_564 ?

Mn1 O4 2.186(6) . ?

Mn1 O1 2.200(5) . ?

Mn1 O3 2.203(5) . ?

Mn1 O2 2.203(5) . ?

Mn1 O5 2.216(5) 4 ?

O1 C2 1.260(8) . ?

O2 C2 1.256(8) 2_554 ?

O3 C1 1.263(10) . ?

O4 C3 1.275(8) . ?

Page 158: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

142

O5 C1 1.255(10) . ?

O5 Mn1 2.216(5) 4_454 ?

O6 C3 1.259(9) . ?

O6 Mn1 2.178(5) 2_565 ?

C2 O2 1.256(8) 2 ?

N11 C11 1.503(12) . ?

N11 C12 1.513(14) . ?

loop_

_geom_angle_atom_site_label_1

_geom_angle_atom_site_label_2

_geom_angle_atom_site_label_3

_geom_angle

_geom_angle_site_symmetry_1

_geom_angle_site_symmetry_3

_geom_angle_publ_flag

O6 Mn1 O4 89.8(2) 2_564 . ?

O6 Mn1 O1 175.7(3) 2_564 . ?

O4 Mn1 O1 89.0(2) . . ?

O6 Mn1 O3 94.6(2) 2_564 . ?

O4 Mn1 O3 90.4(2) . . ?

O1 Mn1 O3 89.56(18) . . ?

O6 Mn1 O2 91.7(2) 2_564 . ?

O4 Mn1 O2 178.3(2) . . ?

O1 Mn1 O2 89.40(18) . . ?

O3 Mn1 O2 90.2(2) . . ?

Page 159: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

143

O6 Mn1 O5 85.9(2) 2_564 4 ?

O4 Mn1 O5 90.1(2) . 4 ?

O1 Mn1 O5 89.99(19) . 4 ?

O3 Mn1 O5 179.3(2) . 4 ?

O2 Mn1 O5 89.30(19) . 4 ?

C2 O1 Mn1 126.6(4) . . ?

C2 O2 Mn1 124.7(4) 2_554 . ?

C1 O3 Mn1 127.8(4) . . ?

C3 O4 Mn1 125.1(5) . . ?

C1 O5 Mn1 127.7(4) . 4_454 ?

C3 O6 Mn1 126.4(5) . 2_565 ?

O5 C1 O3 124.7(4) . . ?

O2 C2 O1 126.6(7) 2 . ?

O6 C3 O4 124.8(7) . . ?

C11 N11 C12 111.3(7) . . ?

_diffrn_measured_fraction_theta_max 0.885

_diffrn_reflns_theta_full 28.76

_diffrn_measured_fraction_theta_full 0.885

_refine_diff_density_max 1.673

_refine_diff_density_min -0.761

_refine_diff_density_rms 0.164

Page 160: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

144

LIST OF REFERENCES

1. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O'Keeffe M, Yaghi OM. Hydrogen storage in microporous metal-organic frameworks. Science 2003;300(5622):1127-29.

2. Li HL, Laine A, O'Keeffe M, Yaghi OM. Supertetrahedral sulfide crystals with giant cavities and channels. Science 1999;283(5405):1145-47.

3. El-Kaderi HM, Hunt JR, Mendoza-Cortes JL, Cote AP, Taylor RE, O'Keeffe M, Yaghi OM. Designed synthesis of 3D covalent organic frameworks. Science 2007;316(5822):268-72.

4. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi OM. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002;295(5554):469-72.

5. Cote AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science 2005;310(5751):1166-70.

6. Chen BL, Eddaoudi M, Hyde ST, O'Keeffe M, Yaghi OM. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 2001;291(5506):1021-23.

7. Park KS, Ni Z, Cote AP, Choi JY, Huang RD, Uribe-Romo FJ, Chae HK, O'Keeffe M, Yaghi OM. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America 2006;103(27):10186-91.

8. Hayashi H, Cote AP, Furukawa H, O'Keeffe M, Yaghi OM. Zeolite a imidazolate frameworks. Nature Materials 2007;6(7):501-06.

9. Li H, Eddaoudi M, O'Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999;402(6759):276-79.

Page 161: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

145

10. Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O'Keeffe M, Yaghi OM. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004;427(6974):523-27.

11. Rowsell JLC, Spencer EC, Eckert J, Howard JAK, Yaghi OM. Gas adsorption sites in a large-pore metal-organic framework. Science 2005;309(5739):1350-54.

12. Sudik AC, Cote AP, Wong-Foy AG, O'Keeffe M, Yaghi OM. A metal-organic framework with a hierarchical system of pores and tetrahedral building blocks. Angewandte Chemie-International Edition 2006;45(16):2528-33.

