FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

download FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

of 149

Transcript of FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    1/149

    3 445b 0515275 9

    OR

    NL-5

    FLANGE:

    A

    Computer Program for

    the Analysis of Flanged Joints

    with Ring-Type Gaskets

    E. C.

    Rodabaugh

    F. M.

    OHara, Jr.

    S.

    E. Moore

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    2/149

    Printed in the United States of America. Available f rom

    National Technical Informat ion Service

    U.S. Department of Commerce

    5285 Port Royal Road, Springfield, Virginia 221 61

    Price: Printed Copy 7.75; Microfiche 2.25

    This report was prepared

    as

    an account of work sponsored by the United States

    Government. Neither the United States nor the Energy Research and Development

    Administration, nor any

    of

    their employees, nor any

    of

    their contractors,

    subcontractors, or their employees, makes any warranty, express or implied, or

    assumes any legal liability or responsibility for the accuracy, completeness or

    usefulness

    of

    any information, apparatus, product or process disclosed, or represents

    that its use would not infringe privately owned rights.

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    3/149

    O R N L

    -5035

    YRC-1 ,

    -5

    Contract No. W-7405-eng-26

    Re a c t o r

    Division

    FLANGE:

    A COMPUTER PROGRAM FOR

    THE

    ANALYSIS

    OF FLANGED JOINTS WITH

    RING-TYPE

    GASKETS

    E .

    C . Rodabaugh

    Battel le-Columbus Laboratories

    F .

    M.

    O'Hara,

    J r .

    S.

    E .

    Moore

    Oak Ridge National Laboratory

    Work

    funded by th e Nucle ar R egula tory Commission

    under Interagency Agreement 40-495-75

    JANUARY 1976

    ( OR NL - Su bc on tr ac t No. 2913

    ]

    f o r

    OAK

    R I D G E N A T I O N A L L A B O R A T O R Y

    Oak Ridge, Tennessee

    3 7 8 3 0

    Operated by

    U N I O N C A R B I D E CORPORATION

    f o r t h e

    U.S. E N E R G Y RESEARCH AND DEVELOPMENT ADMINISTRATION

    3

    4456

    0535275

    9

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    4/149

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    5/149

    iii

    CONTENTS

    Page

    FOREWORD

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    V

    1 . INTRODUCTION

    . . . . . . . . . . . . . . . . . . . . . . . . .

    1

    Purpose and Scope

    . . . . . . . . . . . . . . . . . . . . . . .

    1

    Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . 2

    . . . . . . . . . . . . . . 4

    GENERAL DESCRIPTION

    OF

    THE ANALYSIS

    3 . FLANGE WITH A TAPERED-WALL

    H U B

    . . . . . . . . . . . . . . . . 7

    Equations

    for

    the Annular Ring

    . . . . . . . . . . . . . . . .

    7

    Equations for the Tapered Hub . . . . . . . . . . . . . . . . . 8

    Equations for the Pipe

    . . . . . . . . . . . . . . . . . . . .

    11

    Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 11

    Boundary Equations . . . . . . . . . . . . . . . . . . . . . . 12

    Stresses

    . . . . . . . . . . . . . . . . . . . . . . . . . . .

    15

    Displacements . . . . . . . . . . . . . . . . . . . . . . . . . 15

    4 FLANGE WITH A STRAIGHT

    H U B

    . . . . . . . . . . . . . . . . . . 17

    5

    BLIND FLANGES . . . . . . . . . . . . . . . . . . . . . . . . . 20

    Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . 20

    Stresses

    . . . . . . . . . . . . . . . . . . . . . . . . . . .

    24

    Displacements . . . . . . . . . . . . . . . . . . . . . . . . . 25

    6 THERMAL GRADIENTS . . . . . . . . . . . . . . . . . . . . . . . 26

    7 CHANGE IN BOLT LOAD WITH PRESSURE. TEMPERATURE.

    AND EXTERNAL MOMENTS

    . . . . . . . . . . . . . . . . . . . . .

    27

    Analysis

    . . . . . . . . . . . . . . . . . . . . . . . . . . .

    28

    External Moment Loading

    . . . . . . . . . . . . . . . . . . . .

    36

    8 COMPUTER PROGRAM . . . . . . . . . . . . . . . . . . . . . . . 37

    Option Control Data Card

    . . . . . . . . . . . . . . . . . . .

    37

    Input for Code-Compliance Calculations . . . . . . . . . . . . 39

    Output from Code-Compliance Calculations

    . . . . . . . . . . .

    41

    Input for General Purpose Calculations

    . . . . . . . . . . . . 43

    Output from General Purpose Calculations

    . . . . . . . . . . . 47

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    6/149

    i v

    Page

    . . . . . . . . . . . . . . . . . . . . . . . . . .

