Flavonoid Function and Activity to Plants and Other Organisms

21
24 Introduction Flavonoid is the general name of compounds that have a fifteen-carbon skeleton, which consists of two phenyl rings (A- and B-rings) connected by a three-carbon bridge (C-ring). In general, vascular plants and Bryophytes alone possess the biosynthetic ability of the flavonoids, except green algae, Nitella hookeri (Characeae) (Markham & Porter, 1969), fungi, Aspergillus candidus and Phallus impudicus (Marchelli & Vining, 1973; Bohm, 1975), and marine coral, Echinophora lamellosa (Sanduja et al., 1984). The flavonoids are divided into several classes, i.e., anthocyanins, flavones, flavonols, flavanones, dihydro- flavonols, chalcones, aurones, flavan and proantho- cyanidins, isoflavonoids etc. (Iwashina, 2000). Moreover, numerous sorts of flavonoid occur in plants with additional hydroxyl, methoxyl, methyl and/or glycosyl substitution patterns. Additionally, aromatic and aliphatic acids, sulfate, prenyl or methylenedioxyl groups also attach to flavonoid nucleus and their glycosides. Thus, ca. 5,000 kinds of flavonoids have been reported as naturally occurring compounds (Harborne & Baxter, 1999). The isolation and identification, structures, distribution and biosynthesis of the flavonoids in plants were reviewed by many authors (e.g., Geissman, 1962; Markham, 1982; Stafford, 1990; Mabry et al., 1970; Harborne et al., 1975; Harborne & Mabry, 1982; Harborne, 1988, 1994; Iwashina, 2000). The flavonoids as medicinal resources were also reviewed (e.g., Cody et al ., 1986, 1988). Especially, the pigments, anthocyanins were recently noticed as antioxidant, antitumol, astoringents etc. (Ohba et al., 2000). However, the secondary metabolites involving the flavonoids were considered to be waste products of plant metabolism in the early days of 20th century. One of the most important function of flavonoids may be to serve as ultraviolet filter in land plants. It was shown by survey of some plants that the flavonoids act as UV shield. Indeed, it was shown that two acylated flavonol glycosides, kaempferol 3-O-(3´´,6´´- Received: May 29, 2003 Address for correspondence: Tsukasa Iwashina Tsukuba Botanical Garden, National Science Museum, 4-1-1 Amakubo, Tsukuba-shi, Ibaraki, 305-0005, Japan E-mail: [email protected] © 2003 Jpn. Soc. Biol. Sci. Space Biological Sciences in Space, Vol.17 No.1 (2003): 24-44 Flavonoid Function and Activity to Plants and Other Organisms Tsukasa Iwashina Tsukuba Botanical Garden, National Science Museum, 4-1-1 Amakubo, Tsukuba-shi, Ibaraki, 305-0005, Japan Abstract Flavonoid compounds distribute widely in vascular plants and Bryophytes, and ca. 5,000 kinds have been reported as naturally occurring substances. Many biological activities of the flavonoids were found until now. They include pollinator attractants, oviposition stimulants, feeding attractants and deterrents, allelopathy and phytoalexins. This paper reviews function and activity of flavonoids against plants and other organisms. Key words: flavonoids, pollinator attractants, feeding attractants and deterrents, allelopathy, phytoalexins di-P-coumaroylglucoside) and quercetin 3-O-(3´´,6´´-di- P-coumaroylglucoside) in Pinus sylvestris (Pinaceae) (Jungblut et al., 1995), quercetin 3-O-galactoside, myricetin 3-O-rutinoside and two P-coumaroyl kaempferol 3-O- glucoside in Quercus ilex (Fagaceae) (Skaltsa et al., 1994), and glycosides of quercetin, apigenin and luteolin in Olea europea (Oleaceae) (Karabourniotis et al., 1992) act as UV- absorbing substances. More recently, it was proved that the major UV shield in the translucent bracts and leaves of the Himalayan alpine plant, Rheum nobile (Polygonaceae), are five quercetin glycosides, quercetin 3-O-glucoside, 3- O-galactoside, 3-O-rutinoside, 3-O-arabinopyranoside and new acylated 3-O-glucoside (Iwashina et al., unpublished data). The occurrence of anthocyanins as pollinator attractants is well-known as a function of the flavonoids in plants. Additionally, it is known that flavones and flavonols, which can hardly see by human eyes, also act as pollinator attractants in addition to visible anthocyanins. Recently, other functions, oviposition stimulants, feeding attractants, feeding deterrents, allelopathy and phytoalexins of naturally occurring flavonoids, were found by many authors. In this paper, the flavonoid function and activity to plants and other organisms are reviewed. Pollinator attractants Majority of the entomophilous flowers in plants kingdom were colored by various pigments. For example, carotenoids are found as major pigments in many yellow flowers, such as Helianthus annuus, Taraxacum officinale (Compositae) and Potentilla spp. (Rosaceae). On the other hand, anthochlor pigments are reported from Cosmos, Anthirrhinum, Dahlia and Dianthus species and so on. Betaxanthin pigments occur in yellow flowers of the order Caryophyllales except Caryophyllaceae and Molluginaceae. Almost orange, red, purple and blue flowers, e.g., Rosa, Tulipa, Commerina, Delphinium, Viola etc. are due to the anthocyanin pigments, except those of the order Caryophyllales including betalain pigments. The so-called “black flowers” such as Fritillaria camtschatcensis (Liliaceae) are also due to the anthocyanins. These visible pigments act as pollinator attractants. In addition, it was proved that flavones and

Transcript of Flavonoid Function and Activity to Plants and Other Organisms

Flavonoid function and activity

- 24-

IntroductionFlavonoid is the general name of compounds that have

a fifteen-carbon skeleton, which consists of two phenylrings (A- and B-rings) connected by a three-carbon bridge(C-ring). In general, vascular plants and Bryophytes alonepossess the biosynthetic ability of the flavonoids, exceptgreen algae, Nitella hookeri (Characeae) (Markham &Porter, 1969), fungi, Aspergillus candidus and Phallusimpudicus (Marchelli & Vining, 1973; Bohm, 1975), andmarine coral, Echinophora lamellosa (Sanduja et al., 1984).The flavonoids are divided into several classes, i.e.,anthocyanins, flavones, flavonols, flavanones, dihydro-flavonols, chalcones, aurones, flavan and proantho-cyanidins, isoflavonoids etc. (Iwashina, 2000). Moreover,numerous sorts of flavonoid occur in plants with additionalhydroxyl, methoxyl, methyl and/or glycosyl substitutionpatterns. Additionally, aromatic and aliphatic acids, sulfate,prenyl or methylenedioxyl groups also attach to flavonoidnucleus and their glycosides. Thus, ca. 5,000 kinds offlavonoids have been reported as naturally occurringcompounds (Harborne & Baxter, 1999). The isolation andidentification, structures, distribution and biosynthesis ofthe flavonoids in plants were reviewed by many authors(e.g., Geissman, 1962; Markham, 1982; Stafford, 1990;Mabry et al., 1970; Harborne et al., 1975; Harborne &Mabry, 1982; Harborne, 1988, 1994; Iwashina, 2000). Theflavonoids as medicinal resources were also reviewed (e.g.,Cody et al., 1986, 1988). Especially, the pigments,anthocyanins were recently noticed as antioxidant,antitumol, astoringents etc. (Ohba et al., 2000). However,the secondary metabolites involving the flavonoids wereconsidered to be waste products of plant metabolism in theearly days of 20th century. One of the most importantfunction of flavonoids may be to serve as ultraviolet filterin land plants. It was shown by survey of some plants thatthe flavonoids act as UV shield. Indeed, it was shown thattwo acylated flavonol glycosides, kaempferol 3-O-(3´´,6´´-

Received: May 29, 2003Address for correspondence: Tsukasa IwashinaTsukuba Botanical Garden, National Science Museum,4-1-1 Amakubo, Tsukuba-shi, Ibaraki, 305-0005, JapanE-mail: [email protected]

© 2003 Jpn. Soc. Biol. Sci. SpaceBiological Sciences in Space, Vol.17 No.1 (2003): 24-44

Flavonoid Function and Activity to Plants and Other Organisms

Tsukasa Iwashina

Tsukuba Botanical Garden, National Science Museum, 4-1-1 Amakubo, Tsukuba-shi, Ibaraki, 305-0005, Japan

Abstract Flavonoid compounds distribute widely in vascular plants and Bryophytes, and ca. 5,000 kindshave been reported as naturally occurring substances. Many biological activities of the flavonoids werefound until now. They include pollinator attractants, oviposition stimulants, feeding attractants and deterrents,allelopathy and phytoalexins. This paper reviews function and activity of flavonoids against plants and otherorganisms.

Key words: flavonoids, pollinator attractants, feeding attractants and deterrents, allelopathy, phytoalexins

di-P-coumaroylglucoside) and quercetin 3-O-(3´´,6´´-di-P-coumaroylglucoside) in Pinus sylvestris (Pinaceae)(Jungblut et al., 1995), quercetin 3-O-galactoside, myricetin3-O-rutinoside and two P-coumaroyl kaempferol 3-O-glucoside in Quercus ilex (Fagaceae) (Skaltsa et al., 1994),and glycosides of quercetin, apigenin and luteolin in Oleaeuropea (Oleaceae) (Karabourniotis et al., 1992) act as UV-absorbing substances. More recently, it was proved thatthe major UV shield in the translucent bracts and leaves ofthe Himalayan alpine plant, Rheum nobile (Polygonaceae),are five quercetin glycosides, quercetin 3-O-glucoside, 3-O-galactoside, 3-O-rutinoside, 3-O-arabinopyranoside andnew acylated 3-O-glucoside (Iwashina et al., unpublisheddata).

The occurrence of anthocyanins as pollinator attractantsis well-known as a function of the flavonoids in plants.Additionally, it is known that flavones and flavonols, whichcan hardly see by human eyes, also act as pollinatorattractants in addition to visible anthocyanins. Recently,other functions, oviposition stimulants, feeding attractants,feeding deterrents, allelopathy and phytoalexins of naturallyoccurring flavonoids, were found by many authors.

In this paper, the flavonoid function and activity toplants and other organisms are reviewed.

Pollinator attractantsMajority of the entomophilous flowers in plants

kingdom were colored by various pigments. For example,carotenoids are found as major pigments in many yellowflowers, such as Helianthus annuus, Taraxacum officinale(Compositae) and Potentilla spp. (Rosaceae). On the otherhand, anthochlor pigments are reported from Cosmos,Anthirrhinum, Dahlia and Dianthus species and so on.Betaxanthin pigments occur in yellow flowers of the orderCaryophy l l a l e s excep t Caryophy l l aceae andMolluginaceae. Almost orange, red, purple and blueflowers, e.g., Rosa, Tulipa, Commerina, Delphinium, Violaetc. are due to the anthocyanin pigments, except those ofthe order Caryophyllales including betalain pigments. Theso-cal led “black f lowers” such as Fri t i l lar iacamtschatcensis (Liliaceae) are also due to theanthocyanins. These visible pigments act as pollinatorattractants. In addition, it was proved that flavones and

Iwashina, T.

-25-

flavonols are also the pollinator attractants (Table 1).Flavones and flavonols have two absorbing bands in UVrange (250-280 and 310-380 nm), but not in visible range.However, since some insects, especially bee, candiscriminate UV light (UV-A), flavones and flavonols alsoact as attractants. Indeed, flavone and flavonol glycosidesare detected from flowers of many plants, with visiblepigments, anthocyanins, carotenoids and/or anthochlors,and sometimes betalains. An acylated flavone, apigenin7-O-glucuronide-4´-O-(6´´-malonylglucoside) was isolatedfrom the deep purple flowers of Centaurea cyanus(Compositae), with an acylated anthocyanin, cyanidin 3-O-(6´´-succinylglucoside)-5-O-glucoside (Kondo et al.,1994). In this case, the flavone also acts as a copigmentsubstance. On the other hand, isoflavonoids, flavanones,dihydroflavonols, and flavan and proanthocyanidins do notseem to act as pollinator attractants, since absorptionmaxima of those flavonoids are in 250-290 nm range alone,which insects can not discriminate these UV range.

In case of Iris tectorum (Iridaceae), though iso-flavonoids, such as tectorigenin and its 7-O-glucoside,irigenin 7-O-glucoside and iristectorigenins are abundantlycontained in rhizomes, they were not detected from theflowers (Iwashina & Ootani, 1998). Insteadly, theanthocyanins, delphinidin 3-O-(P-coumaroylrutinoside)-5-O-glucoside and 3-O-rutinoside-5-O-glucoside (Ishikura,1980) and a C-glycosylflavone, embigenin 2´´-O-rhamnoside (Hirose et al., 1962) are present in the flowersas pollinator attractants.

Two rare flavonol allosides, kaempferol 3-O-allosideand rhamnocitrin 3-O-alloside, are found from the reddishpurple flowers of Glaucidium palmatum (Glaucidiaceae),endemic to Japan (Iwashina & Ootani, 1990).

In the flowers of Iris species, C-glycosylflavones andtheir O-glycosides, isovitexin (Fig. 1-12), vitexin (Fig. 1-13), swertisin (Fig. 1-14) and isovitexin 2´´-O-rhamnosideand 2´´-O-xyloside are present as pollinator attractants, withanthocyanins, malvidin and petunidin 3-O-(P-coumaroylrutinoside)-5-O-glucosides (Hayashi et al., 1978,1980, 1989; Iwashina et al., 1996; Iwashina & Ootani,1996; Yabuya, 1987). A xanthone C-glycoside, mangiferin,which has absorption maxima in UV range, is also presentin Iris rossii (Hayashi et al., 1980).

The visible pigments in yellow flowers, such asChimonanthus praecox (Calycanthaceae), Coronilla spp.(Leguminosae), Helianthus annuus are carotenoids. Inflowers of these plants, flavonoid glycosides co-exist withcarotenoids. Thus, quercetin 3-O-rutinoside, quercetin 3-O-glucoside and kaempferol 3-O-rutinoside are present inC. praecox (Iwashina et al., 2001), and 3-O-glucoside-7,4´-di-O-rhamnoside, 3-O-glucoside-7-O-rhamnoside and 3-O-glucoside of kaempferol (Fig. 1-5), and 3-O-glucoside-7-O-rhamnoside and 3-O-glucoside of quercetin (Fig. 1-3) in Coronilla emerus (Harborne & Boardley, 1983),haplogenin 3-O-rutinoside and limocitrin 3-O-rutinosidein C. valentina subsp. glauca (Harborne, 1981), andquercetin 7-O-glucoside and 3-O-glucoside in H. annuus

(Harborne & Smith, 1978). Though a major pigment ofCrocosmia × crocosmiiflora orange-yellow flowers(Iridaceae) is a water-soluble carotenoid, crocin (Ootani& Hayashi, 1982), kaempferol 3-O-rhamnosylglucosideand quercetin 3-O-glucoside are accompanied (Ootani etal., 1986).

Flower color of Strongylodon macrobotrys (Legumi-nosae) is bluish-green, in other words, jade color, and amajor visible pigment is anthocyanin, malvidin 3,5-di-O-glucoside accompanied with C-glycosylflavones, isovitexin7-O-glucoside and isovitexin (Iwashina et al., 1984b).

The visible pigments in the flowers of cactaceousspecies are exclusively red purple betacyanins and yellowbetaxanthins, and never synthesize the anthocyanins(Iwashina et al., 1985). However, other flavonoids occurin “betalain plant families”. Thus, quercetin 3-methyl ether7-O-glucoside and 4´-O-glucoside are present in the redpurple flowers of cactaceous plants, Neoporteria clavataand related species together with betacyanins (Iwashina etal., 1986). In another cactus, Astrophytum myriostigma,the yellow flowers are due to flavonol aglycone, quercetinitself, which is contained in cells as the crystal form, withoutbetalain pigments (Iwashina et al., 1988).

Similar situation was investigated in the genus Aloe(Liliaceae) and related genera. Aloe species can notapparently synthesize the anthocyanins (Iwashina,unpublished data). Their yellow and yellow orange flowersare due to anthraquinone pigments such as barbaloin andaloe-emodin (Iwashina et al., 1986). C-Glycosylflavones,e.g., orientin (Fig. 1-1) and isoorientin (Fig. 1-2) coexistwith the anthraquinones, and may be function as pollinatorattractants (Iwashina et al., 1986).

Flavones and flavonols are present not only in yellow,red, purple and blue flowers but also in almost wild whiteones. Thus, the insects, especially bee, can visit to whiteflowers.

Oviposition stimulantsOne of the most complex aspects of plant-insect

interactions involves the oviposition response of insects tochemical substances. Many insects lay eggs on plantsspecies, and various naturally occurring compoundsincluding flavonoids may be act as oviposition stimulants.Some chemicals, e.g., sterols, sinigrin, glucobrassicin, allylisothiocyanate, α-farnesene, chlorogenic acid, adenosine,aristolochic acid etc., have been reported from some plants,such as Oryza sativa (Gramineae), Brassica oleracea(Cruciferae) and Citrus unshiu (Rutaceae) as ovipositionstimulants (Harborne, 1993). Some flavonoid compoundsare also listed as ovipotion stimulants (Table 2). Theflavonoids are inactive alone in many cases, and act asstimulants by coexistence with other compounds.