13. Chen BL, Ockwig NW, Millward AR, Contreras DS, Yaghi OM. High H-2 adsorption in a microporous metal-organic framework with open metal sites. Angewandte Chemie-International Edition 2005;44(30):4745-49.

14. Ferey G, Mellot-Draznieks C, Serre C, Millange F. Crystallized frameworks with giant pores: Are there limits to the possible? Accounts of Chemical Research 2005;38(4):217-25.

15. Rao CNR, Cheetham AK, Thirumurugan A. Hybrid inorganic-organic materials: a new family in condensed matter physics. Journal of Physics-Condensed Matter 2008;20(8):21.

16. Cheetham AK, Rao CNR. There's room in the middle. Science 2007;318(5847):58-59.

17. Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials. Nature 2006;442(7104):759-65.

18. Fiebig M. Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics 2005;38(8):R123.

19. Ramesh R. Emerging routes to multiferroics. Nature 2009;461(7268):1218-19.

20. Jain P, Ramachandran V, Clark RJ, Zhou HD, Toby BH, Dalal NS, Kroto HW, Cheetham AK. Multiferroic Behavior Associated with an Order-Disorder Hydrogen Bonding Transition in Metal-Organic

Page 162: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

146

Frameworks (MOFs) with the Perovskite ABX3 Architecture. Journal of the American Chemical Society 2009;131(38):13625-27.

21. Jain P, Dalal NS, Toby BH, Kroto HW, Cheetham AK. Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture. Journal of the American Chemical Society 2008;130(32):10450-+.

22. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi OM. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008;319(5865):939-43.

23. Eddaoudi M, Kim J, Vodak D, Sudik A, Wachter J, O'Keeffe M, Yaghi OM. Geometric requirements and examples of important structures in the assembly of square building blocks. Proceedings of the National Academy of Sciences of the United States of America 2002;99(8):4900-04.

24. Britt D, Tranchemontagne D, Yaghi OM. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proceedings of the National Academy of Sciences of the United States of America 2008;105(33):11623-27.

25. Yang SH, Lin X, Blake AJ, Walker GS, Hubberstey P, Champness NR, Schroder M. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework. Nature Chemistry 2009;1(6):487-93.

26. Wang B, Cote AP, Furukawa H, O'Keeffe M, Yaghi OM. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 2008;453(7192):207-U6.

27. Rowsell JLC, Yaghi OM. Metal-organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials 2004;73(1-2):3-14.

28. Cheetham AK, Rao CNR, Feller RK. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chemical Communications 2006(46):4780-95.

Page 163: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

147

29. Rueff JM, Barrier N, Boudin S, Dorcet V, Caignaert V, Boullay P, Hix GB, Jaffres PA. Remarkable thermal stability of Eu(4-phosphonobenzoate): structure investigations and luminescence properties. Dalton Transactions 2009(47):10614-20.

30. Souza ER, Silva IGN, Teotonio EES, Felinto M, Brito HF. Optical properties of red, green and blue emitting rare earth benzenetricarboxylate compounds. Journal of Luminescence 2010;130(2):283-91.

31. Chen WT, Xu YP, Luo QY, Fang XN, Chen HL. [{Er(NC5H4COOH)(H2O)2}2(H5O2)(HgCI5)(HgCI4)2(H2O)2]n - Synthesis, crystal structure and properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie 2008;634(3):529-33.

32. Kam KC, Young KLM, Cheetham AK. Chemical and structural diversity in chiral magnesium tartrates and their racemic and Meso analogues. Crystal Growth & Design 2007;7(8):1522-32.

33. Senkovska I, Hoffmann F, Froba M, Getzschmann J, Bohlmann W, Kaskel S. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4'-biphenyl dicarboxylate). Microporous and Mesoporous Materials 2009;122(1-3):93-98.

34. Panella B, Hones K, Muller U, Trukhan N, Schubert M, Putter H, Hirscher M. Desorption studies of hydrogen in metal-organic frameworks. Angewandte Chemie-International Edition 2008;47(11):2138-42.

35. Yaghi OM, Li HL, Groy TL. Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid. Journal of the American Chemical Society 1996;118(38):9096-101.

36. Eddaoudi M, Li HL, Reineke T, Fehr M, Kelley D, Groy TL, Yaghi OM. Design and synthesis of metal-carboxylate frameworks with permanent microporosity. Topics in Catalysis 1999;9(1-2):105-11.