    CKNOWLEDGMENT 52

    REFERENCES

    52

    . . . . . . . . . . . . . . . . . . . . . . . . . . .

    APPENDIX A.

    Examples of Application of Computer Program

    FLANGE

    53

    . . . . . . . . . . . . . . . . . . . . . . .

    APPENDIX B. Flowcharts and Listing of Computer Program

    FLANGE and Attendant Subroutines . . . . . . . . . . . 97

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    7/149

    V

    FOREWORD

    The work reported here was performed at Oak Ridge National Laboratory

    and at Battelle-Columbus Laboratories under Union Carbide Corp., Nuclear

    Division, Subcontract No.

    2913 as part of the ORNL Design Criteria for

    Piping and Nozzles Program, S. E. Moore, Manager. This program is

    funded by the Division of Reactor Safety Research (RSR)

    of

    the

    U.S.

    Nuclear Regulatory Commission as part of a cooperative effort with

    industry to develop and verify analytical methods for assessing the

    safety of pressure-vessel and piping-system design. The cognizant

    RSR

    project engineer is

    E. K.

    Lynn. The cooperative effort is coordinated

    through the Pressure Vessel Research Committee of the Welding Research

    Council under the Subcommittee on Piping, Pumps, and Valves.

    The study described in this report was conducted under the general

    direction of

    W.

    L. Greenstreet and S. E. Moore, Solid Mechanics Depart-

    ment, Reactor Division, ORNL, and is a continuation of work supported in

    prior years by the Division of Reactor Research and Development,

    U.S.

    Energy Research and Development Administration (formerly the USAEC).

    Prior reports and open-literature publications in this series are:

    1.

    2.

    3.

    4.

    5.

    6 .

    W. L. Greenstreet, S.

    E.

    Moore, and

    E.

    C. Rodabaugh, Investigations

    of Piping Components, Valves, and Pumps to Provide Information for

    Code Writing Bodies, ASME Paper 68-WA/PTC-6, American Society of

    Mechanical Engineers, New York, Dec. 2,

    1968.

    W. L. Greenstreet,

    S.

    E. Moore, and R. C. Gwaltney, Progress Report

    on Studies

    in

    Applied Solid Mechanics,

    ORNL-TM-4576 (August 1970).

    E.

    C. Rodabaugh,

    Phase Report No. 11s-1 on Stress Indices for Small

    Branch Connections

    w i t h

    ExternaZ

    Loadings, ORNL-TM-3014 (August

    1970).

    E.

    C. Rodabuagh and

    A. G .

    Pickett,

    Survey Report on Structural Design

    of Piping Systems and Components,

    TID-25553 (December 1970).

    E.

    C. Rodabaugh,

    Phase Report No. 1 1 5 - 8 , Stresses in Out-of-Round

    Pipe Due

    to

    Interna2 Pressure,

    ORNL-TM-3244 (January 1971).

    S.

    E. Bolt and W. L. Greenstreet, Experimental Determination of

    Plastic Collapse Loads

    f o r

    Pipe Elbows, ASME Paper 71-PVP-37,

    American Society of Mechanical Engineers, New York May 1971.

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    8/149

    v i

    7.

    8.

    9.

    10.

    11.

    1 2 .

    13.

    14.

    15.

    16.

    17 .

    18.

    G . H. Powell , R . W . Clough, and A . N . Gan taya t , "S t r e s s Ana lysi s

    of B16.9 Tees by t h e F i n i t e Element Method," ASME Paper 71-PVP-40,

    American Society of Mechanical Engineers, N e w York, May 1971.

    J .

    K .

    Hayes and B . Rober t s , "Exper imen ta l S t r e s s Ana lys i s

    o f

    24-Inch

    Tees, " ASME Paper 71-PVP-28, American So ci et y of Mechanical Eng inee rs,

    New York, May 1971.

    J . M .

    Corum

    e t a l . ,

    "Exper imental and F in i te Element St re ss Analys is

    o f

    a

    Th in- She ll Cyl ind er- to- Cy li nde r Model," ASME Paper 71-PVP-36,

    American So c i e t y of Mec hanical Eng in ee rs, New York, May 19 71.

    W . L . G r e e n s t r e e t ,

    S .

    E . Moore, and J . P . Cal lahan , -Second

    AnnuaZ

    Progress Report on Studies in Applied Solid Mechanics (Nuclear

    S a f e t y ) ,

    ORNL-4693 ( J u l y 1971 ).

    J . M. Corum and W .

    L .