It has been reported by Nishida et al. (1987) that a C-glycosylflavone, vicenin-2 (Fig. 2-2), two flavanones,naringenin (Fig. 1-19) and hesperetin 7-O-rutinosides, anda flavonol, quercetin 3-O-rutinoside are ovipositionstimulants of swallowtail butterfly, Papilio xuthus, which

Flavonoid function and activity

- 26-

lay eggs on young leaves of Citrus plants. However, theflavonoids were inactive by themselves alone, but elicitedoviposition behavior when mixed with other compounds,5-hydroxy-Nω -methyltriptamin and adenosine (Ohsugiet al., 1985; Nishida et al., 1987). Similar situation hasbeen reported in the case of a butterfly, Papilio protenordemetrius and Citrus plants interaction. The ovipositionstimulants of P. protenor demetrius are two flavanoneglycosides, naringenin 7-O-neohesperidoside andhesperetin 7-O-rutinoside, but they were also inactivewithout the presence of other compounds, L-(- )-stachydrine, D-(- )-quinic acid, (- )-synephrine and L-(- )-proline (Honda, 1986, 1990).

Another swallowtail butterfly, Papilio polyxenes layeggs on carrot, Daucus carota (Umbelliferae), but notCitrus plants. The stimulants were identified as luteolin7-O-(6´´-malonylglucoside) and trans-chlorogenic acid.These were also inactive alone, but in combinationaccounted for ca. 70% of the response to the parent extract.In this case, though the acylated flavonoid conjugatedmalonic acid is active, deacylated glycoside, luteolin 7-O-glucoside is inactive (Feeny et al., 1988).

A zeryntiine swallowtail butterfly, Luedorfia japonicalay eggs on the leaves of the genus Asarum (= Heterotropa)(Aristolochiaceae). A new flavonol glycoside, isorhamnetin3-O-glucosyl-(1→ 6)-galactoside-7-O-glucoside, wasisolated and identified from the leaves of A. asperum (= H.aspera) as an oviposition stimulant (Nishida, 1994, 1995).However, this flavonoid was also inactive alone but inducedthe specific oviposition response of L. japonica when testedas a mixture with other unidentified compounds.

The flavonoids as oviposition stimulants have also beenreported from the family Asclepiadaceae. The monarchbutterfly, Danaus plexippus lay eggs on the leaves ofAsclepias species. Haribal and Renwick (1996) isolatedseven quercetin glycosides as oviposition stimulants fromthe fresh young terminal leaves of A. currassavica, and sixwere identified as 3-O-(2´´,6´´-di-O-rhamnosyl)-(1→ 2)-galactoside, 3-O-glucosyl-(1→ 6)-galactoside, 3-O-rhamnosyl-(1→ 2)-galactoside, 3-O-rutinoside, 3-O-galactoside and 3-O-glucoside, and one was presumed as3-O-(2´´,6´´-di-O-rhamnosyl)-(1→2)-glucoside. Of theseglycosides, tri- and di-glycosides especially function asstimulants.

In contrast with oviposition stimulant, it was reportedby Tabashnik (1987) that the flavonoid act as ovipositionand feeding deterrent. He found that oviposition bybutterfly, Pieris rapae is deterred by spraying quercetin 3-O-rutinoside and also coumarin on Brassica oleracea. Itis noteworthy that quercetin 3-O-rutinoside acts asstimulant to Danaus plexippus, but as deterrent to Pierisrapae.

Many flavonoids which are active as ovipositionstimulants belong to flavanone and flavonol glycosides.Though C-glycosylflavone (vicenin-2), acylated flavoneO-glycoside (luteolin 7-O-(6´´-malonylglucoside), flavan3-ol (D-catechin, Fig. 2-4) and dihydroflavonol (taxifolin,

Fig. 2-5) were also reported (Ohsugi et al., 1985; Feeny etal., 1988; Tebayashi et al., 1995), isoflavonoid, chalcone,aurone and anthocyanin were not known as ovipositionstimulants.

Feeding attractantsMany insect larvae are “vegetarian”, and some

secondary substances act as feeding attractants as well asovipositin stimulants. For example, glucosinolate andsinigrin, which are contained in the Cruciferae plants suchas Brassica campestris, are toxic to many insects, butfeeding attractant to an aphid, Brevicoryne brassicae(Harborne, 1993). Flavonoid compounds are also utilizedby some insects as attractants.

The feeding stimulants of silkworm, Bombix mori toMorus alba and M. nigra (Moraceae) have been reportedby Hamamura et al. (1962). Common flavonoid glycoside,quercetin 3-O-glucoside (isoquercitrin) or a rare flavonolattached a hydroxyl group to 2´-position, morin (Fig. 3-1),was isolated and identified as ones of biting factors with aterpenoid, β -sitosterol. Morin occurs in mulberry woodrather than in the leaves, so that B. mori is unlikely toencounter it in its food in appreciable quantities. Therefore,it was described by Kato (1978) that morin can not be anatural feeding stimulant to silkworm. In addition, fiveessential oils, citral, terpinyl acetate, linalyl acetate, linaloland β,γ-hexenol were found as attractants, and celluloseas swallowing factor with co-factors, sucrose, inositol,phosphate and silica.

Monophagous flea beetle, Phyllotreta armoraciae feedshorseradish, Armoracia rusticana (Cruciferae) in nature.Two flavonol glycosides, kaempferol and quercetin 3-O-xylosylgalactosides were isolated from the leaves ofhorseradish. Of their flavonoids, kaempferol glycosidestimulated feeding in the flea beetle. However, thisflavonoid was inactive alone, but elicited feeding behaviorwhen mixed allylglucosinolate as some cases of ovipositionstimulants (Nielsen et al., 1979). The stimulant flavonoidwas later identified as new glycoside, kaempferol 3-O-xylosyl-(1→ 2)-galactoside and inactive one as quercetin3-O-xylosyl-(1→ 2)-galactoside (Larsen et al., 1982).

Three plant hoppers, Nilaparvata lugens, Sogatellafurcifera and Laodelphax striatellus, are known asimportant rice pests. Besson et al. (1985) reported thattheir feeding stimulants are eight flavone C-glycosides inthe whole plants of Oryza sativa. They were identified asschaftoside (apigenin 6-C-glucoside-8-C-α -L-arabinopyranoside, Fig. 3-2), neoschaftoside (apigenin 6-C-glucoside-8-C-β -L-arabinopyranoside, Fig. 3-3),carlinoside (luteolin 6-C-glucoside-8-C-α -L-arabinopyranoside, Fig. 3-5), neocarlinoside (luteolin 6-C-glucoside-8-C-β -L-arabinopyranoside, Fig. 3-6),isoorientin 2´´-O-glucoside, isoscoparin 2´´-O-glucoside,isoscoparin 2´´-O-(6´´´-P-coumaroylglucoside) andisoscoparin 2´´-O-(6´´´-feruloylglucoside).

A flavone O-glycoside was isolated from the whole

Iwashina, T.

-27-

Table 1 Flavonoids as pollinator attractantsSpecies (Flower color) (References) Major flavonoids Major visible pigments (Classes)

Aloe capitata (yellow orange) (Liliaceae) (Iwashina et al., 1986) orientin, isoorientin barbaloin (anthraquinone)Astrophytum myriostigma (yellow) (Cactaceae) (Iwashina et al., 1988) quercetin

Fig. 1. Chemical structures of flavonoids as pollinator attractants.1 = orientin, 2 = isoorientin, 3 = quercetin, 4 = apigenin, 5 kaempferol, 6= haplogenin, 7 = limocitrin, 8 = quercetagetin, 9 = patuletin, 10 =corniculatusin, 11 = rhamnocitrin, 12 = isovitexin, 13 = vitexin, 14 =swertisin, 15 = herbacetin, 16 = luteolin, 17 = quercetin 3-methyl ether,18 = chalcononaringenin, 19 = naringenin, 20 = cirsiliol, 21 = butein and22 = sulphuretin.

noneCentaurea cyanus (deep purple) (Compositae) (Kondo et al., 1994) apigenin 7-O-glucuronide-4´-O-(6´´-malonylglucoside) cyanidin 3-O-(6´´-succinylglucoside)-5-O-glucoside (anthocyanin)Chimonanthus praecox (yellow) (Calycanthaceae) (Iwashina et al.,

2001) quercetin 3-O-rutinoside, quercetin 3-O-glucoside, kaempferol 3-O-

rutinoside carotenoidsCoronilla emerus (yellow) (Leguminosae) (Harborne & Boardley,

1983) kaempferol 3-O-glucoside-7,4´-di-O-rhamnoside, kaempferol 3-O-

glucoside-7-O-rhamnoside, kaempferol 3-O-glucoside, quercetin3-O-glucoside-7-O-rhamnoside, quercetin 3-O-glucoside

carotenoidsCoronilla valentina subsp. glauca (yellow) (Leguminosae) (Harborne,

1981) haplogenin 3-O-rutinoside, limocitrin 3-O-rutinoside carotenoidsCrocosmia × crocosmiiflora (orange-yellow) (Iridaceae) (Ootani &

Hayashi, 1982; Ootani et al., 1986) kaempferol 3-O-rhamnosylglucoside, quercetin 3-O-glucoside crocin (water-soluble carotenoid), cyanidin 3-O-glucoside (anthocya-

nin)Eriophyllum spp. (yellow) (Compositae) (Harborne & Smith, 1978) quercetagetin 7-O-glucoside, patuletin 7-O-glucoside, quercetin 5-O-

glucoside noneGeraea canescens (yellow) (Compositae) (Harborne & Smith, 1978) corniculatusin 3-O-glucoside noneGlaucidium palmatum (reddish purple) (Glaucidiaceae) (Iwashina &

Ootani, 1990) kaempferol 3-O-alloside, rhamnocitrin 3-O-alloside delphinidin 3-O-diglucoside (anthocyanin)Helianthus annuus (yellow) (Compositae) (Harborne & Smith, 1978) quercetin 7-O-glucoside, quercetin 3-O-glucoside carotenoidsIris ensata (purple) (Iridaceae) (Hayashi et al., 1978; Iwashina et al.,

1996) isovitexin, isovitexin 2´´-O-rhamnoside, isovitexin 2´´-O-xyloside malvidin 3-O-(P-coumaroylrutinoside)-5-O-glucoside, petunidin 3-O-

(P-coumaroylrutinoside)-5-O-glucoside (anthocyanin)Iris laevigata (purple) (Iridaceae) (Yabuya, 1987; Iwashina & Ootani,

1996) isovitexin, vitexin, swertisin malvidin 3-O-(P-coumaroylrutinoside)-5-O-glucoside, petunidin 3-O-

(P-coumaroylrutinoside)-5-O-glucoside (anthocyanin)Iris rossii (blue-purple) (Iridaceae) (Hayashi et al., 1980) swertisin, mangiferin* acylated delphinidin triglucoside (anthocyanin)Iris setosa (pale purple) (Iridaceae) (Hayashi et al., 1989) isovitexin X´´-O-glucoside, vitexin, isovitexin malvidin 3-O-(P-coumaroylrutinoside)-5-O-glucoside, petunidin 3-O-

(P-coumaroylrutinoside)-5-O-glucoside (anthocyanin)Magnolia spp. (pink) (Magnoliaceae) (Francis & Harborne, 1966) kaempferol 3-O-rhamnosylglucoside, quercetin 3-O-rhamnosyl-

glucoside, quercetin 3-O-glucoside, quercetin peonidin 3-O-rhamnosylglucoside-5-O-glucoside, peonidin 3-O-

rhamnosylglucoside, peonidin 3,5-di-O-glucoside, peonidin 3-O-glucoside, cyanidin 3-O-rhamnosylglucoside, cyanidin 3-O-glucoside (anthocyanin)

Mimulus luteus (yellow with reddish spots) (Scrophulariaceae) (Bloom& Vickery, 1973)

quercetin 7-O-glucoside, quercetin 3-O-glucoside, kaempferol 7-O-glucoside, kaempferol 3-O-glucoside, apigenin 7-O-glucoside,herbacetin 7-O-glucoside, luteolin 7-O-glucoside

carotenoids, cyanidin 3-O-glucosie (anthocyanin)Neoporteria clavata (red purple) (Cactaceae) (Iwashina et al., 1983,

1984a; Iwashina & Ootani, 1986) quercetin 3-methyl ether 7-O-glucoside, quercetin 3-methyl ether 4´-

O-glucoside betacyanins (betalain)Oenothera hookeri subsp. venusta (yellow) (Onagraceae) (Dement &

Raven, 1974) chalcononaringenin 2´-O-glucoside carotenoidsPotentilla spp. (yellow) (Rosaceae) (Harborne & Nash, 1984) chalcononaringenin 2´-O-glucoside, quercetin 3-O-glucoside,

quercetin 3-O-glucuronide, quercetin 3´-O-glucoside, naringenin7-O-glucoside

carotenoids

(continue)

Flavonoid function and activity

- 28-

Rudbeckia hirta (yellow) (Compositae) (Thompson et al., 1972) quercetagetin, patuletin, circiliol 3-O-glucoside carotenoidsSilene armeria (red purple) (Caryophyllaceae) (Iwashina & Ootani,

1987) isovitexin, isoorientin cyanidin 3-O-rhamnosylglucoside, cyanidin 3-O-glucoside (anthocya-

nin)Strongylodon macrobotrys (bluish-green) (Leguminosae) (Iwashina et

al., 1984b) isovitexin, isovitexin 7-O-glucoside malvidin 3,5-di-O-glucosideViguiera laciniata (yellow) (Compositae) (Harborne & Smith, 1978) butein 4´-O-glucoside, sulphuretin 6-O-glucoside carotenoidsViguiera spp. (yellow) (Compositae) (Rieseberg & Schilling, 1985) butein 4´-O-glucoside, sulphuretin 6-O-glucoside, quercetin 3-methyl

ether 7-O-glucoside, quercetin 3-methyl ether 7-O-glucuronide,quercetin 3-methyl ether 7-O-galactoside, luteolin 7-O-glucoside,quercetin 7-O-glucoside

none

* C-Glycosylxanthone.

Fig. 2. Chemical structures of flavonoids as oviposition stimulants.1 = hesperetin, 2 = vicenin-2, 3 = isorhamnetin, 4 = catechin and 5 =taxifolin. Luteolin, naringenin and quercetin (see, Fig. 1).

Table 2 Flavonoids as oviposition stimulants Flavonoids Plants Insects (References)

luteolin 7-O-(6´´-malonylglucoside), [trans-chlorogenic acid] Daucus carota (Umbelliferae) Papilio polyxenes (Feeny et al.,

1988)vicenin-2, naringenin 7-O-rutinoside, hesperetin 7-O-rutinoside,

quercetin 3-O-rutinoside, [5-hydroxy-Nω -methyltryptamine],[adenosine]

Citrus unshiu (Rutaceae) Papilio xuthus (Ohsugi et al., 1985;Nishida et al., 1987)

naringenin 7-O-neohesperidoside, hesperetin 7-O-rutinoside, [L-(- )-stachydrine], [D-(-)-quinic acid], [(-)-synephrine], [L-(-)-proline]

Citrus unshiu, C. natsudaidai, Fagara ailanthoides (Rutaceae)Papilio protenor demetrius (Honda, 1986, 1990)

isorhamnetin 3-O-glucosyl-(1→ 6)-galactoside-7-O-glucoside,[unknown compounds]

Asarum aspera (= Heterotropa asperum) (Aristolochiaceae)Luehdorfia japonica (Nishida, 1994)

D-catechin, taxifolin, quercetin 7-O-glucoside Vigna angularis (Leguminosae) Callosobruchus chinensis

(Tebayashi et al.,1995)quercetin 3-O-(2´´,6´´-di-O-rhamnosyl)-galactoside, quercetin 3-O-

(2´´,6´´-di-O-rhamnosyl)-glucoside, quercetin 3-O-glucosyl-(1→6)-galactoside, quercetin 3-O-rhamnosyl-(1→ 2)-galactoside,quercetin 3-O-rutinoside, quercetin 3-O-galactoside, quercetin 3-O-glucoside

Asclepias curassavica (Asclepiadaceae) Danaus plexippus (Haribal& Renwick, 1996)

quercetin 3-O-rutinoside* Brassica oleraceae (Cruciferae) Pieris rapae (Tabashnik, 1987)

*Oviposition deterrent. [ ] = non-flavonoid compounds.

Fig. 3. Chemical structures of flavonoids as feeding attractants. 1 = morin, 2 = schaftoside, 3 = neoschaftoside, 4 = nepetin, 5 = carlinoside,6 = neocarlinoside, 7 = aromadendrin, 8 = isoscoparin, 9 = pinocembrinand 10 = phloretin. Quercetin, kaempferol and isoorientin (see, Fig. 1),and taxifolin and catechin (see, Fig. 2).

Table 3 Flavonoids as feeding attractants Flavonoids Host plants Insects (References)

quercetin 3-O-glucoside, morin, [β -sitosterol], [sucrose], [inositol](biting factor), [cirtal], [linalol], [terpinyl acetate], [lynalyl acetate],[β ,γ -hexenol] (attractants), [cellulose], [silicate], [phosphate](swallowing factor)

Morus alba, M. tinctoria (Moraceae) Bombix mori (Hamamura etal., 1962; Kato, 1978)

kaempferol 3-O-xylosyl-(1→ 2)-galactoside, [allylglucosinolate] Armoracia rusticana (Cruciferae) Phyllotreta armoraciae

(Nielsen et al., 1979; Larsen et al., 1982)schaftoside, neoschaftoside, carlinoside, isoorientin 2´´-O-glucoside,

neocarlinoside, isoscoparin 2´´-O-glucoside, isoscoparin 2´´-O-(6´´´-P-coumaroylglucoside), isoscoparin 2´´-O-(6´´´-feruloyl-glucoside)

Oryza sativa (Gramineae) Nilaparvata lungens, Sogatella furcifera,Laodelphax striatellus (Besson et al., 1985)

nepetin 7-O-rhamnoside Alternanthera phylloxeroides (Amaranthaceae) Agasicles sp.