37. Guillou N, Livage C, Drillon M, Ferey G. The chirality, porosity, and ferromagnetism of a 3D nickel glutarate with intersecting 20-membered

Page 164: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

148

ring channels. Angewandte Chemie-International Edition 2003;42(43):5314-17.

38. Livage C, Egger C, Ferey G. Hydrothermal versus nonhydrothermal synthesis for the preparation of organic-inorganic solids: The example of cobalt(II) succinate. Chemistry of Materials 2001;13(2):410-14.

39. Chen JX, Ohba M, Zhao DY, Kaneko W, Kitagawa S. Polynuclear core-based nickel 1,4-cyclohexanedicarboxylate coordination polymers as temperature-dependent hydrothermal reaction products. Crystal Growth & Design 2006;6(3):664-68.

40. Liu HC, Chen IH, Huang A, Huang SC, Hsu KF. Five related metal-organic frameworks constructed from Ln2(SO4)2(H2O)n2+ units and oxalate or acetate ligands. Dalton Transactions 2009(18):3447-56.

41. Zhao XY, Liang DD, Liu SX, Sun CY, Cao RG, Gao CY, Ren YH, Su ZM. Two Dawson-templated three-dimensional metal-organic frameworks based on oxalate-bridged binuclear cobalt(II)/nickel(II) SBUs and bpy linkers. Inorganic Chemistry 2008;47(16):7133-38.

42. Zhong RQ, Zou RQ, Pandey DS, Kiyobayashi T, Xu Q. A novel 3D microporous metal-organic framework of cadmium(II) oxalate with diamondoid network. Inorganic Chemistry Communications 2008;11(9):951-53.

43. Wang XY, Wang ZM, Gao S. A pillared layer MOF with anion-tunable magnetic properties and photochemical 2+2 cycloaddition. Chemical Communications 2007(11):1127-29.

44. Hu KL, Kurmoo M, Wang ZM, Gao S. Metal-Organic Perovskites: Synthesis, Structures, and Magnetic Properties of C(NH2)3M-II(HCOO)3 (M=Mn, Fe, Co, Ni, Cu, and Zn; C(NH2)3=Guanidinium). Chemistry-a European Journal 2009;15(44):12050-64.

45. Lin JM, Guan YF, Wang DY, Dong W, Wang XT, Gao S. Syntheses, structures and properties of seven isomorphous 1D Ln3+ complexes Ln(BTA)(HCOO)(H2O)3(H2)BTA = bis(tetrazoly)amine, Ln = Pr, Gd, Eu, Tb, Dy, Er, Yb) and two 3D Ln3+ complexes Ln(HCOO)3 (Ln = Pr, Nd). Dalton Transactions 2008(44):6165-69.

Page 165: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

149

46. Wang XY, Wei HY, Wang ZM, Chen ZD, Gao S. Formate - The analogue of azide: Structural and magnetic properties of M(HCOO)(2)(4,4 '-bpy)center dot nH(2)O (M=Mn, Co, Ni; n=0, 5). Inorganic Chemistry 2005;44(3):572-83.

47. Wang ZM, Zhang B, Zhang YJ, Kurmoo M, Liu T, Gao S, Kobayashi H. A family of porous magnets, M-3(HCOO)(6) (M = Mn, Fe, Co and Ni). Polyhedron 2007;26(9-11):2207-15.

48. Fu F, Li DS, Wu YP, Gao XM, Du M, Tang L, Zhang XN, Meng CX. A versatile V-shaped tetracarboxylate building block for constructing mixed-ligand Co(II) and Mn(II) complexes incorporating various N-donor co-ligands. Crystengcomm 2010;12(4):1227-37.

49. Arai L, Nadeem MA, Bhadbhade M, Stride JA. A 2D cobalt based coordination polymer constructed from benzimidazole and acetate ion exhibiting spin-canted antiferromagnetism. Dalton Transactions 2010;39(14):3372-74.

50. Zhang L, Chen WW, Ge YY, Ling Y, Ouyang XP, Li J, Du M. Anion-directed supramolecular assembly of cobalt(II)-fluconazole coordination polymers: Structural diversity, fluorescent and magnetic properties. Inorganica Chimica Acta 2010;363(5):866-76.

51. Ma KR, Zhang DJ, Zhu YL. Structure and Characterization of a Novel 3D Lead Phosphonate Metal-Organic Framework with Cationic Layer Based on Weak Pb-O(N) Contact. Australian Journal of Chemistry 2010;63(3):452-57.

52. Demadis KD, Papadaki M, Aranda MAG, Cabeza A, Olivera-Pastor P, Sanakis Y. Stepwise Topotactic Transformations (1D to 3D) in Copper Carboxyphosphonate Materials: Structural Correlations. Crystal Growth & Design 2010;10(1):357-64.