    Greens t r ee t , "Exper imen ta l Elas t i c S t r e s s

    Analys i s of Cyl inde r-to- Cyl inde r Sh el l Models and Comparisons wi th

    Th eo ret ic al Pr ed ic t i ons , ' ' Paper No. G2/5, F i r s t I n t e r n a t i o n a l

    Conference on St ru ct ur al Mechanics i n Reactor Technology, Be r l i n ,

    Germany, Sept. 20-24, 1971.

    R . W .

    Clough, G . H. Powell, and A . N . Gan taya t , " S t r e s s Ana lys i s

    o f

    B16.9 Tees by t h e F i n i t e Element Method," Paper No.

    F4/7, F i r s t

    In t e rn a t io na l Conference on S t ru c t u r a l Mechanics i n Reac to r

    Technology, Be rl i n, Germany, Se pt . 20-24, 1971.

    R .

    L . Johnson, Photo elastic Determination

    o f

    St re sse s

    i n

    ASA

    B 1 6 . 9

    Tees, Re se ar ch Re por t 71-9E7-PHOTO-R2, Wes ting house Re sea rch

    Laboratory (November 1971).

    E . C .

    Rodabaugh and

    S. E .

    Moore, Phase Report No.

    115-10

    on

    Com-

    parisons

    o f

    Test Data

    w i t h

    Code

    Methods

    for Fatigue Evaluations,

    ORNL-TM-3520 (November 1971).

    W . G .

    Dodge and S .

    E .

    Moore, Stre ss Indices and Fl ex i bi l i ty Fac tors

    f o r

    Moment Loadings

    on

    Elbows and Curved Pipe, ORNL-TM-3658 (March

    1972).

    J .

    E .

    Brock, Ela st i c Buckling of Heated, Straight-Line Piping Con-

    f igura t ions , ORNL-TM-3607 (March 1972).

    J .

    M .

    Corum e t a l . , Theoret ical and Experhental Stress Analysis o f

    ORNL

    Thin-She22 Cy Iinder-to-Cy Zinder Model No.

    I ,

    ORNL-4553 (October

    1972).

    W . G . Dodge and J . E . Smith, A Diagnostic Procedure for the Eval-

    uation

    of

    St ra in Data from a Linear Ela sti c Te st, ORNL-TM-3415

    (November 1972).

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    9/149

    vii

    19.

    20.

    21.

    22

    23.

    24.

    25.

    26.

    27.

    28 .

    29.

    30.

    31.

    W. G. Dodge and S. E, Moore, Stress Indices and Flexibility Factors

    f o r Moment Loadings on Elbows and Curved Pipe,

    Welding Research

    Council Bulletin 1 7 9 ,

    December 1972.

    W. L. Greenstreet, S. E. Moore, and

    J.

    P. Callahan, Third Annua%

    Progress Report on Studies i n Applied Sol id Mechanics (flu clea r

    Safeky) ,

    ORNL-4821 (December 1972).

    W. G. Dodge and S. E. Moore, ELBQW: A Fortran Program

    f o r

    the

    Calculation of Stresses , S tr ess Indices , and Fle xi b i l i ty Factors

    for Elbows and Curved Pipe, ORNL-TM-4098 (April 1973).

    W. G. Dodge, Secondary Stress Indices f o r Integral Structural

    Attachments t o Straig ht Pipe,

    ORNL-24-3476 (June 1973). A l s o in

    Welding Research Council Bu Zlet in 1 9 8 ,

    September 1974.

    E. C. Rodabaugh, W. G. Dodge, and S. E. Moore, Stress Indices at Lug

    Supports

    on

    Piping Systems, OKNL-'TM-4211 (May 1974). Also in Welding

    Research Council Bulletin

    1 9 8 ,

    September 1974.

    W. L. Greenstreet, S. E. Moore, and J. P. Callahan, Fourth Annual

    Progress Report

    on

    St ud ie s i n Applied So li d Mechanics (Pressure

    Vessels and Piping System Components), ORNL-4925 (July 1974).

    G. H. Powell, Finite Element Analysis of Elastic-Plastic Tee Joints,

    ORNL-Sub-3193-2 (UC-SESM 74-14), College of Engineering, University

    of California, Berkeley (September 1974).

    R. C. Gwaltney,

    CURT-11

    -

    A

    Computer Program fo r Anal yzi ng Curved

    Tubes or Elbows and At tached Pipes wi th Symmetric and Unsyrrunetric

    Loadings,

    ORNL-TM-4646 (October 1974)

    .

    E. C. Rodabaugh and S.

    E.

    Moore, Stress Indices and Flexib i l i ty

    Factors for Concentric Reducers,

    ORNL-TM-3795 (February 1975).

    D.

    R.

    Henley, Test Report

    on

    Experimental Stress Analysis

    Inch Diameter Tee (ORNL T - 1 3 ) , ORNL-Sub-3310-3

    (CENC

    1189

    bustion Engineering, Inc. (March 1975).