(Zielske et al., 1972)taxifolin, aromadendrin, pinocembrin Prunus armeniaca (Rosaceae) Scolytus mediterraneus (Levy et al.,

1974)phloretin 2´-O-glucoside Malus spp. (Rosaceae) Aphis pomi, Rhapalosiphum insertum

(Klingauf, 1971)(+)-catechin 7-O-xyloside, [lupeyl cerotate] Ulmus americana (Ulmaceae) Scolytus multistriatus (Doskotch et

al., 1973)quercetin 3-O-rutinoside commercial agent Schistoceruca americana (Bernays et al., 1991)quercetin 3-O-rutinoside, [chlorogenic acid] commercial agents Manduca sexta (de Boer & Hanson, 1987)

[ ] = non-flavonoid compounds.

Table 1 (continue)

Iwashina, T.

-29-

plants of alligatorweed, Alternanthera phylloxeroides(Amaranthaceae) as feeding stimulant of the chrysomelidbeetle, Agasicles sp. nov. (Zielske et al., 1972). Thecompound was identified as nepetin 7-O-α -L-rhamnoside.

The genera Prunus and Malus include importanteconomic fruits such as peach, plum, almond, apricot andapple. The harmful insects feeding those fruits are alsoinduced by flavonoid stimulants. In apricot, Prunusarmeniaca, six flavonoids, and each one chromone andcoumarin were isolated from the bark infected by fruit treebark beetle, Scolytus mediterraneus. Of their compounds,t h r e e d i h y d r o - f l a v o n o l s , a r o m a d e n d r i n ( =d i h y d r o k a e m p f e r o l , F i g . 3 - 7 ) , t a x i f o l i n ( =dihydroquercetin, Fig. 2-5) and pinocembrin (Fig. 3-9)showed high activity as feeding stimulants of S.mediterraneus, wheleas other compounds naringenin,kaempferol, quercetin, 5,7-dihydroxy-2-methylchromoneand scopoletin exhibited low activity (Levy et al., 1974).In case of apple, Malus spp., dihydrochalcone glycoside,phloretin 2´´-O-glucoside (phloridzin) was reported as afeeding stimulant of Rhopalosiphum insertum and Aphispomi (Klingauf, 1971).

A flavan 3-ol as one of the feeding stimulants of thesmaller European elm bark beetle, Scolytus multistriatus,was isolated from Ulmus americana (Ulmaceae). Thestimulant was identified as (+)-catechin 7-O-xyloside(Doskotch et al., 1973). However, the flavonoid wasinactive alone, but elicited feeding behavior when coexistedwith a wax, lupeyl cerotate (Doskotch et al., 1973).

De Boer & Hanson (1987) investigated feedingresponses to quercetin 3-O-rutinoside (rutin) using larvaeof the tobacco hornworm, Manduca sexta. As the results,rutin was a feeding stimulant of the hornworm. Its activityis due to the glycosylated structure, since both the quercetin,and the sugar moieties, rutinose, glucose and rhamnose areneural. Moreover, removal of the glucose part of quercetin3-O-rutinoside, as in quercetin 3-O-rhamnoside, results infeeding deterrent activity.

Quercetin 3-O-rutinoside was also demonstrated to bea phagostimulant for the grasshopper, Schistocercaamericana (Bernays et al., 1991). In this case, aglycone,quercetin was much less stimulating than quercetin 3-O-rutinoside, while sugar, rutinose alone was somewhatdeterrent.

Feeding deterrentsMany flavonoids are used as feeding deterrents against

harmful insects by some plants, together with terpenoids,alkaloids, hydrocarbons and so on (Harborne, 1993). Someflavonoid classes, e.g., flavonols, flavones, proantho-cyanidins, flavan 3-ols, flavanones, flavans and iso-flavonoids, are reported as feeding deterrents. Of theseflavonoids, isoflavonoids are mainly isolated from thelegume plants as derterrents, since these occurrence mostlycenters on the Leguminosae (ca. 85%) (Iwashina, 2000).

Nine isoflavones having feeding deterrent activityagainst two pasture scarabs, Costelytra zealandica andHeteronychus arator larvae were isolated from the rootsof Lupinus angustifolius (Lane et al., 1987). They wereidentified as genistein (Fig. 4-31), wighteone (Fig. 4-32),2´-hydroxygenistein (Fig. 4-33), luteone (Fig. 4-34),licoisoflavone A (Fig. 4-35), angustone A (Fig. 4-37),licoisoflavone B (Fig. 4-36), angustone B (Fig. 4-38), andangustone C (Fig. 4-41). Of these isoflavones, licoiso-flavone B, luteone, licoisoflavone A and wighteone showednot only feeding deterrent activity but also high antifungalactivity against two fungi, Colletrichum gloeosporioidesand Cladosporium cladosporioides as described later (Laneet al., 1987). Moreover, Lane et al. (1985) have provedthat other thirteen isoflavonoids act as feeding deterrentsagainst Costelytra zealandica using the authenticflavonoids (Table 4).

(3R)-(-)-Vestitol (Fig. 4-16) was isolated from Lotuspedunculatus as a isoflavonoid having feeding deterrentactivity against Costelytra zealandica (Russell et al., 1978).The compound was also shown to have phytoalexin activity.

Other flavonoid classes have been reported to be feedingdeterrents in the Leguminosae. Three flavanones, i.e., 5-hydroxyisoderricin, 7-methoxy-8-(3-methylbutadienyl)-flavanone and 5-methoxyisoronchocarpin, were isolatedfrom three Tephrosia species, T. villosa, T. purpurea and T.vogelii, respectively (Simmonds et al., 1990). Thosecompounds were proved to be feeding deterrents againstSpodoptera exempta and S. littoralis. In another Tephrosiaspecies, T. hildebrandtii, two flavan 4-ols, methyl-hildgardtol A (Fig. 4-14) and methylhildgardtol B (Fig. 4-15) act as deterrents against the same harmful insects(Simmonds et al., 1990). Four chalcones, derricin (Fig. 4-11), lonchocarpin (Fig. 4-10), derricidin (Fig. 4-12) andisocordoin (Fig. 4-9) from Lonchocarpus neuroscaphawere shown to be deterrents with a flavanone, isoderricidin(Fig. 4-8) against Spodoptera exempta and S. littoralis(Simmonds et al., 1990). In another Lonchocarpus species,L. minimiflorus, five new flavanones lonchocarpols A - E(Fig. 4-2, 3, 5, 6 and 7) were isolated from the leaves(Roussis et al., 1987). Three of them contain an unusualprenyl cyclization. It was proved that all the flavanonesfrom this species escape attack of the leafcutter ant, Attacephalotes (Roussis et al., 1987).

Though dihydrochalcone, phloretin 2´-O-glucoside(phloridzin) in apples is feeding stimulant against Aphispomi and Rhapalosiphum insertum, the compound wasdeterrent against Acyrthosiphum pisum (Klingauf, 1971).

Flavans also act as feeding deterrents. Two flavans,4´-hydroxy-7-methoxyflavan (Fig. 4-29) and (- )-7,3´-dihydroxy-4´-methoxy-8-methylflavan (Fig. 4-30) wereisolated from the bulbs of red spider lily, Lycoris radiata(Amaryllidaceae) with six alkaloids, lycorine, lycorenine,lycoricidinol, lycoricidine, demethylhomolycorine andhippeastrine (Numata et al., 1983). These two flavans andsix alkaloids were considered as antifeedants for the larvaeof the yellow buttefly, Eurema hecabe mandarina.

Flavonoid function and activity

- 30-

Naturally occurring flavones, flavonols and dihydro-flavonols were also reported from some plant species asfeeding deterrents. Wheat and corn are important grain inthe world. Each one flavone feeding deterrents wereisolated from the stems and leaves (wheat), and corn silk.The deterrent from Triticum aestivum (Gramineae) wasidentified as tricin (Fig. 4-1) (Dreyer & Jones, 1981), andone from Zea mays (Gramineae) as new flavone C-glycoside, luteolin 6-C-(6-deoxy-xylo-hexos-4-uloside)-2´´-O-rhamnoside (Elliger et al., 1980b). The formercompound acts as feeding deterrent with unknown morepolar phenols against two aphid species, Schizaphisgraminum and Myzus persicae, and latter inhibits growthand development of the corn earworm, Heliothis zea (Waisset al., 1979).

Flavonol deterrents were found from Passiflora foetida(Passifloraceae) and cotton, Gossypium spp. (Malvaeae).Ten flavonoids (two flavanones, two flavones and sixflavonols) were isolated from the leaves resin of P. foetida.Of these flavonoid aglycones, ermanin (kaempferol 7,4´-dimethyl ether, Fig. 4-28) is only chemical defense in P.foetida against the phytophagous larvae, Dione juno(Echeverri et al., 1991). On the other hand, commonflavonols, quercetin, quercetin 3-O-glucoside and quercetin3-O-rutinoside were reported from cotton as deterrentsagainst the pink bollworm, Pectinophora gossypiella,Heliothis zea and the tobacco budworm, H. virescens withyellow polyphenolic pigment, gossypol (Shaver &Lukefahr, 1969). Apart from the results described above,Chan et al., (1978b) reported that quercetin in the leavesof Gossypium spp. is growth inhibitor of the same noxiousinsects, together with terpene aldehyde, cyclopropenoidfatty acids and condensed tannins. In tomato, Lycopersiconesculentum (Solanaceae), it was reported that majorphenolic compounds, quercetin 3-O-rutinoside and alsochlorogenic acid inhibit early larvae growth of Heliothiszea (Isman & Duffey, 1982).

In extracts of inner and outer bark of Fagus sylvatica(Fagaceae), qualitative dependence of the phenoliccompounds on infection with beech scale, Cryptococcusfagisuga feeding in the parenchyma tissue was observed(Dübeler et al., 1997). Of seven compounds isolated, threedihydroflavonol glycosides, (2R,3R)-(+)-taxifolin 3-O-glucoside and 3-O-xyloside, and (2S,3S)-(-)-taxifolin 3-O-glucoside strongly infected with beech scale. They arealso effective active against the bark cancer fungus, Nectriacoccinea (Dübeler et al., 1997).

Proanthocyanidins (= condensed tannins) are also usedto plants as feeding deterrents against some insects,Porthetria dispar, Euproctis chrysorrhoea, Operophterabrumata etc. (Bernays, 1981). Feeny (1968) and Feeny &Bostock (1968) reported that proanthocyanidins, (+)-catechin, (+)-gallocatechin (Fig. 4-20) and other vanillin-positive compounds in the leaves of Quercus robur(Fagaceae) appear in late May and inhibit winter mothlarvae, Operophtera brumata attack. Fern, brackenPteridium aquilinum and groundnut, Arachys hypogaea

(Leguminosae) also utilize the proanthocyanidins asfeeding deterrents. In P. aquilinum, procyanidins andcyanogenesis were deterrents against the phytophagouslocust, Schistocerca gregaria, and also sheep and deer(Cooper-Driver et al., 1977). In groundnut, procyanidinpolymer in leaves was found to be deterrent against theaphid, Aphis craccivora (Grayer et al., 1992). Theseproanthocyanidins are not completely characterized.

Procyanidin was also isolated from aphid-resistant linesof sorghum, Sorghum bicolor (Gramineae) as feedingdeterrent against Schizaphis graminum, together with othercompounds, P-hydroxybenzaldehyde, P-hydroxybenzoicacid and dhurrin (Dreyer et al., 1981). Luteolin 7-O-glucoside was also detected, but it is inactive.

Beside the naturally occurring flavonoids, Dreyer &Jones (1981) and Elliger et al. (1980a) showed that anumber of authentic flavonoids act as feeding deterrentsagainst Schizaphis graminum and Myzus persicae, orHeliothis zea. They include flavones, flavonols,flavanones, dihydroflavonols, chalcones, dihydchalconesand their O- or C-glycosides (Table 4).

AllelopathyThe word “allelopathy” was defined by Molish (1973),

using it in the widest sense to refer to ‘biochemicalinteractions between all types of plant and including bothdeleterious and advantageous interactions. In contrast,Muller (1970) prefers to restrict the term allelopathy tohigher plant - higher plant interactions. In this section, Idefine allelopathy according to Muller. Biochemicalinteractions between higher plants and microorganisms aredescribed in next section (phytoalexins). Allelopathic plantpolyphenols have been reviewed by Inderjit (1996).

The flavonoids as allelopathy were reported by someauthors. They include chalcones, dihydrochalcones,dihydroflavonols, flavanones, flavonols and isoflavonoids.

Chalcones, dihydrochalcones and flavanones werereported to be allelopathy by Star (1980). They arecontained in frond exudate of gymnogrammoid ferns,Pityrogramma spp. and identified as 2´,6´-dihydroxy-4´-methoxychalcone (Fig. 5-1), 2´,6´-dihydroxy-4´-methoxydihydrochalcone (Fig. 5-4) and izalpinin (Fig. 5-7). These compounds were inhibitory to spore geminationand gametophyte development of Pityrogrammacalomeranos itself. However, some concentrationstimulated spore germination.

The similar situation was investigeted in sunflower,Helianthus annuus. A flavonol, two chalcones and twoflavanones were isolated from the leaves and identified astambulin, kukulcanin B (Fig. 5-3), and three newflavonoids, heliannones A - C (Fig. 5-2, 5 and 6). Theyinhibit shoot growth of Lycopersicon esculentum andHordeum vulgare seedlings. Moreover, two chalcones,kukulcanin B and heliannone A, affected germination andradical length (Macías et al., 1997).

Three flavonoids, i.e., hesperetin 7-O-rutinoside

Iwashina, T.

-31-

Fig. 4. Chemical structures of flavonoids as feeding deterrents.1 = tricin, 2 = lonchocarpol A, 3 = lonchocarpol B, 4 = isolonchocarpin,5 = lonchocarpol C, 6 = lonchocarpol D, 7 = lonchocarpol E, 8 =isoderricidin, 9 = isocordoin, 10 = lonchocarpin, 11 = derricin, 12 =derricidin, 13 = 3-hydroxyisolonchocarpin, 14 = methylhildgardtol A, 15= methylhildgardtol B, 16 = vestitol, 17 = eriodictyol, 18 =homoeriodictyol, 19 = myricetin, 20 = gallocatechin, 21 = fisetin, 22 =orobol, 23 = scutellarein, 24 = isoscutellarein, 25 = hypoleatin 3´,4´-dimethyl ether, 26 = tricetin, 27 = robinetin, 28 = ermanin, 29 = 4´-hydroxy-7-methoxyflavan, 30 = 7,3´-dihydroxy-4´-methoxy-8-methylflavan, 31 = genistein, 32 = wighteone, 33 = 2´-hydroxygenistein,34 = luteone, 35 = licoisoflavone A, 36 = licoisoflavone B, 37 = angustoneA, 38 = angustone B, 39 = phaseollinisoflavan, 40 = phaseollin, 41 =angustone C, 42 = rotenone, 43 = claussequinone, 44 = 2´-hydroxy-formononetin, 45 = (-)-maackiain, 46 = (-)-medicarpin, 47 = pisatin,48 = kievitone, 49 = phaseollidin, 50 = maysin and 51 = maysin 3´-methylether. Quercetin, luteolin, chalcononaringenin, naringenin, isoorientinand vitexin (see, Fig. 1), taxifolin and catechin (see, Fig. 2), and phloretinand morin (see, Fig. 3).