53. Zhou TH, Yi FY, Li PX, Mao JG. Synthesis, Crystal Structures, and Luminescent Properties of Two Series' of New Lanthanide (III) Amino-Carboxylate-Phosphonates. Inorganic Chemistry 2010;49(3):905-15.

54. Jones S, Liu HX, Schmidtke K, O'Connor CC, Zubieta J. A bimetallic oxide framework, {Cu(bpy)}2Mo4O10(O3PCH2C6H4CH2PO3)2, constructed

Page 166: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

150

from novel {Mo4O10(O3Pr)4}n4n- chains. Inorganic Chemistry Communications 2010;13(2):298-301.

55. Morris W, Doonan CJ, Furukawa H, Banerjee R, Yaghi OM. Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Journal of the American Chemical Society 2008;130(38):12626-+.

56. Rosi NL, Eddaoudi M, Kim J, O'Keeffe M, Yaghi OM. Advances in the chemistry of metal-organic frameworks. Paper presented at: CrystEngComm 2002 Meeting; Jun 29-Jul 01, 2002; Britol, England.

57. Lines ME, Glass AM. Principles and applications of ferroelectrics and related materials. Oxford University Press, Oxford 2001.

58. Hill NA. Why are there so few magnetic ferroelectrics? . Journal of Physical Chemistry B 2000;104:23.

59. Solans X, GonzalezSilgo C, RuizPerez C. A structural study on the Rochelle salt. Journal of Solid State Chemistry 1997;131(2):350-57.

60. Valasek J. Piezo-electric and allied phenomena in Rochelle salt. Physical Review 1921;17(4):475-81.

61. Sawyer CB, Tower CH. Rochelle salt as a dielectric. Physical Review 1930;35(3):0269-73.

62. Sandy F, Jones RV. Dielectric relaxation of rochelle salt. Physical Review 1968;168(2):481-&.

63. Mueller H. Properties of Rochelle salt. Physical Review 1940;57(9):829-39.

64. Mitsui T, Furuichi J. Domain strcuture of rochelle salt and KH2PO4. Physical Review 1953;90(2):193-202.

65. Mitsui T. Theory of the ferroelectric effect in rochelle salt. Physical Review 1958;111(5):1259-67.

66. Mason WP. Theory of the ferroelectric effect and clamped dielectric constant of rochelle salt. Physical Review 1947;72(9):854-65.

Page 167: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

151

67. Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom DG, Wuttig M, Roytburd A, Ramesh R. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 2004;303(5658):661-63.

68. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003;299(5613):1719-22.

69. Sergienko IA, Dagotto E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Physical Review B 2006;73.

70. Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM. First-principles study of spontaneous polarization in multiferroic BiFeO3. Physical Review B 2005;71(1).

71. Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y. Magnetocapacitance effect in multiferroic BiMnO3. Physical Review B 2003;67(18).

72. Ramesh R, Spaldin NA. Multiferroics: progress and prospects in thin films. Nature Materials 2007;6(1):21-29.

73. Cheong SW, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nature Materials 2007;6:13-20.

74. Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 2004;429(6990):392-95.

75. Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials. Nature 2006;442:759-65.

76. Hill NA. Why are there so few magnetic ferroelectrics? Journal of Physical Chemistry B 2000;104(29):6694-709.

77. Ban ZG, Alpay SP, Mantese JV. Fundamentals of graded ferroic materials and devices. Physical Review B 2003;67(18).

Page 168: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

152

78. Schmid H. Some symmetry aspects of ferroics and single phase multiferroics. Journal of Physics-Condensed Matter 2008;20(43).

79. Tanaka K. A thermomechanical sketch of shape memory effect - one-dimensional tensile behavior. Res Mechanica 1986;18(3):251-63.

80. Sapriel J. Domain-wall orientations in ferroelastics. Physical Review B 1975;12(11):5128-40.

81. Aizu K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Physical Review B 1970;2(3):754-&.

82. Hwang SC, Lynch CS, McMeeking RM. Ferro electric/ferroelastic interactions and a polarization switching model. Acta Metallurgica Et Materialia 1995;43(5):2073-84.

83. Kubel F, Schmid H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallographica Section B-Structural Science 1990;46:698-702.

84. Van Aken BB, Rivera JP, Schmid H, Fiebig M. Observation of ferrotoroidic domains. Nature 2007;449:702-05.

85. Spaldin NA, Fiebig M, Mostovoy M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. Journal of Physics-Condensed Matter 2008;20(43).

86. Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M. Magnetic phase control by an electric field. Nature 2004;430(6999):541-44.