    D.

    R.

    Henley, T e s t

    Report on Experimental Stress Analysis

    Inch Dimeter Tee (ORNL

    T-12),

    ORNL-Sub-3310-4 (CENC 1237

    bustion Engineering, Inc. (April 1975).

    of a 24

    ,

    C o m -

    o f a 2 4

    , Com-

    D. R. Henley, Test Report

    on

    Experimental Stress Analysis

    of

    a 24

    Inch Diameter Tee

    (ORNL

    T - 2 6 ) , ORNL-Sub-3310-5 (CENC 1239), Com-

    bustion Engineering, Inc. (June 1975).

    R. C. Gwaltney,

    S.

    E. Bolt, and J. W . Bryson, Theoretical and Experi-

    mental St re ss Analysis of ORNL Thin-Shell Cylinder-to-CyZinder

    Model

    4 ,

    ORNL-5019 (June 1975).

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    10/149

    v i i i

    32. R . C. Gwaltney, S . E . Bo l t , J . M . Corm, and J . W . Bryson,

    Theoretical and Experimental St re ss Analysi s of

    ORNL

    Thin-Shell

    Cplinder-to-Cylinder Model

    3,

    ORNL-5020 (June 1975) .

    3 3 .

    E .

    C . Rodabaugh and

    S .

    E . Moore, Stress Indices for A N S I

    B 1 6 . 1 1

    Standard Socket- Wel d i n g Fit t ings , ORNL-TM- 929 (August 1975) .

    3 4 . R . C . Gwaltney,

    J .

    W . Bryson, and S . E . Bo l t , Experimental and

    Finite-Element

    Analysis o f

    ORNL Thin-Shell Model

    No.

    2 ,

    O R N L -

    5021 (October 1975).

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    11/149

    1. INTRODUCTION

    Purpose and Scope

    The

    ASME

    Boiler

    and

    Pressure Vessel Codel

    gives rules for designing

    bolted flange connections with ring-type gaskets based

    on

    a stress

    analysis developed by Waters et a1.2

    graphs for calculating stresses due to a moment applied to the flange

    ring. The Code rules, however, do not require that stresses due to

    internal pressure be taken into account, although Ref. 2 briefly dis-

    cusses such stresses.

    These rules give formulas and

    The computer program FLANGE was written to calculate not only the

    stresses due to moment loads on the flange ring but also stresses due to

    internal pressure;

    stresses due to a temperature difference between the

    hub and ring; and stresses due to the variations in bolt load that

    result from pressure, hub-ring temperature gradient, and/or bolt-ring

    temperature difference. The program FLANGE is applicable to tapered-

    hub, straight, and blind flanges. The analysis method is based on the

    differential equations for thin plates and shells rather than on the

    strain-energy method used by Waters et al.2

    loading calculated by the two methods are essentially identical for

    identical boundary conditions. The analysis provided herein also in-

    cludes

    a

    different, and perhaps more realistic, set of boundary con-

    ditions than those used in Ref. 2 .

    The stresses due to moment

    The nomenclature used in this

    r e por t

    is

    identified

    in the remainder

    of this chapter.

    flanges used in the theoretical development of the computer code is

    provided. The actual mathematical expressions for calculating stresses

    and displacements due to moment

    and pressure loads are derived in

    Chapters 3 ,

    4,

    and 5 for tapered-hub, straight hub, and blind flanges,

    respectively.

    include the effects of thermal gradients and variations in bolt loads.

    The computer program FLANGE is described in the last chapter of this

    report. Example calculations, listings, and flowcharts of the program

    and

    its

    subroutines are included as appendices.

    In Chapter 2 a description of the general model

    of

    In Chapters

    6

    and

    7,

    these expressions are extended to

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    12/149

    2

    Nomenc1 t u re

    a =

    o u t s i d e r a d i u s of r i n g

    A

    = 2a = o u t s i d e d ia m e te r o f r i n g

    %

    =

    c r o s s - s e c t i o n a l b o l t a r e a

    A = g a s k e t a r e a

    g

    b = i n s i de rad ius of r i ng and mean

    B

    = 2b

    =

    i n s i d e d i am e t er o f r i n g

    b

    = Be sse l f u n c t i o n

    of rl

    n

    c = b o l t - c i r c l e r a d i u s

    C =

    2c

    = b o l t - c i r c l e d i a m e t e r

    C . = c o n s t a n t

    o f

    i n t e g r a t i o n

    C =

    C. /b

    1

    1 I

    D = ~ t 3 / 1 2 ( 1 ~ 2 )

    r a d i u s

    of

    p ipe

    = c o n s t a n t s o f i n t e g r a t i o n ( b l i n d - f l a n g e a n a l y s i s )