Flavonoid function and activity

- 32-

Table 4 Flavonoids as feeding deterrents Flavonoids Plants Insects (References)

lonchocarpol A, lonchocarpol B, lonchocarpol C, lonchocarpol D,lonchocarpol E

Lonchocarpus minimiflorus (Leguminosae) Atta cephalotes(Roussis et al., 1987)

phloretin 2´-O-glucoside Malus spp. (Rosaceae) Acyrthosiphum pisum (Klingauf, 1971)quercetin 3-O-rhamnoside commercial agent Manduce sexta (de Boer & Hanson, 1987)tricin, [unknown more polar phenols] Triticum aestivum (Gramineae) Schizaphis graminum (Dreyer &

Jones, 1981)isoderricidin, derricidin, isocordoin, derricin, lonchocarpin Lonchocarpus neuroscapha (Leguminosae) Spodoptera exempta, S.

littoralis (Simmonds et al., 1990)isolonchocarpin, 3-hydroxyisolonchocarpin Lonchocarpus eriocaulinalis (Leguminosae) Spodoptera exempta, S.

littoralis (Simmonds et al., 1990)methylhildgardtol A, methylhildgardtol B Tephrosia hilbrandtii (Leguminosae) Spodoptera exempta,

S. littoralis (Simmonds et al., 1990)5-hydroxyisoderricin Tephrosia villosa (Leguminosae) Spodoptera exempta, S. littoralis

(Simmonds et al., 1990)7-methoxy-8-(3-methylbutadienyl)-flavanone Tephrosia purpurea (Leguminosae) Spodoptera exempta,

S. littoralis (Simmonds et al., 1990)5-methoxyisoronchocarpin Tephrosia vogelii (Leguminosae) Spodoptera exempta,

S. littoralis (Simmonds et al., 1990)(3R)-(- )-vestitol Lotus pedunculatus (Leguminosae) Costelytra zealandica (Russell

et al., 1978)3,2´,6´-trihydroxy-4-methoxy-4´-carboxymethyldihydrochalcone,

3,2´,6´-trihydroxy-4-methoxy-4´-sulfopropyldihydrochalcone,3,2´,4´,6´-tetrahydroxy-4-methoxydihydrochalcone-4´-O-glucoside, luteolin, quercetin 3-O-rutinoside, myricetin 3-O-rhamnoside

commercial agents Schizaphis graminum (Dreyer & Jones, 1981)phloretin, phloretin 2´-O-glucoside, 3,2´,4´,6´-tetrahydroxy-4-

methoxydihydrochalcone 4´-O-neohesperidoside,chalcononaringenin 4´-O-neohesperidoside, naringenin,eriodictyol, homoeriodictyol, taxifolin, vitexin, quercetin,quercetin 3-O-rhamnoside, morin

commercial agents Schizaphis graminum, Myzus persicae (Dreyer& Jones, 1981)

proanthocyanidins, (+)-catechin, (+)-gallocatechin Quercus robur (Fagaceae) Operophtera brumata (Feeny, 1968;

Feeny & Bostock, 1968)procyanidins, [cyanogenesis] Pteridium aquilinum (Pteridaceae) Schistocerca gregaris (Cooper-

Driver et al., 1977)procyanidin polymer Arachys hypogaea (Leguminosae) Aphis craccivora (Grayer et al.,

1992)fisetin, 5,7,2´,3´-tetrahydroxyflavone, luteolin, eriodictyol, orobol,

isoorientin, maysin, maysin 3´-methyl ether, scutellarein,isoscutellarein, hypolaetin 3´,4´-dimethyl ether, tricetin, robinetin,quercetin, taxifolin, quercetin 3-O-rhamnoside, taxifolin 3-O-rhamnoside, quercetin 3-O-rutinoside, D-catechin, myricetin

commercial agents Heliothis zea (Elliger et al., 1980a)luteolin 6-C-(6-deoxy-xylo-hexos-4-uloside)-2´´-O-rhamnoside Zea mays (Gramineae) Heliothis zea (Waiss et al., 1979; Elliger et

al., 1980b)ermanin Passiflora foetida (Passifloraceae) Dione juno (Echeverri et al.,

1991)(2R,3R)-(+)-taxifolin 3-O-glucoside, (2R,3R)-(+)-taxifolin 3-O-

xyloside, (2S, 3S)-(-)-taxifolin 3-O-glucoside Fagus sylvatica (Fagaceae) Cryptococcus fagisuga (with bark

cancer fungus) (Dübeler et al., 1997)quercetin, quercetin 3-O-glucoside, quercetin 3-O-rutinoside, cotton

condensed tannin, [gossypol], [heliocide I], [heliocide II],[hemigossypolone], [sterclic acid], [malvalic acid]

Gossypium spp. (Malvaceae) Pectinophora gossypiella, Hiliothiszea, H. virescens (Shaver & Lukefahr, 1969; Chan et al., 1978b)

4´-hydroxy-7-methoxyflavan, (- )-7,3´-dihydroxy-4´-methoxy-8-methylflavan, [lycoricidinol], [lycoricidine],

[demethylhomolycorine], [hippeastrine], [lycorine], [lycorenine] Lycoris radiata (Amaryllidaceae) Eurea hecobe mandarina

(Numata et al., 1983)proanthocyanidin Gossypium hirsutum (Malvaceae) Heliothis verescens (Chan et al.,

1978a)genistein, wighteone, 2´-hydroxygenistein, luteone, licoisoflavone A,

angustone A, licoisoflavone B, angustone B, angustone C Lupinus angustifolius (Leguminosae) Costelytra zealandica,

Heteronychus arator (Lane et al., 1987)procyanidin, [P-hydroxybenzaldehyde], [P-hydroxybenzoic acid],

[dhurrin] Sorghum bicolor (Gramineae) Schizaphis graminum (Dreyer et

al., 1981)quercetin 3-O-rutinoside, [coumarin] commercial agents Pieris rapae (Tabashnik, 1987)(- )-phaseollinisoflavan, (- )-phaseollin, (- )-rotenone, (+)-2´-

methoxyphaseollinisoflavan, (- )-7-methoxyphaseollin,licoisoflavone B, (-)-phaseollidin, (- )-claussequinone, (- )-vestitol, 2´-hydroxyformononetin, 2´-hydroxygenistein, (- )-maackiain, (-)-medicarpin, (+)-pisatin, kievitone, luteone

commercial agents Costelytra zealandica (Lane et al., 1985)quercetin 3-O-rutinoside, [chlorogenic acid] Lycopersicon esculentum (Solanaceae) Heliothis zea (Isman &

Duffey, 1982)catechin Rosa sp. (Rosaceae) Macrosiphum rosae (Peng & Miles, 1988)

[ ] = non-flavonoid compounds.

Fig. 5. Chemical structures of flavonoids as allelopathy.1 = 2´,6´-dihydroxy-4´-methoxychalcone, 2 = heliannone A, 3 =kukulkanin B, 4 = 2´,6´-dihydroxy-4´-methoxydihydrochalcone, 5 =heliannone B, 6 = heliannone C, 7 = izalpinin, 8 = biochanin A, 9 =daidzein and 10 = formononetin. Kaempferol, quercetin and quercetin 3-methyl ether (see, Fig. 1), taxifolin and hesperetin (see, Fig. 2), andgenistein and (-)- maackiain (see, Fig. 4).

Iwashina, T.

-33-

(flavanone), taxifolin 3-O-arabinoside (dihydroflavonol)and formononetin 7-O-glucoside (isoflavone) were isolatedwith phloroglucinol, simple phenol, chlorogenic acid andmethylated coumarin from the roots of Pluchea lanceolata(Compositae) and soils associated with this weed asallelopathy (Inderjit & Dakshini, 1991, 1992, 1994). Thesecompounds inhibit seed germination and seedling growthof radish, mustard and tomato.

Flavonol allelopathy have been reported by Carballeira(1980) and more recently Parvez et al. (2002). Fifteenphenolic compounds were isolated from the flowers, leaves,stems or roots of Erica australis and the associated soil(Carballeira, 1980). All of them were contained in rootsand characterized as three flavonols (kaempferol, quercetinand myricetin), nine organic acids (P-hydroxybenzoic acid,protocatechic acid, vanillic acid, syringic acid, gentisic acid,caffeic acid, P-coumaric acid, ferulic acid and sinapic acid),two coumarins (aesculetin and scopoletin) and a simplephenol (orcinol). These compounds were strong inhibitorsto growth and germination of Trifolium pratense andPhleum pratense (Carballeira, 1980).

It was shown by Parvez et al. (2002) that quercetin andits 3-O-glycosides and methoxyl derivatives are allelopathicsubstances. Quercetin and its 3-O-glucoside, 3-O-galactoside, 3-O-rhamnoside and 3-O-arabinofuranoside,and quercetin 3-methyl ether (Fig. 1-17) and its 7-O-glucoside and 4´-O-glucoside, which were tested in thisexperiment, have been isolated from the flowers ofcactaceous species, Astrophytum, Notocactus, Parodia andNeochilenia spp. (Iwashina et al., 1984a, 1988; Iwashina

Table 5 Flavonoids as allelopathyFlavonoids Source plants Inhibited plants (References)

2´,6´-dihydroxy-4´-methoxychalcone, izalpinin, 2´,6´-dihydroxy-4´-methoxydihydrochalcone

Pityrogramma spp. (Parkeriaceae) Pityrogramma calomeranos(Parkeriaceae) (Star, 1980)

heliannone A, heliannone B, heliannone C, kukulkanin B, tambulin Helianthus annuus (Compositae) Lycopersicon esculentum

(Solanaceae), Hordeum vulgare (Gramineae) (Macías et al., 1997)taxifolin 3-O-arabinoside, hesperetin 7-O-rutinoside, formononetin 7-

O-glucoside Pluchea lanceolata (Compositae), Brassica juncea, Raphanus

sativus (Criciferae), Lycopersicon esculentum (Inderjit &Dakshini, 1991, 1994)

kaempferol, quercetin, myricetin Erica australis (Ericaceae) Trifolium pratense, Phleum pratense

(Gramineae) (Carballeira, 1980)quercetin, quercetin 3-O-arabinofuranoside, quercetin 3-O-galactoside,

quercetin 3-O-glucoside, quercetin 3-methyl ether, quercetin 3-methyl ether 4´-O-glucoside, quercetin 3-methyl ether 7-O-glucoside, quercetin 3-O-rhamnoside

Astrophytum, Parodia, Neochilenia, Notocactus spp. (Cactaceae)Arabidopsis thaliana (Cruciferae) (Parvez et al., 2002)

biochanin A, biochanin A 7-O-glucoside, biochanin A 7-O-glucoside-5-malonate, biochanin A 5-malonate, daidzein, daidzein 7-O-glucoside, formononetin, genistein, (-)-maackiain 3-O-glucoside

Trifolium pratense (Leguminosae) Trifolium spp. (Tamura et al.,1967,1969; Chang et al., 1969)

2,4-dihydroxy-6,4´-dimethoxychalcone, bifloridin, 7-hydroxy-4´-methoxyflavan

Pancratium biflorum (Amaryllidaceae) Imperata cylindrica(Gramineae) (Ghosal et al., 1986)

& Ootani, 1986). As the results obtained, all of theminhibited growth of Arabidopsis thaliana seedlings (Parvezet al., 2002). It was also observed that quercetin 3-methylether and its glycosides are stronger inhibitors thanquercetin and its glycosides. Moreover, quercetin 3-methylether and its glycosides showed inhibiting activity onconidial germination of a fungus, Neurospora crassa(Parvez et al., 2002).

Isoflavonoid allelopathy was reported from red clover,Trifolium pratense. T. pratense has been well known toexhibit homogeneous allelopathy, so called ‘cloversickness’. Tamura and coworkers found that the leavesand stems extracts show considerable inhibitory action onthe seed germination of the same plant. Ten isoflavonoidsand their glycosides were isolated and identified asbiochanin A (Fig. 5-8) and its 7-O-glucoside, 7-O-glucoside-5-malonate and 5-malonate, daidzein (Fig. 5-9)and formononetin (Fig. 5-10) and their 7-O-glucosides,genistein, and (- )-maackiain 3-O-glucoside (Tamura etal., 1967, 1969; Chang et al., 1969). They inhibit not onlyseed germination and seedling growth of T. pratense itselfbut also those of related species, T. repense and T. hydrium.

Imperata cylindrica (Gramineae) grows abundantly inthe vicinity of the bulbed plant, Pancratium biflorum(Amaryllidaceae). The main roots of the grass are oftenfound to penetrate the bulbs of P. biflorum. A rare incidenceof phanerogamic parasitism by I. cylindrica on P. biflorumand the concomitant chemical changes from thehypersensitive responses in the host plants were reported.These compounds were identified as 2,4-dihydroxy-6,4´-dimethoxychalcone, bifloridin and 7-hydroxy-4´-methoxyflavan, and five alkaloids, hippadine, lycorine,ungeremine, 4 ,5-dehydroanhydrolycor ine andpancrassidine (Ghosal et al., 1986).

PhytoalexinsThe plants produce certain chemical substances at the

time of infection of microorganisms. Their compoundsward off the disease organisms from the plants and arecalled as “phytoalexin”. Many kinds of chemicals e.g.,simple phenolics, alkaloids, stilbenoids, coumarins,polyacetylenes, terpenoids and so on, were reported asphytoalexins (Harborne, 1993). Flavonoid compoundswere also reported as phytoalexins from various plantspecies. Moreover, some flavonoids are known to beinducers of nitrogen fixing bacteria, Rhizobium,Azorhizobium and Bradyrhizobium, to certain floweringplants, especially those of the Leguminosae (e.g., Zaat etal., 1989; Firmin et al., 1986; Bassam et al., 1988).Majority of the flavonoid phytoalexins were mainly isolatedfrom underground parts, roots, rhizomes, hypocotyls, orseeds. The functions of the root flavonoids have beendescribed by Rao (1990) and the flavonoids as phytoalexinswere mentioned. Ingham (1972) have reviewed aboutphytoalexin and other natural products including flavonoidsas factors in plant disease resistance.

Flavonoid function and activity

- 34-

In this section, flavonoids as phytoalexins and inducersof nitrogen fixing bacteria are described.

Anthocyanins commonly affect as plant pigments inflowers, autumn leaves or fruits, and are importantpollinator attractants described in former section. On theother hand, a few anthocyanins act as phytoalexins. Two3-deoxyanthocyanidins, apigeninidin (Fig. 6-1) andluteolinidin (Fig. 6-2) were isolated from the leaves ofsorghum (Sorghum bicolor) as phytoalexins (Nicholson etal., 1987, 1988; Snyder et al., 1991). They inhibitgermination of the fungi, Helminthosporium maydis andColletotrichum graminicola. A 3-deoxyanthocyaninglycoside was also found as phytoalexin from inoculatedleave tissue of sorghum and identified as apigeninidin 5-O-(5´´-caffeoylarabinoside) (Hipskind et al., 1990). Sinceapigeninidin and luteolinidin were not treated by hotinorganic acid when they were extracted and isolated, theymay be natural compounds but not artifacts.

Aurone phytoalexin was found from a cactus species.A red pigment was observed to accumulate inCephalocereus senilis, in whole plants and in culturefollowing inoculation with various microorganisms (Pareet al., 1991). The aurone was isolated from chitin-treatedliquid suspension cultures of this cactus, and identified asnew compound, 6-hydroxy-4,5-methylenedioxyaurone(cephalocerone, Fig. 6-3) (Pare et al., 1991). The resultsof the antimicrobial assay showed that cephalocerone isactive against Escherichia coli and Pseudomonasaeruginosa. Naturally occurring aurone possessingbiological activity was reported for the first time.

A chalcone was reported as phytoalexin. It was isolatedwith each one flavone and isoflavonoid from alfalfa(Medicago sativa) callus and identified as β -hydroxychalcone, 4,2´,4´,β -tetrahydroxychalcone(Kobayashi et al., 1988). The β-hydroxychalcone showsantifungal activity against Pyricularia oryzae. Thoughaccompanied flavone, 7,4´-dihydroxyflavone (Fig. 6-22)also exhibits antifungal activity, but isoflavonoid, 6-hydroxy-7,4´-dimethoxyisoflavone is inactive.

On the other hand, another chalcone from alfalfainduced nitrogen fixing bacteria. Isoliquiritigenin 2´-methyl ether (Fig. 6-4) from the seeds and roots was knownto be strong inducer of Rhizobium meliloti (Hartwig et al.,1989; 1990b; Maxwell et al., 1989). Moreover, the authorreported that other f lavonoids, luteolin, 7,4´-dihydroxyflavone, liquiritigenin (Fig. 6-13) and chrysoeriol(Fig. 6-20) strongly induce nitrogen fixing bacteria. It isnoteworthy that 7,4´-dihydroxyflavone inhibits germinationof Pyricularia oryzae and Cladosporium herbarium(Kobayashi et al., 1988), but induce Rhizobium meliloti(Maxwell et al., 1989).

Other flavonoids also act as inducers of Rhizobiumbacteria. Zaat et al. (1989) isolated seven flavonoidinducers from the root exudate of Vicia sativa. Six of themare flavanones and dihydroflavonols, and two wereidentified as taxifolin 4´-methyl ether (Fig. 6-7) and 7,3´-dihydroxy-4´-methoxyflavanone, but other ones were not

characterized. These compounds induced germination ofRhizobium leguminosarum viovar. viciae or trifolii, or R.meliloti. Zaat et al. (1989) also reported that manyflavonoids including flavanones, dihydroflavonols,flavones, flavonols, isoflavones and dihydrochalconeobtained from various plant sources induce R.leguminosarum viovar. viciae or trifolii, or R. meliloti.

Three flavan phytoalexins were isolated from the bulbsof daffodil, Narcissus pseudonarcissus inoculated withBotrytis cinerea (Coxon et al., 1980). They were identifiedas 7-hydroxyflavan (Fig. 6-11), cassiaflavan (Fig. 6-9) and7,4´-dihydroxy-8-methylflavan (Fig. 6-10). O’Neill &Mansfield (1982) tested many authentic hydroxyflavansand other flavonoids in addition to three daffodil flavans,and showed that some flavonoids act as phytoalexinsagainst Botrytis cinerea and Cladosporium herbarum.

It was also reported that naturally occurring flavanonesact as phytoalexins. Betagarin (5,2´-dihydroxy-6,7-methylenedioxyflavanone, Fig. 6-12) was found asphytoalexin against Cercospora beticola which isresponsible for sugarbeet leaf spot disease, together with aisoflavone, betavulgarin (2´-hydroxy-5-methoxy-6,7-methylenedioxyisoflavone, Fig. 6-47) from Beta vulgaris(Chenopodiaceae) (Geigert et al., 1973; Johnson et al.,1976; Martin, 1977). Another flavanone phytoalexin wasisolated from the infected roots of sugarbeet, with eachtwo dihydroflavonols and isoflavones, and a flavone(Takahashi et al., 1987). They were identifed as newmethylenedioxylated flavonoids, 3,5-dihydroxy-6,7-methylenedioxyflavanone (Fig. 6-14), 5,2´-dihydroxy-6,7-methylenedioxyisoflavone and 5-hydroxy-6,7-methylenedioxyflavone, and inhibit germination ofRhizoctonia solani with known compounds, betagarin,betavulgarin and 3,5-dihydroxy-6,7-methylenedioxy-flavanone.

Six flavanones were isolated from the bark of Prunuscerasus (Rosaceae) with each three flavones andisoflavones. Of these flavanones, naringenin andsakuranetin (Fig. 6-18) were strongly toxic at higherconcentrations against a fungus, Cystospora persoonii, andpinostrobin, naringenin 7-O-glucoside and sakuranetin 5-O-glucoside were moderately, but dihydrowogonin 7-O-glucoside was not toxic (Geibel, 1995). Other flavonoids,chrysin (Fig. 6-21), tectochrysin (Fig. 6-33) and its 5-O-glucoside, genistein, and prunetin (Fig. 6-65) and its 5-O-glucoside showed more or less toxicity against C. persoonii.