87. Fiebig M, Lottermoser T, Frohlich D, Goltsev AV, Pisarev RV. Observation of coupled magnetic and electric domains. Nature 2002;419(6909):818-20.

88. Ramirez AP. Colossal magnetoresistance. Journal of Physics-Condensed Matter 1997;9(39):8171-99.

89. Fiebig M. Revival of the magnetoelectric effect. Journal of Physics D-Applied Physics 2005;38(8):R123-R52.

Page 169: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

153

90. Ponomarev BK. Magneto-electrical properties of rare earth molybdates. Ferroelectrics 2002;280:261-83.

91. Vergara LI, Cao J, Rogado N, Wang YQ, Chaudhury RP, Cava RJ, Lorenz B, Musfeldt JL. Magnetoelastic coupling in multiferroic Ni3V2O8. Physical Review B 2009;80(5).

92. Finger T, Senff D, Schmalzl K, Schmidt W, Regnault LP, Becker P, Bohaty L, Braden M. Electric-field control of the chiral magnetism of multiferroic MnWO4 as seen via polarized neutron diffraction. Physical Review B 2010;81(5).

93. Shen X, Xu CH, Li CH, Zhang Y, Zhao Q, Yang HX, Sun Y, Li JQ, Jin CQ, Yu RC. Pressure effects on multiferroic LuFe2O4. Applied Physics Letters 2010:102909 (3 pp.).

94. Sander D. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Reports on Progress in Physics 1999;62(5):809-58.

95. Bochi G, Ballentine CA, Inglefield HE, Thompson CV, Ohandley RC. Evidence for strong surface magnetoelastic anisotropy in epitaxial Cu/Ni/Cu(001) sandwiches. Physical Review B 1996;53(4):R1729-R32.

96. Sablik MJ, Jiles DC. Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Transactions on Magnetics 1993;29(4):2113-23.

97. O'Donnell J, Rzchowski MS, Eckstein JN, Bozovic I. Magnetoelastic coupling and magnetic anisotropy in La0.67Ca0.33MnO3 films. Applied Physics Letters 1998;72(14):1775-77.

98. Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthelemy AE, Fert A. Tunnel junctions with multiferroic barriers. Nature Materials 2007;6(4):296-302.

99. Ascher E, Rieder H, Schmid H, Stossel H. Some properties of ferromagnetoelectric nickel-iodine boracite Ni3B7O13I. Journal of Applied Physics 1966;37(3):1404-&.

Page 170: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

154

100. Scott JF, Dearaujo CAP. Ferroelectric memories. Science 1989;246(4936):1400-05.

101. Scott JF. Applications of modern ferroelectrics. Science 2007;315(5814):954-59.

102. Auciello O, Scott JF, Ramesh R. The physics of ferroelectric memories. Physics Today 1998;51(7):22-27.

103. Evans JT, Womack R. An experimental 512-bit nonvolatile memory with ferroelectric storage cell. Ieee Journal of Solid-State Circuits 1988;23(5):1171-75.

104. Parker LH, Tasch AF. Ferroelectric materials for 64 mb and 256 mb drams. Ieee Circuits and Devices Magazine 1990;6(1):17-26.

105. Turov EA. May magnetoelectric effect with week ferromagnetism and piezomagnetism exist in antiferromagnets. Uspekhi Fizicheskikh Nauk 1994;164(3):325-32.

106. Borovikromanov AS. Piezomagnetism in the antiferromagnetic fluorides of cobalt and manganese. Soviet Physics Jetp-Ussr 1960;11(4):786-93.

107. Moriya T. Piezomagnetism in CoF2. Journal of Physics and Chemistry of Solids 1959;11(1-2):73-77.

108. Pelrine RE, Kornbluh RD, Joseph JP. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators a-Physical 1998;64(1):77-85.

109. Zhang QM, Bharti V, Zhao X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 1998;280(5372):2101-04.

110. Lee EW. Magnetostriction and magnetomechanical effects. Reports on Progress in Physics 1955;18:184-229.

111. Callen E, Callen HB. Magnetostriction forced magnetostriction and anomalous thermal expansion in ferromagnets. Physical Review 1965;139(2A):A455-&.

Page 171: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

155

112. James RD, Wuttig M. Magnetostriction of martensite. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties 1998;77(5):1273-99.

113. Zhou GX, Wu JH, Wang AK, Fenglei, He WC. Investigation of Ferroelectric Phase Transition of Rochelle Salt. Ferroelectrics 2008;366:67-73.