    ' i j

    E

    E

    E = E

    b

    6

    f = ASME Code design parameter

    F =

    ASME Code design parameter

    =

    modulus

    of

    e l a s t i c i t y

    of

    f l a n g e mate r i a l

    f

    =

    m od ulu s o f e l a s t i c i t y of b o l t m a t e r i a l

    = m od ulu s o f e l a s t i c i t y o f g a s k e t mate r i a l

    go

    = wal l

    t h i c k n e s s

    of

    p i p e

    gl

    = wall

    t h i c k n e s s o f hub a t i n t e r s e c t i o n w i th r i n g

    g = g a s k e t c e n t e r l i n e r a d i u s

    G = 2g =

    g a s k e t c e n t e r l i n e d i a me te r

    h = l eng th of t ape red-wa l l hub

    K = a / b = A/B

    R O

    =

    b o l t l e n g t h

    M = t o t a l moment a p p l i e d t o r i n g , i n . - l b

    M .

    o r

    M . .

    = m o m e n t r e su l t a n t s , i n . - l b / i n .

    1 11

    p = i n t e r n a l p r e ss u r e

    P .

    =

    s h e ar r e s u l t a n t s , l b / i n .

    1

    p *

    =

    - ( v / 2 ) b p = nondimensional pr es su re parameter

    g 0 E

    r = r a d i a l c o o r d i n at e , r i n g

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    13/149

    3

    t

    = ring thickness

    = hub thickness

    tX

    u = radial displacement, hub

    u,

    =

    radial displacement, pipe

    u

    = radial displacement, ring

    r

    V =

    ASME

    Code design parameter

    v o = undeformed gasket thickness

    w = axial displacement, ring

    W, = initial bolt load, lb

    W, =

    residual bolt load, lb

    x = axial coordinate, hub

    x1 = axial coordinate, pipe

    0,

    =

    (g1

    -

    g o ) / g o

    =

    p

    -

    1

    =

    nondimensional wall-thickness parameter

    = [ 3 ( 1 - v2)/b2g:l1j4 = dimensional parameter used in the analysis

    y =

    [ 1 2 ( 1

    - v2)/b2gi]

    1/4

    h)

    =

    dimensional parameter used in the analysi

    h

    = temperature difference between hub/pipe and ring

    6 .

    =

    axial displacement of ring

    = coefficient of thermal expansion, flange material

    = coefficient of thermal expansion, bolt material

    '

    E =

    coefficient of thermal expansion, gasket material

    g

    n = 2 ~ ( 4 J / a ) ~ / ~

    nondimensional argument of the modified Bessel functio

    v = Poisson's ratio (0.3 used herein)

    5 = x/h = nondimensional distance parameter

    p = g,/g, = nondimensional wall-thickness parameter

    o = stress, with subscripts:

    1

    R

    = longitudinal (pipe

    o r

    hub)

    c = circumferential (pipe or hub)

    t =

    tangential (ring)

    r

    =

    radial (ring)

    b

    =

    bending

    m = membrane

    o =

    outside surface of the pipe or hub on the hub side of ring

    i = inside surface of the pipe or hub on the gasket-face side of ri

    J

    =

    5 + (l/a) = nondimensional parameter

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    14/149

    4

    2. GENERAL DESCRIPTION OF THE

    ANALYSIS

    The model used for the analysis of tapered-hub flanges is shown in

    Fig. 1. The three parts involved are the pipe, hub, and ring, respec-

    tively.

    plates and shells. The pipe is considered to be a uniform-wall-thickness

    cylindrical shell with midsurface radius b. The hub is considered to be

    a linearly variable-wall-thickness ylindrical shell with midsurface

    radius b.

    The ring is considered to be a flat annular plate with con-

    stant thickness t, inside radius b y and outside radius a. The effects

    of

    the bolt holes are neglected.

    The analysis presented here is based on the theory of thin

    Three different types of loadings on bolted flanges are considered:

    1.

    Bolt load, represented

    by

    W in Fig. 1. In application, the

    moment

    M

    applied to the flange ring is converted into an equivalent bolt

    load by the relationship W(a

    -

    b)

    =

    M. This is the same approach used

    in the ASME Code calculation meth0d.l

    2. Internal pressure, acting radially on the pipe, hub, and ring

    and axially on an (assumed remote) end closure

    on

    the pipe.

    3 . A temperature difference between the pipe and the ring.

    The

    pipe and the hub are assumed to be at the same uniform temperature.

    ring is also assumed to b e at a uniform temperature, which may be

    different from that of the pipe

    o r

    hub.

    The

    Upon integration of the shell and plate differential equations,

    algebraic equations in terms of dimensions, materials properties and

    loadings, and 12 integration constants are obtained,

    4

    for each part.