Five flavanone phytoalexins were isolated from thexylem of Pinus taeda and P. strobus (Yamada & Ito, 1993).These compounds were identified as pinobanksin (Fig. 6-16), pinocembrin and pinostrobin (Fig. 6-17), andimmobilize nematode, Bursaphelenchus xylophilus. A veryrare flavanone, sigmoidin B 3´-methyl ether (Fig. 6-19)was isolated from the stem bark of Erythrina berteroana(Leguminosae) and shown to be antifungal againstCladosporium cucumerinum (Tomás-Barberán et al.,1988b).

Polymethylated flavones and flavonols were reported

Iwashina, T.

-35-

Fig. 6. Chemical structures of flavonoids as phytoalexins. 1 = apigeninidin, 2 = luteolinidin, 3 = cephalocerone, 4 = isoliquiritigenin 2´-methyl ether, 5 = dihydroisorhamnetin, 6 = fustin, 7 = taxifolin 4´-methylether, 8 = broussin, 9 = cassiaflavan, 10 = 7,4´-dihydroxy-8-methylflavan, 11 = 7-hydroxyflavan, 12 = betagarin, 13 = liquiritigenin, 14 = 3,5-dihydroxy-6,7-methylenedioxyflavanone, 15 = isosakuranetin, 16 = pinobanksin, 17 = pinostrobin, 18 = sakuranetin, 19 = sigmoidin B 3´-methyl ether, 20 =chrysoeriol, 21 = chrysin, 22 = 7,4´-dihydroxyflavone, 23 = 5,4´-dihydroxy-6,7,8,3´-tetramethoxyflavone, 24 = xanthomicrol, 25 = 5,7-dimethoxyflavone,26 = diosmetin, 27 =flavone, 28 = geraldone, 29 = isopratol, 30 = demethylnobiletin, 31 = nobiletin, 32 = tangeretin, 33 = tectochrysin, 34 = 5,6,7,8-tetramethoxyflavone, 35 = baicalein trimethyl ether, 36 = ayanin, 37 = casticin, 38 = chrysosplenol D, 39 = isokaempferide, 40 = 3,5,6,7,8-pentamethoxyflavone, 41 = quercetin 3,3´-dimethyl ether, 42 = resokaempferol, 43 = 3,5,6,7-tetramethoxyflavone, 44 = herbacetin 3,8-dimethyl ether,45 = galangin trimethyl ether, 46 = alpinumisoflavone, 47 = betavulgarin, 48 = coumesterol, 49 = dalbergioidin, 50 = demethylvestitol, 51 =dihydrowighteone, 52 = erybraedin B, 53 = erybraedin C, 54 = glyceollin I, 55 = glyceollin II, 56 = glyceollin III, 57 = homopterocarpin, 58 = erybraedinA, 59 = erythrabyssin II and 60 = medicarpin. Naringenin, apigenin, luteolin, kaempferol, quercetin and isoorientin (see, Fig. 1), taxifolin, catechin,hesperetin and isorhamnetin (see, Fig. 2), aromadendrin, pinocembrin and morin (see, Fig. 3), eriodyctiol, homoeriodyctiol, fisetin, myricetin, genistein,2´-hydroxygenistein, kievitone, licoisoflavone A, licoisoflavone B, luteone, maackiain, medicarpin, phaseollin, phaseollinisoflavone, pisatin, vestitol,wighteone and phaseollidin (see, Fig. 4), and biochanin A, daidzein and formononetin (see, Fig. 5). (continue)

Flavonoid function and activity

- 36-

Fig. 6. Chemical structures of flavonoids as phytoalexins (continue).61 = isoneorautenol, 62 = lupinalbin A, 63 = lupiwighteone, 64 = phaseol,65 = prunetin, 66 = sativan, 67 = lupalbigenin and 68 = tuberosin.

Table 6 Flavonoids as phytoalexins, and inducers of nitrogen fixingbacteria

Classes Flavonoids Sources Inhibited microorganisms (References)

Anthocyanin apigeninidin Sorghum bicolor (Gramineae) Colletotrichum graminicola, Helminthosporium maydis (Nicholson et

al., 1987, 1988; Snyder et al., 1991) apigeninidin 5-O-(5´´-caffeoylarabinoside) Sorghum bicolor Colletotrichum graminicola, Helminthosporium maydis (Hipskind et

al., 1990) luteolinidin Sorghum bicolor Colletotrichum graminicola, Helminthosporium maydis (Nicholson et

al., 1987, 1988; Snyder et al., 1991)

Aurone cephalocerone Cephalocereus senilis (Cactaceae) Escherichia coli, Pseudomonas aeruginosa (Pare et al., 1991)

Chalcone isoliquiritigenin 2´-methyl ether Medicago sativa (Leguminosae) Rhizobium meliloti* (Hartwig et al., 1989, 1990b; Maxwell et al.,

1989) 4,2´,4´,β -tetrahydroxychalcone Medicago sativa Pyricularia oryzae, Cladosporium herbarum (Kobayashi et al.,

1988)

Dihydroflavonol aromadendrin commercial agent Rhizobium leguminosarum* (Zaat et al., 1989) dihydroisorhamnetin commercial agent Rhizobium leguminosarum* (Zaat et al., 1989) 3,5-dihydroxy-6,7-methylenedioxyflavanone Beta vulgaris (Chenopodiaceae) Rhizobium solani (Takahashi et al., 1987) fustin commercial agent Rhizobium leguminosarum* (Zaat et al., 1989) taxifolin commercial agent Rhizobium leguminosarum* (Zaat et al., 1989) (2R,3R)-(+)-taxifolin 3-O-glucoside Fagus sylvatica (Fagaceae) Nectria coccinea (with beech scale) (Dübeler et al., 1997) (2R,3R)-(+)-taxifolin 3-O-xyloside Fagus sylvatica Nectria coccinea (with beech scale) (Dübeler et al., 1997) (2S,3S)-(- )-taxifolin 3-O-glucoside Fagus sylvatica Nectria coccinea (with beech scale) (Dübeler et al., 1997) taxifolin 4´-methyl ether Vicia sativa (Leguminosae) Rhizobium leguminosarum* (Zaat et al., 1989)

Flavan broussin Broussonetia papyrifera (Moraceae) Bipolaris leersiae (Takasugi et al., 1980)

cassiaflavan Narcissus pseudonarcissus (Amaryllidaceae),commercial agent

Botrytis cinerea (Coxon et al., 1980; O’Neill & Mansfield, 1982), Cladosporium herbarum (O’Neill & Mansfield, 1982) 7,4´-dihydoxy-8-methylflavan Narcissus pseudonarcissus, commercial agent Botrytis cinerea (Coxon et al., 1980; O’Neill & Mansfield, 1982), Cladosporium herbarum (O’Neill & Mansfield, 1982) flavan commercial agent Botrytis cinerea, Cladosporium herbarum (O’Neill & Mansfield,

1982) 7-hydroxyflavan Narcissus pseudonarcissus, commercial agent Botrytis cinerea (Coxon et al., 1980; O’Neill & Mansfield, 1982), Cladosporium herbarum (O’Neill & Mansfield, 1982)

Flavan 3-ol (+)-catechin commercial agent Aspergillus spp. (Weidenbörner et al., 1990b)

Flavanone betagarin Beta vulgaris Cercospora beticola (Johnson et al., 1976; Martin, 1977; Geigert et

al., 1973), Rhizoctonia solani (Takahashi et al., 1987) liquiritigenin Medicago sativa, commercial agent Rhizobium meliloti* (Hartwig et al., 1989; Maxwell et al., 1989),

Rhizobium spp.* (Bassam et al., 1988) 5,7-dihydroxy-6-methoxyflavanone Beta vulgaris Rhizoctonia solani (Takahashi et al., 1987) 7,3´-dihydroxy-4´-methoxyflavanone Vicia sativa Rhizobium leguminosarum* (Zaat et al., 1989) eriodictyol commercial agent Rhizobium leguminosarum* (Firmin et al., 1986; Zaat et al., 1989), Rhizobium meliloti* (Peters & Long, 1988) eriodictyol 7-O-glucoside commercial agent Rhizobium leguminosarum* (Zaat et al., 1989) flavanone commercial agent Verticillium albo-atrum (Picman et al., 1995), Aspergillus spp. (Weidenbörner et al., 1990b) hesperetin commercial agent Verticillium albo-atrum (Picman et al., 1995), Aspergillus spp.

(Weidenbörner et al., 1990b), Rhizobium leguminosarum* (Firminet al., 1986; Zaat et al., 1989)

hesperetin 7-O-rutinoside commercial agent Verticillium albo-atrum (Picman et al., 1995) homoeriodictyol commercial agent Rhizobium leguminosarum* (Zaat et al., 1989) isosakuranetin commercial agent Rhizobium leguminosarum* (Zaat et al., 1989) naringenin Prunus cerasus (Rosaceae), Vigna angularis

(Leguminosae), commercial agent Verticillium albo-atrum (Picman et al., 1995), Aspergillus spp. (Weidenbörner et al., 1990b), Cystospora persoonii (Geibel, 1995), Rhizobium leguminosarum* (Firmin et al., 1986; Zaat et al., 1989), Cephalosporium gregatum (Abe et al., 1987), Rhizobium spp.*

(Bassam et al., 1988) naringenin 7-O-glucoside Prunus cerasus, commercial agent Cystospora persoonii (Geibel, 1995), Rhizobium leguminosarum*

(Zaat et al., 1989) naringenin 7-O-neohesperidoside Acacia farnesiana (Leguminosae),

commercial agent Verticillium albo-atrum (Picman et al., 1995), Aspergillus carneus

etc. (El-Gammal & Mansour, 1986) pinobanksin Pinus strobus, P. taeda (Pinaceae) Bursaphelenchus xylophilus (Yamada & Ito, 1993) pinocembrin Pinus strobus, P. taeda, commercial agent Rhizobium leguminosarum* (Zaat et al., 1989), Bursaphelenchus

xylophilus (Yamada & Ito, 1993) pinostrobin Prunus cerasus Cystospora persoonii (Geibel, 1995) sakuranetin Prunus cerasus Cystospora persoonii (Geibel, 1995) sakuranetin 5-O-glucoside Prunus cerasus Cystospora persoonii (Geibel, 1995) sigmoidin B 3´-methyl ether Erythrina berteroana (Leguminosae) Cladosporum cucumerinum (Tomás-Barberán et al., 1988b)

Flavone apigenin commercial agent Verticillium albo-atrum (Picman et al., 1995), Rhizobium

leguminosarum* (Firmin et al., 1986; Zaat et al., 1989), Rhizo-bium meliloti* (Peters & Long, 1988), Rhizobium spp.* (Bassam etal., 1988)

(continue)

Iwashina, T.

-37-

apigenin 7-O-glucoside commercial agent Rhizobium leguminosarum* (Firmin et al., 1986; Zaat et al., 1989) apigenin 7-O-neohesperidoside commercial agent Verticillium albo-atrum (Picman et al., 1995) chrysoeriol Medicago sativa Rhizobium meliloti* (Hartwig et al., 1990b) chrysin Prunus cerasus, commercial agent Verticillium albo-atrum (Picman et al., 1995), Cystospora persoonii

(Geibel, 1995) 7,4´-dihydroxyflavone Trifolium repens, Medicago sativa, commercial agent Rhizobium trifolii* (Redmond et al., 1986; Djordjevic et al., 1987), Rhizobium meliloti* (Hartwig et al., 1989; Maxwell et al., 1989), Pyricularia oryzae, Cladosporium herbarum (Kobayashi et al.,

1988), Rhizobium spp* (Bassam et al., 1988) 7,8-dihydroxyflavone commercial agent Rhizobium leguminosarum*(Zaat et al., 1989) 5,4´-dihydroxy-6,7,8,3´-tetramethoxyflavone Citrus spp. Deuterophoma tracheiphila (Piattelli & Impellizzeri, 1971) xanthomicrol Citrus spp. Deuterophoma tracheiphila (Pinkas et al., 1968) 5,7-dimethoxyflavone Helichrysum nitens (Compositae) Cladosporum cucumerinum (Tomás-Barberán et al., 1988a, 1988b) diosmetin 7-O-rutinoside commercial agent Verticillium albo-atrum (Picman et al., 1995) flavone commercial agent Verticillium albo-atrum (Picman et al., 1995), Aspergillus spp.

(Weidenbörner et al., 1990b) geraldone Trifolium repens Rhizobium trifolii* (Redmond et al., 1986) 7-hydroxyflavone commercial agent Aspergillus spp. (Weidenbörner et al., 1990b), Rhizobium

leguminosarum* (Zaat et al., 1989) isopratol Trifolium repens Rhizobium trifolii* (Redmond et al., 1986) 5-hydroxy-6,7-methylenedioxyflavone Beta vulgaris Rhizoctonia solani (Takahashi et al., 1987) demethylnobiletin Citrus spp. Deuterophoma tracheiphia (Piattelli & Impellizzeri, 1971) luteolin Medicago sativa, commercial agent Verticillium albo-atrum (Picman et al., 1995), Rhizobium meliloti*

(Peters et al., 1986; Peters & Long, 1988; Caetano-Anollés et al.,1988; Hartwig et al., 1989, 1990a), Rhizobium leguminosarum*(Firmin et al., 1986; Zaat et al., 1989), Rhizobium spp.* (Bassamet al., 1988)

luteolin 7-O-glucoside commercial agent Verticillium albo-atrum (Picman et al., 1995), Rhizobium

leguminosarum* (Zaat et al., 1989) nobiletin Citrus reticulata, Citrus spp. Deuterophoma tracheiphila (Ben-Aziz, 1967; Piattelli &

Impellizzeri, 1971), Fusarium moniliforme, Sclerotium rolfsii(Pinkas et al., 1968)

tangeretin Citrus spp. Deuterophoma tracheiphila (Piattelli & Impellizzeri, 1971),

Fusarium moniliforme, Sclerotium rolfsii (Pinkas et al., 1968) tectochrysin Prunus cerasus Cystospora persoonii (Geibel, 1995) 5,6,7,8-tetramethoxyflavone Helichrysum nitens Cladosporum cucumerinum (Tomás-Barberán et al., 1988a, 1988b) 7,3´,4´-trihydroxyflavone commercial agent Rhizobium leguminosarum* (Firmin et al., 1986) baicalein trimethyl ether Helichrysum nitens Cladosporum cucumerinum (Tomás-Barberán et al., 1988a, 1988b)

Flavonol ayanin Psiadia trinervia (Compositae) Cladosporium cucumerinum (Wang et al., 1989) casticin Psiadia trinervia Cladosporium cucumerinum (Wang et al., 1989) chrysosplenol D Psiadia trinervia Cladosporium cucumerinum, Bacillus cereus (Wang et al., 1989) fisetin commercial agent Verticillium albo-atrum (Picman et al., 1995) flavonol commercial agent Aspergillus spp. (Weidenbörner et al., 1990b) isokaempferide Psiadia trinervia Bacillus cereus (Wang et al., 1989) isorhamnetin commercial agent Verticillium albo-atrum (Picman et al., 1995) kaempferol Tribulus pentandrus (Zygophyllaceae), commercial

agent Verticillium albo-atrum (Picman et al., 1995), Aspergillus carneus

etc. (El-Gammal & Mansour, 1986), Rhizobium spp.* (Bassam etal., 1988)

kaempferol 3-O-robinobioside-7-O-rhamnoside Andropogonscoparium (Gramineae)

Nitrosomonas sp., Nitrobacter sp. (Rice & Pancholy, 1974) morin commercial agent Verticillium albo-atrum (Picman et al., 1995) myricetin Geranium mascatense (Geraniaceae), Sorghastrum

nutans (Gramineae), commercial agent Verticillium albo-atrum (Picman et al., 1995), Aspergillus carneus

etc. (El-Gammal & Mansour, 1986), Nitrosomonas sp., Nitrobactersp. (Rice & Pancholy, 1974)

3,5,6,7,8-pentamethoxyflavone Helichrysum nitens Cladosporium cucumerinum (Tomás-Barberán et al., 1988a, 1988b) quercetin Pinus ponderosa (Pinaceae), Geranium dissectum

(Geraniaceae) Nitrosomonas sp., Nitrobacter sp. (Lodhi & Killingbeck, 1980), Aspergillus carneus etc. (El-Gammal & Mansour, 1986) quercetin 3,3´-dimethyl ether Psiadia trinervia Bacillus cereus (Wang et al., 1989) quercetin 3-O-glucoside commercial agent Verticillium albo-atrum (Picman et al., 1995) quercetin 4´-O-glucoside Haplopappus ciliatus (Compositae) Nitrosomonas sp., Nitrobacter sp. (Rice & Pancholy, 1974) quercetin 3-methyl ether 7-O-diglucoside-4´-O-glucoside

Andropogon scoparius, A. gerardi (Gramineae) Nitrosomonas sp., Nitrobacter sp. (Rice & Pancholy, 1974) quercetin 3-O-rutinoside Eucalyptus camaldulensis (Myrtaceae) Aspergillus carneus etc. (El-Gammal & Mansour, 1986) resokaempferol Panicum virgatum (Gramineae) Nitrosomonas sp., Nitrobacter sp. (Rice & Pancholy, 1974) 3,5,6,7-tetramethoxyflavone Helichrysum nitens Cladosporium cucumerinum (Tomás-Barberán et al., 1988a, 1988b) herbacetin 3,8-dimethyl ether Psiadia trinervia Cladosporium cucumerinum, Bacillus cereus (Wang et al., 1989) galangin trimethyl ether Helichrysum nitens Cladosporium cucumerinum (Tomás-Barberán et al., 1988a, 1988b)