114. Beevers CA, Hughes W. Crystal structure of Rochelle salt. Nature 1940;146:96-96.

115. Matthias BT, Miller CE, Remeika JP. Ferroelectricity of glycine sulfate. Physical Review 1956;104(3):849-50.

116. Ye H-Y, Fu D-W, Zhang Y, Zhang W, Xiong R-G, Huang SD. Hydrogen-Bonded Ferroelectrics Based on Metal−Organic Coordination. Journal of the American Chemical Society 2008;131(1):42-43.

117. Fu D-W, Song Y-M, Wang G-X, Ye Q, Xiong R-G, Akutagawa T, Nakamura T, Chan PWH, Huang SD. Dielectric Anisotropy of a Homochiral Trinuclear Nickel(II) Complex. Journal of the American Chemical Society 2007;129(17):5346-47.

118. Ohkoshi S-i, Tokoro H, Matsuda T, Takahashi H, Irie H, Hashimoto K. Coexistence of ferroelectricity and ferromagnetism in a rubidium manganese hexacyanoferrate. Angewandte Chemie International Edition 2007;46(18):3238-41.

119. Cui H, Zhou B, Long LS, Okano Y, Kobayashi H, Kobayashi A. A porous coordination-polymer crystal containing one-dimensional water chains exhibits guest-induced lattice distortion and a dielectric anomaly. Angewandte Chemie-International Edition 2008;47(18):3376-80.

120. Cui HB, Wang ZM, Takahashi K, Okano Y, Kobayashi H, Kobayashi A. Ferroelectric porous molecular crystal, [Mn3(HCOO)(6)](C2H5OH), exhibiting ferrimagnetic transition. Journal of the American Chemical Society 2006;128(47):15074-75.

121. Sheldrick GM. SADABS User Guide, University of Göttingen: Göttingen, Germany. 1995.

Page 172: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

156

122. Sheldrick GM. SHELXTL-97, A Program for Crystal Structure Solution and Refinement, Version 5.1; University of Göttingen: Göttingen, Germany. 1997.

123. Compounds with an r value greater than that of silicon nitride (r 7) are usually classified as high-dielectric constant materials.

124. Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G. Origin of the high piezoelectric response in PbZr1-xTixO3. Physical Review Letters 2000;84(23):5423-26.

125. Noheda B, Gonzalo JA, Cross LE, Guo R, Park SE, Cox DE, Shirane G. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3. Physical Review B 2000;61(13):8687-95.

126. Haertling GH. Ferroelectric ceramics: History and technology. Journal of the American Ceramic Society 1999;82(4):797-818.

127. Scott JF, Kammerdiner L, Parris M, Traynor S, Ottenbacher V, Shawabkeh A, Oliver WF. Switching kinetics of lead zirconate titanate sub-micron thin-film memories. Journal of Applied Physics 1988;64(2):787-92.

128. Scott JF, Araujo CA, Melnick BM, McMillan LD, Zuleeg R. Quantitative measurement of space-charge effects in lead zirconate-titanate memories. Journal of Applied Physics 1991;70(1):382-88.

129. Merz WJ. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Physical Review 1954;95(3):690-98.

130. Cohen RE. Origin of ferroelectricity in perovskite oxides. Nature 1992;358(6382):136-38.

131. Rijnders G, Blank DHA. Materials science - Build your own superlattice. Nature 2005;433(7024):369-70.

132. Ho Nyung L, Christen HM, Chisholm MF, Rouleau CM, Lowndes DH. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 2005;433(7024):395-9.

Page 173: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

157

133. Noheda B, Cox DE. Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transitions 2006;79(1-2):5-20.

134. Sletten E, Jensen LH. The crystal structure of dimethylammonium copper(II) formate, NH2(CH2)2[Cu(OOCH)3]. Acta Crystallographica Section B-Structural Science 1973;B 29(SEP15):1752-56.

135. Clausen HF, Poulsen RD, Bond AD, Chevallier MAS, Iversen BB. Solvothermal synthesis of new metal organic framework structures in the zinc-terephthalic acid-dimethyl formamide system. Journal of Solid State Chemistry 2005;178(11):3342-51.

136. Gough SR, Ripmeester JA, Dalal NS, Reddoch AH. Thermal hysteresis at the low temperature phase transition of ammonium dihydrogen phosphate, ammonium dihydrogen arsenate, their deuterated analogs, and of potassium dihydrogen phosphate and the effect of chromium impurity ions on the transition temperature. Journal of Physical Chemistry 1979;83(6):664-69.

137. Rogez G, Viart N, Drillon M. Multiferroic Materials: The Attractive Approach of Metal-Organic Frameworks (MOFs). Angewandte Chemie-International Edition 2010;49(11):1921-23.