    These constants are evaluated by the usual discontinuity analysis method

    of writing continuity equations at the junctures of the parts and at the

    boundaries.

    the algebraic equations provide the means for computing the stresses and

    deflections. In the development of the equations for stresses, the

    assumption is made that the bolt load W does not change with pressure or

    temperature. Later the analysis is modified to include changes in W as

    a function of these loadings. Because the relations are linear, it is

    possible to determine the stresses

    (o r stress range) due to combinations

    After numerical values are determined for the constants,

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    15/149

    5

    - c r y

    b

    -

    O R N L - DWG 75- 4299

    PIPE

    -

    -90

    ---tu4

    Ar W

    0 ur

    f

    t

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    16/149

    6

    of initial bolt loading, pressure, and temperature change. The model

    used for straight-hub flanges

    is a simplification of the tapered-hub

    case in that only two parts are involved, the pipe and the ring.

    In common with all shell-type analyses, the analysis gives anomalous

    results at points of abrupt thickness change or meridional direction

    change. In particular, the stresses at the juncture of the hub to the

    ring represent only the gross loading effect; detailed local stresses

    are not determined by the theory. Displacements, however, are represented

    fairly accurately.

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    17/149

    7

    3 .

    FLANGE

    WITH A

    TAPERED-WALL

    H U B

    The first step in deriving the stress equations is to state the

    basic shell/plate equations for the ring, the hub, and the pipe. We

    then inspect the boundary conditions, compute the constants, and calcu-

    late the stresses and displacements.

    Equations for the Annular Ring

    The basic differential equation for the displacement w of a circular

    plate given by Timoshenko3 is

    where the coordinate r and displacement w are illustrated in Fig.

    1 and

    q = a uniformly distributed lateral load on the plate, D = Et3/12(l

    -

    u2)

    =

    the flexural rigidity of the plate, E

    =

    modulus

    of

    elasticity

    of

    the flange material, t

    =

    plate thickness, and u

    =

    Poissons ratio.

    Equation

    (1)

    can be integrated to give a relation for the displacement

    in terms of arbitrary constants:

    where numerical values for the constants C7, . . . , C10 are established

    from boundary conditions. Derivatives of w, required

    i n

    the subsequent

    analysis, are:

    c9

    r3q

    w

    dr

    _

    - C7(2r in r + r)

    +

    2C8r

    +

    - -

    r 16D

    d2w c g 3r2q

    dr2 r2 16D

    - -

    -

    C7(2 Rn r + 3)

    +

    2C8

    -

    -

    (3)

    ( 4 )

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    18/149

    8

    and

    - -3w

    i t ) + - + -C g

    3rq

    L r r 3 8~

    r

    - c7

    I n t h e s u b se qu e nt a n a l y s i s t h e d i s t r i b u t e d l o ad q

    i s

    taken

    as

    zero .

    The radia l and tangent ia l moments a re g i v e n 3 by t h e e q u a t i o n s :

    d2w v dw

    d r 2 r d r )

    M

    = - D ( + - - I

    r

    and

    Using Eqs. (3) and ( 4 ) , t h es e moments can be exp resse d

    as

    C7[2(1 + v ) Rn r + (3 + v ) ] + C 8 [ 2 ( l + v ) ]

    r

    and

    C 7 [ 2 ( l + v ) Rn r + (1 + 3 v ) l

    +

    C8[2( l

    +

    v ) ]

    Eaua tion s f o r t h e TaDered Hub

    The b a s i c d i f f e r e n t i a l e q u a t i on f o r t h e r a d i a l d i sp l ac e me n t u

    of

    a

    c y l i n d r i c a l s h e l l w it h

    a

    l i n e a r l y v a r i a b l e

    w a l l

    t h i c k n e s s t i s given by

    Timoshenko3

    as

    X

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    19/149

    9

    The solution of Eq.

    (10)

    can be shown* to be:

    bP*

    (Clbl + C2b2 + C3b3

    +

    C4b4)

    +

    u = -

    >

    1/2 1 +

    a ] D (5931

    t t

    and

    0

    =

    i 6 M

    / t 2 = IEtMr/[2(1 -

    w 2 ) ] D

    .

    r r

    A t t h e c e n t e r of t h e f l a n g e ( r = 0 ) ,

    M

    =

    M

    =

    - D I D , 2 [ 2 ( 1

    +

    v ) ] >

    .

    t r

    A t t h e g a s ke t ( r = g ) ,

    M = - D { D , 2 [ 2 ( 1 + v ) ] + g2p(3 + v ) / 1 6 D }

    ,

    r

    and

    A t

    t h e b o l t c i r c l e

    ( r

    =

    c ) ,

    and

    In a l l of t he above ,

    a

    posi t ive moment produces

    a

    t e n s i l e s t r e s s on

    the back

    of

    t h e f l a n g e

    ( p o s i t i v e w s i d e o f

    F i g .