C-Glycosylflavone isoorientin Ambrosia psilostachya (Compositae) Nitrosomonas sp., Nitrobacter sp. (Rice & Pancholy, 1974)

Isoflavonoid acetoxydimethoxypterocarpan Swartzia madagascariensis

(Leguminosae) Momilinia fructicola (Perrin & Cruickshank, 1969) acetoxymethoxypterocarpan Swartzia madagascariensis Momilinia fructicola (Perrin & Cruickshank, 1969) acetoxymethylenedioxypterocarpan Swartzia madagascariensis Momilinia fructicola (Perrin & Cruickshank, 1969) alpinumisoflavone Lupinus albus (Leguminosae) Cladosporium herbarum (Ingham et al., 1983) betavulgarin Beta vulgaris Cerospora beticola (Johnson et al., 1976; Martin, 1977; Geigert et

al., 1973), Rhizoctonia solani (Takahashi et al., 1987) biochanin A commercial agent Rhizoctonia solani, Sclerotium rolfsii (Weidenbörner et al., 1990a), Rhizobium spp.* (Bassam et al., 1988) biochanin A-isoflavanone commercial agent Rhizoctonia solani, Sclerotium rolfsii (Weidenbörner et al., 1990a) coumesterol commercial agent Verticillium albo-atrum (Picman et al., 1995), Rhizobium spp.*

(Bassam et al., 1988) daidzein Glycine max (Leguminosae), commercial agent Verticillium albo-atrum (Picman et al., 1995), Bradyrhizobium

japonicum* (Kosslak et al., 1987), Rhizobium spp.* (Bassam etal., 1988)

dalbergioidin Vigna angularis Cephalosporium gregatum (Abe et al., 1987) 6a,11a-dehydroglyceollin commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976) 6a,11a-dehydrotuberosin commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976) demethylvestitol Vigna angularis Cephalosporium gregatum (Abe et al., 1987) dihydrowighteone Vigna angularis Cephalosporium gregatum (Abe et al., 1987) 7,2´-dihydroxyisoflavan commercial agent Botrytis cinerea, Cladosporium herbarum (O’Neill & Mansfield,

1982) 5,7-dihydroxy-4´-methoxyisoflavan commercial agent Rhizoctonia solani, Sclerotium rolfsii (Weidenbörner et al., 1990a)

Table 6 (continue)

(continue)

Flavonoid function and activity

- 38-

6,7-dihydroxy-3´-methoxyisoflavan commercial agent Aspergillus spp. (Weidenbörner et al., 1989) 6,7-dihydroxy-4´-methoxyisoflavan commercial agent Rhizoctonia solani, Sclerotium rolfsii (Weidenbörner et al., 1990a) 7,8-dihydroxy-4´-methoxyisoflavan commercial agent Aspergillus spp. (Weidenbörner et al., 1989) 6,4´-dihydroxy-7-methoxyisoflavan commercial agent Rhizoctonia solani, Sclerotium rolfsii (Weidenbörner et al., 1990a) 7,4´-dihydroxy-6-methoxyisoflavan commercial agent Rhizoctonia solani, Sclerotium rolfsii (Weidenbörner et al., 1990a) 5,2´-dihydroxy-6,7-methylenedioxyisoflavone Beta vulgaris Rhizoctonia solani (Takahashi et al., 1987) erybraedin A Erythrina mildbraedii Staphylococcus aureus, Mycobacterium smegmatis (Mitscher et al.,

1988) erybraedin B Erythrina mildbraedii Staphylococcus aureus, Mycobacterium smegmatis (Mitscher et al.,

1988) erybraedin C Erythrina mildbraedii Staphylococcus aureus, Mycobacterium smegmatis (Mitscher et al.,

1988) erythrabyssin-II Erythrina mildbraedii Staphylococcus aureus, Mycobacterium smegmatis (Mitscher et al.,

1988) formononetin Medicago arabica (Leguminosae), Trifolium repens, commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976),

Aspergillus carneus etc, (El-Gammal & Mansour, 1986),Rhizobium trifolii (Djordjevic et al., 1987), Rhizobium spp.*(Bassam et al., 1988)

genistein Glycine max, Lupinus spp., commercial agent Verticillium albo-atrum (Picman et al., 1995), Cladosporium

herbarum (Ingham et al., 1983), Bradyrhizobium japonicum*(Kosslak et al., 1987), Rhizoctonia solani, Sclerotium rolfsii(Weidenbörner et al., 1990a), Rhizobium spp.* (Bassam et al.,1988)

genistein 7-O-glucoside commercial agent Verticillium albo-atrum (Picman et al., 1995) genistein-isoflavanone commercial agent Rhizoctonia solani, Sclerotium rolfsii (Weidenbörner et al., 1990a) glyceollin Glycine max Phytophthora megasperma (Stössel, 1982) glyceollin I Glycine max Meloidogyne incognita (Kaplan et al., 1980a, 1980b) glyceollin II Glycine max Meloidogyne incognita (Kaplan et al., 1980a, 1980b) glyceollin III Glycine max Meloidogyne incognita (Kaplan et al., 1980a, 1980b)(-)-glyceollin commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976)(- )-homopterocarpin Pterocarpus sp. Momilinia fructicola (Perrin & Cruickshank, 1969) 6-hydroxy-7,4´-dimethoxyisoflavan commercial agent Rhizoctonia solani, Sclerotium rolfsii (Weidenbörner et al., 1990a) 7-hydroxy-6,4´-dimethoxyisoflavan commercial agent Rhizoctonia solani, Sclerotium rolfsii (Weidenbörner et al., 1990a) 2´-hydroxy-7,4´-dimethoxyisoflavan commercial agent Botrytis cinerea, Cladosporium herbarum (O’Neill & Mansfield,

1982) 2´-hydroxygenistein Lupinus spp., Vigna angularis Cladosporium herbarum (Ingham et al., 1983), Cephalosporium

gregatum (Abe et al., 1987) 7-hydroxyisoflavan commercial agent Botrytis cinerea, Cladosporium herbarum (O’Neill & Mansfield,

1982) 2´-hydroxyisoflavan commercial agent Botrytis cinerea, Cladosporium herbarum (O’Neill & Mansfield,

1982) 7-hydroxy-2´-methoxyisoflavan commercial agent Botrytis cinerea, Cladosporium herbarum (O’Neill & Mansfield,

1982) 3-hydroxy-8,9-methylenedioxy-6a,11a-dehydropterocarpan commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976) isoneorautenol Erythrina mildbraedii Staphylococcus aureus, Mycobacterium smegmatis (Mitscher et

al., 1988) kieviton Leguminosae sp. Corynebacterium fascians, Bacillus subtilis, Micrococcus luteus (Gnanamanickam & Smith, 1980), Botrytis cinerea (Fraile et al.,

1982) licoisoflavone A Lupinus angustifolius

Colletrichum gloeosporioides, Cladosporium cladosporioides (Laneet al., 1987)

licoisoflavone B Lupinus angustifolius, L. albus Cladosporium herbarum (Harborne et al., 1976; Ingham et al., 1983), Colletrichum gloeosporioides, Cladosporium cladosporioides (Lane

et al., 1987) lupalbigenin Lupinus albus Cladosporium herbarum (Ingham et al., 1983) lupinalbin A Vigna angularis Cephalosporium gregatum (Abe et al., 1987) lupinisoflavone Lupinus albus, L. luteus Cladosporium herbarum (Harborne et al., 1976; Ingham et al., 1983) lupiwighteone Vigna angularis Cephalosporium gregatum (Abe et al., 1987) luteone Lupinus angustifolius, Lupinus spp. Cladosporium herbarum (Harborne et al., 1976; Ingham et al., 1983), Colletrichum gloeosporioides, Cladosporium cladosporioides (Lane

et al., 1987)maackiain Trigonella spp. (Leguminosae) Helminthosporium carbonum (Ingham & Harborne, 1976)(+)-maackiain Sophora japonica (Leguminosae) Momilinia fructicola (Perrin & Cruickshank, 1969)(- )-maackiain Trifolium pratense Momilinia fructicola (Bredenberg & Hietala, 1961a, 1961b; Perrin &

Cruickshank, 1969)(- )-maackiain 3-O-glucoside Trifolium pratense Helminthosporium carbonum (Ingham & Harborne, 1976) medicarpin Trigonella spp. (Leguminosae) Helminthosporium carbonum (Ingham & Harborne, 1976)(+)-medicarpin commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976)(± )-medicarpin commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976)(- )-3-hydroxy-9-methoxypterocarpan commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976)(+)-2´-methoxyphaseollin-isoflavan commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976) phaseol Vigna angularis Cephalosporium gregatum (Abe et al., 1987) phaseollidin Leguminosae sp. Corynebacterium fascians, Bacillus subtilis, Micrococcus luteus (Gnanamanickam & Smith, 1980), Botrytis cinerea (Fraile et al.,

1982) phaseollin Phaseollus vulgaris Corynebacterium fascians, Bacillus subtilis, Micrococcus luteus (Gnanamanickam & Smith, 1980), Fusarium spp. etc. (VanEtten,

1973), Botrytis cinerea (Fraile et al., 1982)(- )-phaseollin Phaseollus vulgaris, commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976),

Momilinia fructicola (Perrin & Cruickshank, 1969) phaseollin-isoflavan Leguminosae sp. Corynebacterium fascians, Bacillus subtilis, Micrococcus luteus (Gnanamanickam & Smith, 1980), Botrytis cinerea (Fraile et al.,

1982)(-)-phaseollin-isoflavan commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976) pisatin Pisum sativum Fusarium spp. etc. (VanEtten, 1973)(+)-pisatin Pisum sativum, commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976),

Monilinia fructicola (Perrin & Cruickshank, 1969), manymicroorganisms (Cruickshank, 1962)

prunetin Prunus cerasus Cytospora persoonii (Geibel, 1995) sativan Trigonella spp. Helminthosporium carbonum (Ingham & Harborne, 1976)(-)-sativan commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976) 6,7,4´-trimethoxyisoflavan commercial agent Rhizoctonia solani, Sclerotium rolfsii (Weidenbörner et al., 1990a)(+)-tuberosin commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976) vestitol Trigonella spp. Helminthosporium carbonum (Ingham & Harborne, 1976)(- )-vestitol commercial agent Fusarium solani, Aphanomyces euteiches (VanEtten, 1976) (3R)-vestitol Vigna angularis Cephalosporium gregatum (Abe et al., 1987) wighteone Lupinus angustifolius, Lupinus spp. Cladosporium herbarum (Harborne et al., 1976; Ingham et al., 1983), Colletrichum gloeosporioides, Cladosporium cladosporioides (Lane

et al., 1987)

*Nitrogen fixing bacteria induced by flavonoids.

Table 6 (continue)

Iwashina, T.

-39-

as phytoalexins against certain microorganisms. Sixcompounds were isolated from the aerial parts ofHelichrysum nitens (Compositae), and identified as fullymethylated flavones and flavonols, 5,7-dimethoxyflavone(Fig. 6-25), baicalein trimethyl ether (Fig. 6-35), galangintrimethyl ether (Fig. 6-45), 5,6,7,8-tetramethoxyflavone(Fig. 6-34), 3,5,6,7-tetramethoxyflavone (Fig. 6-43),3,5,6,7,8-pentamethoxyflavone (Fig. 6-40) (Tomás-Barberán et al., 1988a, 1988b). They inhibit growth ofCladosporium cucumerinum, but two 5-hydroxylatedflavones, alnetin (5-hydroxy-6,7,8-trimethoxyflavone) and5-hydroxy-6,7-dimethoxyflavone which were accompaniedwith methylated flavonoids were inactive. Other fullymethylated flavones, nobiletin (Fig. 6-31) and tangeretin(Fig. 6-32) were isolated from the leaves of Citrus spp.together with 5,4´-dihydroxy-6,7,8,3´-tetramethoxyflavone(Fig. 6-23), xanthomicrol (Fig. 6-24) and demethylnobiletin(Fig. 6-30) (Piattelli & Impellizzeri, 1981; Pinkas et al.,1968). They were shown to display antifungal activityagainst Deuterophoma tracheiphila which is responsiblefor the highly destructive citrus disease known as “Mal-secco”. In addition, nobiletin and tangeretin also inhibitedgrowth of other pathogenic fungi, Fusalium moniliforme,Sclerotium rolfsii and Verticillium albo-atrum (Pinkas etal., 1968).

Antimicrobial flavonols were reported from Psiadiatrinervia (Compositae) which are used in African traditionalmedicine (Wang et al., 1989). Thirteen 3-methylatedflavonols were isolated from the leaves. Four of them,ayanin (Fig. 6-36), casticin (Fig. 6-37), chrysosplenol D(Fig. 6-38) and herbacetin 3,8-dimethyl ether (Fig. 6-44)were resposible for the antifungal activity againstCladosporium cucumerinum. Moreover, chrysosplenol D,isokaempferide (Fig. 6-39), quercetin 3,3´-dimethyl ether(Fig. 6-41) and herbacetin 3,8-dimethyl ether displayedantibacterial activity against Bacillus cereus, but remainedones were inactive.

The inhibition of nitrification by climax ecosystem wasobserved. Though hydrolyzable and condensed tannins,and tannin derivatives are important inhibitors ofnitrification (Rice & Pancholy, 1973), flavonols and otherphenolic compounds also inhibit nitrification by bacteria,Nitrobacter sp. and Nitrosomonas sp. (Rice & Pancholy,1974). Phenolic inhibitors were myricetin, quercetin 4´-O-glucoside, quercetin 3-methyl ether 4´-O-glucoside-7-O-diglucoside, kaempferol 3-O-robinobioside-7-O-rhamnoside (miss-described as kaempferol 3-O-rabinoside-7-O - rhamnos ide by o r ig ina l paper? ) and C -glycosylflavone, isoorientin, from the various plant species.Caffeic acid, chlorogenic acid, neochlorogenic acid andferulic acid were also shown to be inhibitors.

Isoflavonoids may retain most phytoalexin substancesamong the flavonoid classes, and majority of them occurin the Leguminosae. Perrin & Cruickshank (1969) reportedmany isoflavonoid phytoalexins from various legumespecies. These compounds belong to pterocarpan andinhibited growth of fungus, Monilinia fructicola.

Isoflavonoid phytoalexins were obtained from the rootsand/or leaves of Lupinus albus and related species andshown to be inhibitors against Cladosporium herbarum(Harborne et al., 1976; Ingham et al., 1983).

Nine antifungal stress flavonoids were isolated fromthe roots of adzuki bean, Vigna angularis, which had beentreated with pathogenic fungus, Cephalosporium gregatum(Abe et al., 1987). The fungus causes brown stem rotdisease on the host plants. These compounds were eightisoflavonoids, dihydrowighteone (Fig. 6-51), dalbergioidin(Fig. 6-49), phaseol (Fig. 6-64), 2´-hydroxygenistein,lupiwighteone (Fig. 6-63), lupinalbin A (Fig. 6-62), (3R)-(- )-vestitol and demethylvestitol (Fig. 6-50), andflavanone, naringenin.

It was reported by Kaplan et al. (1980a, 1980b) thatglyceollins (Fig. 6-54, 55 and 56), which are phytoalexinsagainst Phytophthora megasperma (Stössel, 1982), in theroots of Glycine max, were also accumulated by infectionof the root-knot nematode, Meloidogyne incognita tosoybean roots.

Four pterocarpans, erythrabyssin-II (Fig. 6-59),erybraedins A - C (Fig. 6-58, 52 and 53) and isoneorautenol(Fig. 6-61) from Nigerian legume species, Erythrinamildbraedii were shown to be antimicrobial againstStaphylococcus aureus and Mycobacterium smegmatis(Mitscher et al., 1988). However, accompanied alkaloidsfractions were inactive.

In addition to naturally occurring flavonoids, VanEtten(1976), O’Neill & Mansfield (1982), Weidenbörner et al.(1990a) have reported that many flavonoids, especiallyisoflavonoids inhibit growth of many microorganisms.

As described in this paper, many flavonoids havevarious biological activity such as pollinator attractants,oviposition stimulants, feeding stimulants and deterrents,allelopathy or phytoalexins. However, the activity issurveyed to a small number of naturally occurringflavonoids, in spite of ca. 5,000 kinds of flavonoids havebeen found in plant kingdom. It is hoped that the functionand activity of the flavonoids to plants and other organismsare further elucidated.

AcknowledgementsThe author expresses his sincere gratitude to Dr. Kaori

Tomita-Yokotani of University of Tsukuba, who gave hima chance to write this review.

ReferencesAbe, N., Sato, H. and Sakamura, S. (1987) Antifungal stress

compounds from adzuki bean, Vigna angularis, treated withCephalosporium gregatum type B. Agric. Biol. Chem., 51, 349-353.

Bassam, B.J., Djordjevic, M.A., Redmond, J.W., Batley, M. andRolfe, B.G. (1988) Identification of a nodD-dependent locusin the Rhizobium strain NGR234 activated by phenolic factorssecreted by soybean and other legumes. Mol. Plant-MicrobeInteract., 1, 161-168.

Ben-Aziz, A. (1967) Nobiletin is main fungistat in tangerines

Flavonoid function and activity

- 40-

resistant to Mal Secco. Science, 155, 1026-1027.Bernays, E.A. (1981) Plant tannins and insect behaviors: an

appraisal. Ecol. Entomol., 6, 353-360.Bernays, E.A., Howard, J.J., Champagne, D. and Estesen, B.J.