138. Lebeugle D, Colson D, Forget A, Viret M, Bataille AM, Gukasov A. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Physical Review Letters 2008;100(22):227602.

139. Moreira dos Santos A, Parashar S, Raju AR, Cheetham AK, Rao CNR. Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun. 2002;122(1-2):49-52.

140. Ascher E, Rieder H, Schmid H, Stossel H. Some Properties of Ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13. Journal of Applied Physics 1966;37(3):1404-05.

141. Slater JC. Theory of the transition in KH2PO4. Journal of Chemical Physics 1941;9(1):16-33.

Page 174: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

158

142. Wang XY, Gan L, Zhang SW, Gao S. Perovskite-like metal formates with weak ferromagnetism and as precursors to amorphous materials. Inorganic Chemistry 2004;43(15):4615-25.

143. Wang XY, Wang ZM, Gao S. Constructing magnetic molecular solids by employing three-atom ligands as bridges. Chemical Communications 2008(3):281-94.

144. Wang ZM, Zhang B, Otsuka T, Inoue K, Kobayashi H, Kurmoo M. Anionic NaCl-type frameworks of [Mn-II(HCOO)3-], templated by alkylammonium, exhibit weak ferromagnetism. Dalton Transactions 2004(15):2209-16.

145. Materials chemistry: Marvellous metal-organics. Nature 2009;462(7276):961-61.

146. Olson JR, Topp KA, Pohl RO. Specific-heat and thermal-conductivity of solid fullerenes. Science 1993;259(5098):1145-48.

147. Angell CA. Formation of glasses from liquids and biopolymers. Science 1995;267(5206):1924-35.

148. Pekker S, Kovats E, Oszlanyi G, Benyei G, Klupp G, Bortel G, Jalsovszky I, Jakab E, Borondics F, Kamaras K, Bokor M, Kriza G, Tompa K, Faigel G. Rotor-stator molecular crystals of fullerenes with cubane. Nature Materials 2005;4(10):764-67.

149. Oh DH, Lee YH. Orientational ordering of solid C-70. Physical Review Letters 1995;75(23):4230-33.

150. Angell CA. Relaxation in liquids, polymers and plastic crystals - strong fragile patterns and problems. Journal of Non-Crystalline Solids 1991;131:13-31.

151. Laszlo F, Laszlo M. Electronic properties of doped fullerenes. Reports on Progress in Physics 2001(5):649.

152. Matsuo T, Suga H, David WIF, Ibberson RM, Bernier P, Zahab A, Fabre C, Rassat A, Dworkin A. The heat-capacity of solid C-60. Solid State Communications 1992;83(9):711-15.

Page 175: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

159

153. Melot BC, Tackett R, O'Brien J, Hector AL, Lawes G, Seshadri R, Ramirez AP. Large low-temperature specific heat in pyrochlore Bi2Ti2O7. Physical Review B 2009;79(22).

154. Lubchenko V, Wolynes PG. The origin of the boson peak and thermal conductivity plateau in low-temperature glasses. Proceedings of the National Academy of Sciences of the United States of America 2003;100(4):1515-18.

155. Shintani H, Tanaka H. Universal link between the boson peak and transverse phonons in glass. Nature Materials 2008;7(11):870-77.

156. Safarik DJ, Schwarz RB, Hundley MF. Similarities in the C[sub p]/T[sup 3] Peaks in Amorphous and Crystalline Metals. Physical Review Letters 2006;96(19):195902-4.

157. Clough S, Hill JR. Temperature-dependence of methyl-group tunnelling rotation frequency. Journal of Physics C-Solid State Physics 1974;7(1):L20-L21.

158. Achey RM, Kuhns PL, Reyes AP, Moulton WG, Dalal NS. C-13 NMR and relaxation studies of the nanomagnet Mn-12-acetate. Physical Review B 2001;64(6):7.

159. Bloembergen N, Purcell EM, Pound RV. Relaxation eggects in nuclear magnetic resonance absorption. Physical Review 1948;73(7):679-712.

160. Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature 2003;423(6941):705-14.