    2 ) .

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    35/149

    2 5

    Di p

    1

    ceme n t s

    I n t h e t h i r d and s i x t h b ou nd ary c o n d i t i o n s l i s t e d i n Ta bl e 7 , t h e

    ax ia l d i sp lacemen t

    a t

    t h e

    g a s k e t

    h as be en a r b i t r a r i l y s e t e qu al t o z e ro .

    The r e la t ive d i sp lacemen t of t h e b o l t c i r c l e t o t h e g a sk e t i s t h e r e f o r e

    w

    = D32c2 +

    D 3 3

    Rn

    c

    + D34

    .

    (65)

    C

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    36/149

    2 6

    6. THERMAL

    GRADIENTS

    Two kind s of therm al gr ad ie nt s are i n cl u de d i n t h e a n a l y s i s :

    (1)

    a

    c o n s t a n t t e m p e r a tu re i n t h e p ip e an d hub t h a t may be d i f f e r e n t fro m th e

    assumed cons tan t t empera tu re i n th e r i ng and ( 2 ) a c o n s t a n t t e m p e ra tu r e

    i n t h e b o l t s t h a t may b e d i f f e r e n t f ro m th e a ssum ed c o n s t a n t t e m p e ra tu r e

    i n t h e r i n g .

    T h e s i g n i f i c a n c e

    o f

    t h e b o l t - t o - r i n g t he rm al g r a d i e n t s

    i s

    dependent

    upon t h e d im e ns io na l a nd m a t e r i a l c h a r a c t e r i s t i c s o f t h e f l a n g e d j o i n t

    and

    i s

    c ov e re d l a t e r i n Ch a pt e r 7 .

    The p ipe /hub - to - r ing tempera tu re g ra d ie n t i s i n cl u de d i n t h e

    an a l ys i s by an app r op r i a te change i n the " load ing paramete r s" shown i n

    Table

    3 .

    p ipe/hub and th e r i ng ;

    A i s

    p o s i t i v e i f t h e p i pe /h ub

    i s

    h o t t e r t ha n t h e

    r i n g . The r a d i a l e xp a ns ion o f t h e t a p e r e d h u b a t

    i t s

    j u n c t u re w i t h t h e

    r i n g

    i s

    then :

    We d e f i n e

    A

    as

    t h e d i f f e r e n c e i n t e m p e r atu r e be tw ee n t h e

    where b i s t h e p i p e r a d i u s ;

    b

    terms are t h e B e s se l f u n c t i o n s d e f i n e d i n

    Table

    1

    e v a l u a t e d

    a t x

    =

    h ,

    n

    =

    2yp1/'/a,

    as

    i n d i c a t e d

    i n

    f o o tn o t e

    e

    of

    T a b l e

    3 ;

    and

    i s

    t h e c o e f f i c i e n t o f t h er m al e x p an sion of t h e f l a n g e

    mater ia l .

    1

    The e f f e c t s o f such

    a

    t h e r m a l g r a d i e n t

    are

    t a k e n i n t o a c c ou n t

    by

    adding

    (*/b)

    (bE A ) t o t h e e x i s t i n g t er ms i n t h e l oa di ng -p a ra m et er

    column i n Table

    3 [ E q s .

    (20-Sa) and (20- Sb)] . The analo gous term

    i s

    a l r e a d y i n c lu d ed i n T a bl e 6 .

    f

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    37/149

    2 7

    7 .

    CHANGE I N

    BOLT

    LOAD

    WITH

    PRESSURE, TEMPERATURE,

    A N D EXTERNAL MOMENTS

    A

    flanged joint is a statically indeterminate structure. Thus, in

    order to determine the residual bolt load in the joint, it is necessary

    to calculate the relative displacements of the parts when the joint is

    subjected to

    (1)

    initial bolt loading, 2 ) moment loading, ( 3 ) internal

    pressure, and (4) thermal gradients.

    The object of the analysis is to determine the residual bolt load

    W2 in terms of (1) the loadings W1, p,

    A ,

    and A'; (2) the component

    temperatures

    T

    (4) the material properties.

    T

    Tf, and Ti;

    (3)

    the flanged-joint dimensions; and

    The basic analysis is given by Wesstrom and BerghY6 and we follow

    b '

    g'

    their nomenclature, with additions as necessary. Reference 6 covers

    only the effect

    of

    initial bolt loading and part of the influence of

    internal pressure; the remaining influence from the internal pressure

    is

    discussed

    by

    Rodabaugh.7 The extension of the analysis to cover thermal

    gradients is relatively simple and is covered below.