(1991) Rutin: a phagostimulant for the polyphagous acrididSchistocerca americana. Entomol. Exp. Appl., 60, 19-28.

Besson, E., Dellamonica, G., Chopin, J., Markham, K.R., Kim,M., Koh, H.-S. and Fukami, H. (1985) C-Glycosylflavonesfrom Oryza sativa. Phytochemistry, 24, 1061-1064.

Bloom, M. and Vickery, R.K. (1973) Pattern partitioning of floralflavonoids in the Mimulus luteus complex. Phytochemistry,12, 165-167.

Bohm, B.A. (1975) Chalcones, aurones and dihydrochalcones.In Harborne, J.B., Mabry, T.J. and Mabry, H. (eds.) Theflavonoids. Chapman and Hall, London. pp. 442-504.

Bredenberg, J.B. and Hietala, P.K. (1961a) Investigation of thestructure of trifolirhizin, an antifungal compound fromTrifolium pratense L. Acta Chem. Scand., 15, 696-699.

Bredenberg, J.B. and Hietala, P.K. (1961b) Confirmation of thestructure of trifolirhizin. Acta. Chem. Scand., 15, 936-937.

Caetano-Anollés, G., Crist-Estes, D.K. and Bauer, W.D. (1988)Chemotaxis of Rhizobium meliloti to the plant flavone luteolinrequires functional nodulation genes. J. Bacteriol., 170, 3164-3169.

Carballeira, A. (1980) Phenolic inhibitors in Erica australis L.and in associated soil. J. Chem. Ecol., 6, 593-596.

Chang, C.-F., Suzuki, A., Kumai, S. and Tamura, S. (1969)Chemical studies on “clover sickness” part II. Biologicalfunctions of isoflavonoids and their related compounds. Agric.Biol. Chem., 33, 398-408.

Chan, B.G., Waiss Jr., A.C. and Lukefahr, M. (1978a) Condensedtannin, an antibiotic chemical from Gossypium hirsutum. J.Insect Physiol., 24, 113-118.

Chan, B.G., Waiss Jr., A.C., Binder, R.G. and Elliger, C.A. (1978b)Inhibition of Lepidopterous larval growth by cottonconstituents. Entomol. Exp. Appl., 24, 94-100.

Cody, V., Middleton Jr., E. and Harborne, J.B. (1986) Plantflavonoids in biology and medicine. Biochemical,pharmacological, and structure-activity relationships. Alan R.Liss, New York.

Cody, V., Middleton Jr., E., Harborne, J.B. and Beretz, A. (1988)Plant flavonoids in biology and medicine II. Biochemical,cellular, and medicinal properties. Alan R. Liss, New York.

Cooper-Driver, G., Finch, S., Swain, T. and Bernays, E. (1977)Seasonal variation in secondary plant compounds in relationto the palatability of Pteridium aquilinum. Biochem. Syst.Ecol., 5, 177-183.

Coxon, D.T., O’Neill, T.M., Mansfield, J.W. and Porter, A.E.A.(1980) Identification of three hydroxyflavan phytoalexins fromdaffodil bulbs. Phytochemistry, 19, 889-891.

Cruickshank, I.A.M. (1962) Studies on phytoalexins. IV. Theantimicrobial spectrum of pisatin. Aust. J. Biol. Sci., 15, 147-159.

de Boer, G. and Hanson, F.E. (1987) Feeding responses tosolanaceous allelochemicals by larvae of the tobaccohornworm, Manduca sexta. Entomol. Exp. Appl. 45, 123-131.

Dement, P.H. and Raven, P.H. (1974) Pigments responsible forultraviolet patterns in flowers of Oenothera (Onagraceae).Nature, 252, 705-706.

Djordjevic, M.A., Redmond, J.W., Bathey, M. and Rolfe, B.G.(1987) Clover secrete specific phenolic compounds whicheither stimulate or repress nod gene expression in Rhizobiumtrifolii. EMBO J., 6, 1173-1179.

Doskotch, R.W., Mikhail, A.A. and Chatterji, S.K. (1973)Structure of the water-soluble feeding stimulant from Scolytusmultistriatus: a revision. Phytochemistry, 12, 1153-1155.

Dreyer, D.L. and Jones, K.C. (1981) Feeding deterrency of

flavonoids and related phenolics towards Schizaphis graminumand Myzus persicae: aphid feeding deterrents in wheat.Phytochemistry, 20, 2489-2493.

Dreyer, D.L., Reese, J.C. and Jones, K.C. (1981) Aphid feedingdeterrents in sorghum. Bioassey, i sola t ion, andcharacterization. J. Chem. Ecol., 7, 273-284.

Dübeler, A., Voltmer, G., Gora, V., Lunderstädt, J. and Zeeck, A.(1997) Phenols from Fagus sylvatica and their role in defenceagainst Cryptococcus fagisuga. Phytochemistry, 45, 51-57.

Echeverri, F., Cardona, G., Torres, F., Pelaez, C., Quiñones, W.and Renteria, E. (1991) Ermanin: an insect deterrent flavonoidfrom Passiflora foetida resin. Phytochemistry, 30, 153-155.

El-Gammal, A.A. and Mansour, R.M.A. (1986) Antimicrobialactivities of some flavonoid compounds. Zentralbl. Mikrobiol.,141, 561-565.

Elliger, C.A., Chan, B.C. and Waiss Jr., A.C. (1980a) Flavonoidsas larval growth inhibitors. Naturwissenschaften, 67, 358-360.

Elliger, C.A., Chan, B.C., Waiss Jr., A.C., Lundin, R.E. andHaddon, W.F. (1980b) C-Glycosylflavones from Zea mays thatinhibit insect development. Phytochemistry, 19, 293-297.

Feeny, P.P. (1968) Effect of oak leaf tannins on larval growth ofthe winter moth Operophtera brumata. J. Insect Physiol. 14,805-817.

Feeny, P.P. and Bostock, H. (1968) Seasonal changes in the tannincontent of oak leaves. Phytochemistry, 7, 871-880.

Feeny, P., Sachdev, K., Rosenberry, L. and Carter, M. (1988)Luteolin 7-O-(6´´-O-malonyl)-β -D-glucoside and trans-chlorogenic acid: oviposition stimulants for the blackswallowtail butterfly. Phytochemistry, 27, 3439-3448.

Firmin, J.L., Wilson, K.E., Rossen, L. and Johnston, A.W.B.(1986) Flavonoid activation of nodulation genes in Rhizobiumreversed by other compounds present in plants. Nature, 324,90-92.

Fraile, A., García-Arenal, F., García-Serrano, J.J. and Sagasta,E.M. (1982) Toxicity of phaseollin, phaseollidin, phaseollin-isoflavan and kievitone to Botrytis cinerea. Phytopath. Z., 105,161-169.

Francis, F.J. and Harborne, J.B. (1966) Anthocyanins and flavonolglycosides of Magnolia flowers. Proc. Amer. Soc. Hort. Sci.,89, 657-665.

Geibel, M. (1995) Sensitivity of the fungus Cytospora persooniito the flavonoids of Prunus cerasus. Phytochemistry, 38, 599-601.

Geigert, J., Stermitz, F.R., Johnson, G., Maag, D.D. and Johnson,D.K. (1973) Two phytoalexins from sugarbeet (Beta vulgaris)leaves. Tetrahedron, 29, 2703-2706.

Geissman, T.A. (1962) The chemistry of flavonoid compounds.Pergamon Press, Oxford.

Ghosal, S., Kumar, Y., Chakrabarti, D.K., Lal, J. and Singh, S.K.(1986) Parasitism of Imperata cylindrica on Pancratiumbiflorum and the concomitant chemical changes in the hostspecies. Phytochemistry, 25, 1097-1102.

Gnanamanickam, S.S. and Smith, D.A. (1980) Selective toxicityof isoflavonoid phytoalexins to gram-positive bacteria.Phytopathology, 70, 894-896.

Grayer, R.J., Kimmins, F.M., Padgham, D.E., Harborne, J.B. andRao, D.V.R. (1992) Condensed tannin levels and resistanceof groundnuts (Arachis hypogaea) against Aphis craccivora.Phytochemistry, 31, 3795-3800.

Hamamura, Y., Hayashiya, K., Naito, K.-I, Matsuura, K. andNishida, J. (1962) Food selection by silkworm larvae. Nature,194, 754-755.

Harborne, J.B., Mabry, T.J. and Mabry, H. (1975) The flavonoids.Chapman and Hall, London.

Harborne, J.B., Ingham, J.L., King, L. and Payne, M. (1976) Theisopentenyl isoflavone luteone as a pre-infectional antifungalagent in the genus Lupinus. Phytochemistry, 15, 1485-1487.

Iwashina, T.

-41-

Harborne, J.B. and Smith, D.M. (1978) Anthochlors and otherflavonoids as honey guides in the Compositae. Biochem. Syst.Ecol., 6, 287-291.

Harborne, J.B. (1981) Two gossypetin methyl ethers as ultravioletpatterning guides in the flowers of Coronilla valentina.Phytochemistry, 20, 1117-1119.

Harborne, J.B. and Mabry, T.J. (1982) The flavonoids: advancesin research. Chapman and Hall, London.

Harborne, J.B. and Boardley, M. (1983) Trisubstituted flavonolglycosides in Coronilla emerus flowers. Phytochemistry, 22,622-625.

Harborne, J.B. and Nash, R.J. (1984) Flavonoid pigmentsresponsible for ultraviolet patterning in petals of the genusPotentilla. Biochem. Syst. Ecol., 12, 315-318.

Harborne, J.B. (1988) The flavonoids: advances in research since1980. Chapman and Hall, London.

Harborne, J.B. (1993) Introduction to ecological biochemistry.Fourth edition. Academic Press, London.

Harborne, J.B. (1994) The flavonoids: advances in research since1986. Chapman and Hall, London.

Harborne, J.B. and Baxter, H. (1999) The handbook of naturalflavonoids Vol. 1 and 2. John Wiley & Sons, Chichester.

Haribal, M. and Renwick, J.A.A. (1996) Oviposition stimulantsfor the monarch butterfly: flavonol glycosides from Asclepiascurassavica. Phytochemistry, 41, 139-144.

Hartwig, U.A., Maxwell, C.A., Joseph, C.M. and Phillips, D.A.(1989) Interactions among flavonoid nod gene inducersreleased from alfalfa seeds and roots. Plant Physiol., 91, 1138-1142.

Hartwig, U.A., Maxwell, C.A., Joseph, C.M. and Phillips, D.A.(1990a) Chrysoeriol and luteolin released from alfalfa seedsinduce nod genes in Rhizobium meliloti. Plant Physiol., 92,116-122.

Hartwig, U.A., Maxwell, C.A., Joseph, C.M. and Phillips, D.A.(1990b) Effects of alfalfa nod gene-inducing flavonoids onnodABC transcription in Rhizobium meliloti strains containingdifferent nodD genes. J. Bacteriol., 172, 2769-2773.

Hayashi, K., Ootani, S., Sato, K., Tuyama, T. and Ishikura, N.(1978) Chemotaxonomical studies on Japanese irises inrelation to the flavonoids in flowers. Res. Inst. Evolut. Biol.Sci. Rep., 1, 1-16.

Hayashi, K., Ootani, S. and Iwashina, T. (1980) Paperchromato-graphic analysis and crystallization of pigment componentsof Iris rossii. Res. Inst. Evolut. Biol. Sci. Rep., 1, 17-26.

Hayashi, K., Ootani, S. and Iwashina, T. (1989) Comparativeanalysis of the flavonoid and related compounds occurring inthree varieties of Iris setosa in the flora of Japan. Res. Inst.Evolut. Biol. Sci. Rep., 6, 30-60.

Hipskind, J.D., Hanau, R., Leite, B. and Nicholson, R.L. (1990)Phytoalexin accumulation in sorghum: identification of anapigeninidin acyl ester. Physiol. Mol. Plant Pathol., 36, 381-396.

Hirose, Y., Hayashi, S. and Kawagishi, E. (1962) Studies on thevaluable utilization of plant products. V. A new flavonoidoccurring in the flowers of Iris tectorum Maxim. 1. - as apreliminary -. Kumamoto Pharm. Bull., 5, 324-326.

Honda, K. (1986) Flavanone glycosides as oviposition stimulantsin a papilionid butterfly, Papilio protenor. J. Chem. Ecol., 12,1999-2010.

Honda, K. (1990) Identification of host-plant chemicalsstimulating oviposition by swallowtail butterfly, Papilioprotenor. J. Chem. Ecol., 16, 325-337.

Inderjit and Dakshini, K.M.M. (1991) Hesperetin 7-rutinoside(hesperidin) and taxifolin 3-arabinoside as germination andgrowth inhibitors in soils associated with the weed, Pluchealanceolata (DC.) C.B. Clarke (Asteraceae). J. Chem. Ecol.,17, 1585-1591.

Inderjit and Dakshini, K.M.M. (1992) Formononetin 7-O-glucoside (ononin), an additional growth inhibitor in soilsassociated with the weed, Pluchea lanceolata (DC.) C.B.Clarke (Asteraceae). J. Chem. Ecol., 18, 713-718.

Inderjit and Dakshini, K.M.M. (1994) Allelopathic potential ofthe phenolics from the roots of Pluchea lanceolata. Physiol.Plant., 92, 571-576.

Inderjit (1996) Plant phenolics in allelopathy. Bot. Rev., 62, 186-202.

Ingham, J.L. (1972) Phytoalexins and other natural products asfactors in plant disease resistance. Bot. Rev., 38, 343-424.

Ingham, J.L. and Harborne, J.B. (1976) Phytoalexin induction asa new dynamic approach to the study of systematicrelationships among higher plants. Nature, 260, 241-243.

Ingham, J.L., Tahara, S. and Harborne, J.B. (1983) Fungitoxicisoflavones from Lupinus albus and other Lupinus species. Z.Naturforsch., 38c, 194-200.

Ishikura, N. (1980) Anthocyanins in iris flowers. Experientia,36, 656-657.

Isman, M.B. and Duffey, S.S. (1982) Toxicity of tomato phenoliccompounds to the fruitworm, Heliothis zea. Entomol. Exp.Appl., 31, 370-376.

Iwashina, T., Ootani, S. and Hayashi, K. (1984a) Neochilenin, anew glycoside of 3-O-methylquercetin, and other flavonolsin the tepals of Neochilenia, Neoporteria and Parodia species(Cactaceae). Bot. Mag. Tokyo, 97, 23-30.

Iwashina, T., Ootani, S. and Hayashi, K. (1984b) Pigmentcomponents in the flower of Strongylodon macrobotrys, andspectrophotometric analyses of fresh petal and intact cells.Res. Inst. Evolut. Biol. Sci. Rep., 2, 67-74.

Iwashina, T., Ootani, S. and Kondo, N. (1985) Flower colors andtheir betalain constituents in Cereoideae species. Res. Inst.Evolut. Biol. Sci. Rep., 2, 95-118.

Iwashina, T. and Ootani, S. (1986) Distribution of flavonolglycosides and their sugar-free forms in subfamily Cereoideae.Ann. Tsukuba Bot. Gard., 4, 25-42.

Iwashina, T., Amano, M., Mizuno, S. and Ootani, S. (1986)Flavonoid and quinonoid pigments in the perianths of Aloespecies: identification and inter- and intra-specific variation.Res. Inst. Evolut. Biol. Sci. Rep., 3, 116-131.

Iwashina, T. and Ootani, S. (1987) Characterization of C-glycosylflavones and anthocyanins in several species ofCaryophyllaceae. Ann. Tsukuba Bot. Gard., 6,19-30.

Iwashina, T., Ootani, S. and Hayashi, K. (1988) On the pigmentedspherical bodies and crystals in tepals of cactaceous speciesin reference to the nature of betalains or flavonols. Bot. Mag.Tokyo, 101, 175-184.

Iwashina, T. and Ootani, S. (1990) Three flavonol allosides fromGlaucidium palmatum. Phytochemistry, 29, 3639-3641.

Iwashina, T. and Ootani, S. (1996) Flavonoids in the flowers ofIris laevigata (Iridaceae). Res. Inst. Evolut. Biol. Sci. Rep., 8,41-48.

Iwashina, T., Kamenosono, K. and Yabuya, T. (1996) Isolationand identification of flavonoid and related compounds as co-pigments from the flowers of Iris ensata. J. Jap. Bot., 71, 281-287.

Iwashina, T. and Ootani, S. (1998) Flavonoids of the genus Iris;structures, distribution and function (review). Ann. TsukubaBot. Gard., 17, 147-183.

Iwashina, T. (2000) The structure and distribution of the flavonoidsin plants. J. Plant Res., 113, 287-299.

Iwashina, T., Konta, F. and Kitajima, J. (2001) Anthocyanins andflavonols of Chimonanthus praecox (Calycanthaceae) asflower pigments. J. Jap. Bot., 76, 166-172.

Johnson, G., Maag, D.D., Johnson, D.K. and Thomas, R.D. (1976)The possible role of phytoalexins in the resistance of sugarbeet

Flavonoid function and activity

- 42-

(Beta vulgaris) to Cercospora beticola. Physiol. Plant Pathol.,8, 225-230.

Jungblut, T.P., Schnitzler, J.P., Heller, W., Hertkorn, N., Metzger,J.W., Szymczak, W. and Sandermann, J.H. (1995) Structuresof UV-B induced sunscreen pigments of the scot pine (Pinussylvestris L.). Angew. Chem. Int. Ed. Engl., 34, 312-314.