Page 176: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

160

BIOGRAPHICAL SKETCH

Education

Florida State University, Fl, USA, Aug. 2005 – April 2010

Ph.D. in Chemistry and Biochemistry

Indian Institute of Technology, Madras (IIT-M), India , 2000 - 2004

B.Tech in Chemical Engineering (First class)

Thesis: Investigations on the Use of Nanoparticles for Environmental

remediation

Honors and awards

Best poster prize, Florida ACS meeting, Tampa, USA 2010

H.H.Sheikh Saqr Al Qasimi Fellowship, University of Cambridge, UK

2008 – 2009

Visiting fellowship, ICMR, Univ. of California, Santa Barbara, USA

2006 – 2007

Congress of Graduate Studies award, Florida State University, FL, USA

December 2007

International center for materials research bursary award, UCSB, USA

December 2006

Overseas Research Scholarship (ORS), University of Leeds, UK De-

cember 2005 (Declined) King’s Gold medal, Best student overall performance, Senior year, )ndia

May 1999

Page 177: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

161

Merit certificate, Regional Mathematics Olympiad, India

1998

Merit certificate and Internship, Homi Bhabha Centre, TIFR, India

May 1997

Teaching experience

General Chemistry Laboratory, FSU, USA, Fall 2007

Taught the class and administered all grades

Teaching assistant, Intr. to Thermodynamics, FSU, USA, Fall 2005

Supervision, group problem sessions and administered all the grades

Research, supervision and entrepreneurial experiences

Director, Founder of PM9, 2007-2008

Technology and business development director at Nanotechnology

software Simulation Company which completed exclusive software li-

censed to our strategic partner.

Guest Editor, Special Issue on CNTs, Journal of Nanoengineering and

Nanosystems, 2009

Organizer and Committee member, 2008

International symposium organized by Cambridge students, Also the

member of the Cambridge CNT society

Research Assistant, 2006

Page 178: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

162

Florida State University, FL, USA

Visiting Researcher, 2006 – 2007

Materials Research Laboratory, University of California, Santa Barbara,

CA, USA

Visiting Researcher, May 2008 –

Dept. of Materials Science, University of Cambridge, UK

Mentor, April 2007 – June 2007

California Nano System Institute, University of California, Santa Barbara,

CA, USA

Supervised 3rd year undergraduate student, taught various instruments

and lab skills, research resulted into a conference talk

Mentor

Dept. of Materials Science, University of Cambridge, UK, July 2009 – Dec

2009

Conceived the project idea and supervised a visiting postgraduate stu-

dent from Chulalongkorn University, Thailand.

Journal publications and patents

1. Jain P., et al. (2009) Multiferroic Behavior Associated with an Or-

der-Disorder Hydrogen Bonding Transition in Metal-Organic

Frameworks (MOFs) with the Perovskite ABX3 Architecture. J. Am.

Chem. Soc. 131(38):13625-13627. (Highlighted in nature research

Page 179: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

163

highlights: Marvelous metal-organics, doi: 10.1038/462961c; and Angew.

Chem. Int. Ed. Research highlights: Multiferroic Materials: The At-

tractive Approach of Metal-Organic Frameworks, doi:

10.1002/anie.200906660)

2. Jain P. and Spear R. (2009) Guest editorial. Special issue on carbon

nanotubes. Proc. IMechE Vol. 222 Part N: J. Nanoengineering and

Nanosystems.

3. Jain P., Dalal NS, Toby BH, Kroto HW, & Cheetham AK (2008) Or-

der-disorder antiferroelectric phase transition in a hybrid inor-

ganic-organic framework with the perovskite architecture. J. Am.

Chem. Soc. 130(32):10450-10451. (Highlighted in nature news &

views article Emerging Routes to Multiferroics, doi: 10.1038/4611218A)

4. Jain P., and Pradeep T. (2005) Potential of silver nanoparticle-

coated polyurethane foam as an antibacterial water filter. Biotech-

nology and Bioengineering, 90 (2005) 59-63.

5. Nair AS et. al. (2005) Nanoparticles-chemistry, new synthetic ap-

proaches, gas phase clustering and novel applications. Pramana,

Journal of Physics, (65), 4, 631-40.

6. )ndian Patent, no. /che/ , Silver nanoparticle coated Poly-urethane foam

7. SR measurements of the hybrid organic-inorganic multiferroics

[(CH3)2NH2]M(HCOO)3, M =Ni;Co;Mn. P. J. Baker, T. Lancaster, I.

Franke, W. Hayes, S. J. Blundell, and P. Jain. (Submitted to Phys Rev

B)

Page 180: Florida State University Librariesdiginole.lib.fsu.edu/islandora/object/fsu:181936/datastream/PDF/...the florida state university college of arts and sciences multiferroic metal organic

164

8. Glassy behaviour in a metal organic framework. Prashant Jain, Tig-

let Besara, Naresh Dalal, Philip Kuhns, Arneil Reyes, Harold W.

Kroto and Anthony K. Cheetham. (Submitted to PNAS)

9. A porous magnet with three dimensional metal-oxygen-metal and

metal-ligand-metal connectivity. P. Jain, N. S. Dalal, H. W. Kroto, and

A. K. Cheetham (In preparation)