Kaplan, D.T., Keen, N.T. and Thomason, I.J. (1980a) Associationof glyceollin with the incompatible response of soybean rootsto Meloidogyne incognita. Physiol. Plant Pathol., 16, 309-318.

Kaplan, D.T., Keen, N.T. and Thomason, I.J. (1980b) Studies onthe mode of action of glyceollin in soybean incompatibility tothe root knot nematode, Meloidogyne incognita. Physiol. PlantPathol., 16, 319-325.

Karabourniotis, G., Papadopoulos, K., Papamarkou, M. andManetas, Y. (1992) Ultraviolet-B radiation absorbing capacityof leaf hairs. Physiol. Plant., 86, 414-418.

Kato, M. (1978) Phenols as indispensible components of thesynthetic diet of the silkworm, Bombix mori. Entomol. Exp.Appl., 24, 285-290.

Klingauf, F. (1971) Die Wirkung des Glucosids Phlorizin auf dasWirtswahlverhalten von Rhopolosiphum insertum (Walk.) undAphis pomi De Geer (Homoptera: Aphididae). Z. Ang.Entomol., 68, 41-55.

Kobayashi, A., Yata, S. and Kawazu, K. (1988) A β -hydroxy-chalcone and flavonoids from alfalfa callus stimulated by afungal naphthoquinone, PO-1. Agric. Biol. Chem., 52, 3223-3227.

Kondo, T., Ueda, M., Tamura, H., Yoshida, K., Isobe, M. andGoto, T. (1994) Composition of protocyanin, a self-assembledsupramolecular pigment from the blue cornflower, Centaureacyanus. Angew. Chem. Int. Ed. Engl., 33, 978-979.

Kosslak, R.M., Bookland, R., Barkei, J., Paaren, E. andAppelbaum, E.R. (1987) Induction of Bradyrhizobiumjaponicum common nod genes by isoflavones isolated fromGlycine max. Proc. Natl. Acad. Sci. USA, 84, 7428-7432.

Lane, G.A., Biggs, D.R., Russell, G.B., Sutherland, O.R.W.,Williams, E.M., Maindonald, J.H. and Donnell, D.J. (1985)Isoflavonoid feeding deterrents for Costelytra zealandica.Structure - activity relationships. J. Chem. Ecol., 12, 1713-1735.

Lane, G.A., Sutherland, O.R.W. and Skipp, R.A. (1987)Isoflavonoids as insect feeding deterrents and antifungalcomponents from root of Lupinus angustifolius. J. Chem. Ecol.,13, 771-783.

Larsen, L.M., Nielsen, J.K. and Sørensen, H. (1982) Identificationof 3-O-[2-O-(β -D-xylopyranosyl)-β -D-galactopyranosyl]flavonoids in horseradish leaves acting as feeding stimulantsfor a flea beetle. Phytochemistry, 21, 1029-1033.

Levy, E.C., Ishaaya, I., Gurevitz, E., Cooper, R. and Lavie, D.(1974) Isolation and identification of host compounds elicitingattraction and bite stimuli in the fruit tree bark beetle, Scolytusmediterraneus. J. Agric. Food Chem., 22, 376-379.

Lodhi, M.A.K. and Killingbeck, K.T. (1980) Allelopathicinhibition of nitrification and nitrifying bacteria in a ponderosapine (Pinus ponderosa Dougl.) community. Amer. J. Bot., 67,1423-1429.

Mabry, T.J., Markham, K.R. and Thomas, M.B. (1970) Thesystematic identification of flavonoids. Springer, Berlin.

Macías, F.A., Molinillo, J.M.G., Torres, A., Varela, R.M. andCastellano, D. (1997) Bioactive flavonoids from Helianthusannuus cultivars. Phytochemistry, 45, 683-687.

Marchelli, R. and Vining, L.C. (1973) The biosynthetic origin ofchloroflavonin, a flavonoid antibiotic from Aspergilluscandidus. Can. J. Biochem., 51, 1624-1629.

Markham, K.R. and Porter, L.J. (1969) Flavonoids in the greenalgae (Chlorophyta). Phytochemistry, 8, 1777-1781.

Markham, K.R. (1982) Techniques of flavonoid identification.Academic Press, London.

Martin, S.S. (1977) Accumulation of the flavonoids betagarin andbetavulgarin in Beta vulgaris infected by the fungusCercospora beticola. Physiol. Plant Pathol., 11, 297-303.

Maxwell, C.A., Hartwig, U.A., Joseph, C.M. and Phillips, D.A.(1989) A chalcone and two related flavonoids released fromalfalfa roots induce nod genes of Rhizobium meliloti. PlantPhysiol., 91, 842-847.

Mitscher, L.A., Okwute, S.K., Gollapudi, S.R., Drake, S. andAvona, E. (1988) Antimicrobial pterocarpans of NigerianErythrina mildbraedii. Phytochemistry, 27, 3449-3452.

Molish, H. (1937) Der Einfluss einer Pflanze auf die andere-Allelopathie. Fisher, Jena.

Muller, C.H. (1970) Phytotoxins as plant habitat variables. Rec.Adv. Phytochem., 3, 106-121.

Nicholson, R.L., Kollipara, S.S., Vincent, J.R., Lyons, P.C. andCadena-Gomez, G. (1987) Phytoalexin synthesis by thesorghum mesocotyl in response to infection by pathogenic andnonpathogenic fungi. Proc. Natl. Acad. Sci. USA, 84, 5520-5524.

Nicholson, R.L., Jamil, F.F., Snyder, B.A., Lue, W.L. andHipskind, J. (1988) Phytoalexin synthesis in the juvenilesorghum leaf. Physiol. Mol. Plant Pathol., 33, 271-278.

Nielsen, J.K., Larsen, L.M. and Sørensen, H. (1979) Host plantselection of the horseradish flea beetle Phyllotreta armoraciae(Coleoptera: Chrysomelidae): identification of two flavonolglycosides stimulating feeding in combination withglucosinolates. Entomol. Exp. Appl., 26, 40-48.

Nishida, R., Ohsugi, T., Kokubo, S. and Fukami, H. (1987)Oviposition stimulants of a Citrus-feeding swallowtailbutterfly, Papilio xuthus L. Experientia, 43, 342-344.

Nishida, R. (1994) Oviposition stimulant of a zeryntiineswallowtail butterfly, Luehdorfia japonica. Phytochemistry,36, 873-877.

Nishida, R. (1995) Oviposition stimulants of swallowtail butterfly.In Scriber, J.M., Tsubaki, Y. and Lederhouse, R.C. (eds.)Swallowtail butterflies: their ecology and evolutionary biology.Scientific Publishers, Gainesville.

Numata, A., Takemura, T., Ohbayashi, H., Katsuno, T., Yamamoto,K., Sato, K. and Kobayashi, S. (1983) Antifeedants for thelarvae of the yellow butterfly, Eurema hecabe mandarina, inLycoris radiata. Chem. Pharm. Bull., 31, 2146-2149.

Ohba, R., Igarashi, K. and Tsukui, A. (2000) Anthocyanins. Foodcolor with health benefits. Kenpakusha, Tokyo.

Ohsugi, T., Nishida, R. and Fukami, H. (1985) Ovipositionstimulant of Papilio xuthus, a Citrus-feeding swallowtailbutterfly. Agric. Biol. Chem., 49, 1897-1900.

O’Neill, T.M. and Mansfield, J.W. (1982) Antifungal activity ofhydroxyflavans and other flavonoids. Trans. Britain Mycol.Soc., 79, 229-237.

Ootani, S. and Hayashi, K. (1982) Further search for water-solublecarotenoids in yellow flowers of several plants. Res. Inst.Evolut. Biol. Sci. Rep., 1, 71-76.

Ootani, S., Ito, T. and Iwashina, T. (1986) Identification ofanthocyanin and other pigments, and their distribution in theperianth tissues of a cultivar, Crocosmia× crocosmiiflora(Iridaceae). Ann. Tsukuba Bot. Gard., 5, 47-53.

Pare, P.W., Dmitrieva, N. and Mabry, T.J. (1991) Phytoalexinaurone induced in Cephalocereus senilis liquid suspensionculture. Phytochemistry, 30, 1133-1135.

Parvez, M.M., Tomita-Yokotani, K., Fujii, Y., Konishi, T. andIwashina, T. (2002) Function of flavonoids as allelopathicsubstances. Third World Congress on Allelopathy. p. 247.

Peng, Z. and Miles, P.W. (1988) Acceptability of catechin and itsoxidative condensation products to the rose aphid,Macrosiphum rosae. Entomol. Exp. Appl., 47, 255-265.

Iwashina, T.

-43-

Perrin, D.R. and Bottomley, W. (1962) Studies on phytoalexins.V. The structure of pisatin from Pisum sativum L. J. Amer.Chem. Soc., 84, 1919-1923.

Perrin, D.R. and Cruickshank, I.A.M. (1969) The antifungalactivity of pterocarpans towards Monilinia fructicola.Phytochemistry, 8, 971-978.

Peters, N.K., Frost, J.W. and Long, S.R. (1986) A plant flavone,luteolin, induces expression of Rhizobium meliloti nodulationgenes. Science, 233, 977-980.

Peters, N.K. and Long, S.R. (1988) Alfalfa root exudates andcompounds which promote or inhibit induction of Rhizobiummeliloti nodulation genes. Plant Physiol., 88, 396-400.

Piattelli, M. and Impellizzeri, G. (1971) Fungistatic flavones inthe leaves of Citrus species resistant and susceptible toDeuterophoma tracheiphila. Phytochemistry, 10, 2657-2659.

Picman, A.K., Schneider, E.F. and Picman, J. (1995) Effect offlavonoids on mycelial growth of Verticillium albo-atrum.Biochem. Syst. Ecol., 23, 683-693.

Pinkas, J., Lavie, D. and Chorin, M. (1968) Fungistaticconstituents in citrus varieties resistant to the mal-seccodisease. Phytochemistry, 7, 169-174.

Rao, A.S. (1990) Root flavonoids. Bot. Rev., 56, 1-84.Redmond, J.W., Batley, M., Djordjevic, M.A., Innes, R.W.,

Kuempel, P.L. and Rolfe, B.G. (1986) Flavones induceexpression of nodulation genes in Rhizobium. Nature, 323,632-635.

Rice, E.L. and Pancholy, S.K. (1973) Inhibition of nitrificationby climary ecosystems. II. Additional evidence and possiblerole of tannins. Amer. J. Bot., 60, 691-702.

Rice, E.L. and Pancholy, S.K. (1974) Inhibition of nitrificationby climax ecosystems III. Inhibitors other than tannins. Amer.J. Bot., 61, 1095-1103.

Rieseberg, L.H. and Schilling, E.E. (1985) Floral flavonoids andultraviolet patterns in Viguiera (Compositae). Amer. J. Bot.,72, 999-1004.

Roussis, V., Ampofo, S.A. and Wiemer, D.F. (1987) Flavanonesfrom Lonchocarpus miniflorus. Phytochemistry, 26, 2371-2375.

Russell, G.B., Sutherland, O.R.W., Hutchins, R.F.N. andChristmas, P.E. (1978) Vestitol: a phytoalexin with insectfeeding-deterrrent activity. J. Chem. Ecol., 4, 571-579.

Sanduja, R., Martin, G.E., Weinheimer, A.J., Alam, M., Hossain,M.B. and Van der Helm, D. (1984) Secondary metabolites ofthe coelenterate Echinophora lamellosa. J. Heterocycl. Chem.,21, 845-848.

Shaver, T.N. and Lukefahr, M.J. (1969) Effect of flavonoidpigments and gossypol on growth and development of thebollworm, tobacco budworm, and pink bollworm. J. Econ.Entomol., 62, 643-646.

Simmonds, M.S.J., Blaney, W.M., Monache, F.D. and Bettolo,G.B.M. (1990) Insect antifeedant activity associated withcompounds isolated from species of Lonchocarpus andTephrosia. J. Chem. Ecol., 16, 365-380.

Skaltsa, H., Verykokidou, E., Harvala, C., Karabouriotis, G. andManetas, Y. (1994) UV-B Protective potential and flavonoidcontent of leaf hairs of Quercus ilex. Phytochemistry, 37, 987-990.

Snyder, B.A., Leite, B., Hipskind, J., Butler, L.G. and Nicholson,R.L. (1991) Accumulation of sorghum phytoalexins inducedby Colletorichum graminicola at the infection site. Physiol.Mol. Plant Pathol., 39, 463-470.

Stafford, H.A. (1990) Flavonoid metabolism. CRC Press, BocaRaton.

Star, A.E. (1980) Frond exudate flavonoids as allelopathic agentsin Pityrogramma. Bull. Torrey Bot. Club, 107, 146-153.

Stössel, P. (1982) Glyceollin production in soybean. Phytopath.Z., 105, 109-119.

Tabashnik, B.E. (1987) Plant secondary compounds as ovipositiondeterrents for cabbage butterfly, Pieris rapae (Lepidoptera,Pieridae). J. Chem. Ecol., 13, 309-316.

Takahashi, H., Sasaki, T. and Ito, M. (1987) New flavonoidsisolated from infected sugarbeet roots. Bull. Chem. Soc. Japan,60, 2261-2262.

Takasugi, M., Kumagai, Y., Nagao, S., Masamune, T., Shirata, A.and Takahashi, K. (1980) The co-occurrence of flavan and1,3-diphenylpropane derivatives in wounded paper mulberry.Chem. Lett., p. 1459-1460.

Tamura, S., Chang, C.-F., Suzuki, A. and Kumai, S. (1967)Isolation and structure of a novel isoflavone derivative in redclover. Agric. Biol. Chem., 31, 1108-1109.

Tamura, S., Chang, C.-F., Suzuki, A. and Kumai, S. (1969)Chemical studies on “clover sickness” part I. Isolation andstructural elucidation of two new isoflavonoids in red clover.Agric. Biol. Chem., 33, 391-397.

Tebayashi, S.-i., Matsuyama, S., Suzuki, T., Kuwahara, Y.,Nemoto, T. and Fujii, K. (1995) Quercimeritrin: the thirdoviposition stimulant of the azuki bean weevil from the hostazuki bean. J. Pesticide Sci., 20, 299-305.

Thompson, W.R., Meinwald, J., Aneshansley, D. and Eisner, T.(1972) Flavonols: pigments resposible for ultravioletabsorption in nectar guide of flower. Science, 177, 528-530.

Tomás-Barberán, F.A., Msonthi, J.D. and Hostettmann, K. (1988a)Antifungal epicuticular methylated flavonoids fromHelichrysum nitens. Phytochemistry, 27, 753-755.

Tomás-Barberán, F.A., Millard, M. and Hostettmann, K. (1988b)Antifungal flavonoids from the leaf surfaces of Helichrysumnitens and from the stem bark of Erythrina berteroana. Plantflavonoids in biology and medicine II. Biochemical, cellular,and medicinal properties. In Cody, V., Middleton Jr., E.Harborne, J.B. and Beretz, A. (eds) Aran R. Liss, Inc. NewYork, pp. 61-65.

VanEtten, H.D. (1973) Differential sensitivity of fungi to pisatinand to phaseollin. Phytopathology, 63, 1477-1482.

VanEtten, H.D. (1976) Antifungal activity of pterocarpans andother selected isoflavonoids. Phytochemistry, 15, 655-659.

Waiss, A.C., Chan, B.G., Elliger, C.A., Wiseman, B.R.,McMillian, W.W., Widstrom, N.W., Zuber, M.S. and Keaster,A.J. (1979) Maysin, a flavone glycoside from corn silks withantibiotic activity toward corn earworm. J. Econ. Entomol.,72, 256-258.

Wang, Y., Hamburger, M., Gueho, J. and Hostettmann, K. (1989)Antimicrobial flavonoids from Psiadia trinervia and theirmethylated and acetylated derivatives. Phytochemistry, 28,2323-2327.

Weidenbörner, M., Hindorf, H., Jha, H.C., Tsotsonos, P. and Egge,H. (1989) Antifungal activity of isoflavonoids against storagefungi of the genus Aspergillus. Phytochemistry, 28, 3317-3319.

Weidenbörner, M., Hindorf, H., Jha, H.C., Tsotsonos, P. and Egge,H. (1990a) Antifungal activity of isoflavonoids in differentreduced stages on Rhizoctonia solani and Sclerotium rolfsii.Phytochemistry, 29, 801-803.

Weidenbörner, M., Hindorf, H., Jha, H.C. and Tsotsonos, P.(1990b) Antifungal activity of flavonoids against storage fungiof the genus Aspergillus. Phytochemistry, 29, 1103-1105.

Yabuya, T. (1987) High-performance liquid chromatographicanalysis of anthocyanins in induced amphidiploids of Irislaevigata Fisch. × I. ensata Thunb. Euphytica, 36, 381-387.

Yamada, T. and Ito, S.-i. (1993) Chemical defense responses ofwilt-resistant pine species, Pinus strobus and P. taeda, againstBurssaphelenchus xylophilus infection. Ann. Phytopath. Soc.Japan, 59, 666-672.

Zaat, S.A.J., Schripsema, J., Wijffelman, C.A., van Brussel,A.A.N. and Lugtenberg, B.J.J. (1989) Analysis of the majorinducers of the Rhizobium nodA promoter from Vicia sativaroot exudate and their activity with different nodD genes. PlantMol. Biol., 13, 175-188.

Flavonoid function and activity

- 44-

Zielske, A.G., Simons, J.N. and Silverstein, R.M. (1972) A flavonefeeding stimulant in alligatorweed. Phytochemistry, 11, 393-396.