    The nomenclature used in this development is:

    A

    = cross-sectional area

    of

    bolts or gasket

    B = inside diameter of ring

    C

    =

    bolt-circle diameter

    E

    = modulus of elasticity

    go = wall thickness of pipe

    G = gasket centerline diameter

    R = bolt length

    p = internal pressure

    p* = equivalent pressure for external moment loading

    q

    = elastic deformation coefficients

    t =

    ring thickness

    T

    = final-state temperature (initial-state temperature is defined as

    zero)

    v

    =

    gasket thickness

    W = bolt load

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    38/149

    28

    6

    = relative axial displacement between the gasket centerline and

    the bolt circle

    E = coefficient of thermal expansion

    A =

    temperature between hub/pipe and ring

    The subscripts 0,

    1,

    and

    2

    refer to the undeformed, initial deformed,

    and final deformed states, respectively; subscripts b, g, and

    f

    refer to

    the bolts, gasket, and flange, respectively.

    are for one of the flanges in a pair (e.g., T; refers to the temperature

    of the right-hand flange in Fig.

    3); quantities without a prime are for

    the other flange.

    Quantities with a prime I )

    Analysis

    Figure 3 shows

    a

    schematic illustration of the general case of two

    dissimilar flanges and their mode of deformation.

    initially tightened to make up the joint, the resulting initial deformed

    bolt length is

    When the bolts are

    R 1 = v1 + tl

    +

    t; -

    6 ,

    - 6 ;

    ORNL-

    D W G 75-

    297

    Fig. 3 .

    General case of two dissimilar flanges and their mode

    of deformation.

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    39/149

    2 9

    After application of loadings, the bolt length becomes

    R2 =

    v2

    + t2

    +

    t; - 6, -

    6;

    The basic displacement relationship

    is

    thus

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    40/149

    30

    and q i n

    he e l a s t i c d e fo rm at io n c o e f f i c i e n t s q b l q g l q b2

    g2

    Eys.

    (70a--R) ar e fu r t he r def ined a s

    0

    -RO

    -

    qb2

    V O

    In Eqs. (70a-R), th e term q f l i s

    a

    r o t a t i o n o f t h e f l a n g e due t o

    a

    i s a r o t a t i o n o f t h e f l a n g e d ue t o

    a

    u n i t i n t e r n a l

    n i t moment l oa d, q

    P

    pr es su re ) and qt i s

    a

    r o t a t i o n o f t h e f l a n g e d ue t o

    a

    u n i t t e m p e r a t u r e

    gra d ie n t be tween th e hub and th e r in g .

    The q u a n t i t i e s q f l , q p , and q t

    a r e o b t a i n e d fr om t h e f u n c t i o n a l

    e x p r e s s i o n

    where hG

    =

    (C

    -

    G)/2, C i s t h e b o l t - c i r c l e d i a m e t e r, a nd G

    i s

    t h e g a s k e t -

    c e n t e r l i n e d i am e te r .

    obt a in ed from Eqs.

    (46)

    and (47) w i t h t h e a p p r o p r i a t e u n i t v a l u e s f o r

    t h e l o ad s A , P , and M .

    f l

    Values f o r th e displacemen ts wc(L) and

    w

    g (L) a re

    For

    q t h e mod ulus o f e l a s t i c i t y u sed i s t h a t f o r t he i n i t i a l

    c o n d i t i o n . For

    q

    a nd q t h e m od ul i u sed a r e t h o se f o r t h e f i n a l

    condi t ion . The

    term

    q f 2 i s o b t a in e d fro m q f l a nd t h e r a t i o o f t h e

    i n i t i a l and f i n a l e l a s t i c m od ul i; t h u s:

    P t

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    41/149

    31

    The moments and loa ds a r e de fi ne d by Eqs. (73a-n).

    The nomenclature

    u se d i n t h e s e e q u a t i on s

    i s

    a na log ou s t o t h a t u s e d i n t h e ASME C0de.l

    The symbol

    H

    r e p r e s e n t s

    a

    l o a d , h r e p r e s e n t s a le ve r arm, and M r e p r e -

    s e n t s

    a

    moment.

    t h e a r e a i n s i d e t h e f l a n g e , HG i s th e gaske t load i n pounds,

    HT i s

    t h e

    d i f f e r e n c e b etwe en t h e t o t a l h y d r o s t a t i c end f o r c e and t h e h y d r o s t a t i c

    end f o r c e on t h e a r e a i n s id e t h e f l a n g e , h

    i n ch e s f rom t h e b o l t c i r c l e t o t h e c i r c l e on which HD a c t s ( a s p r e -

    s c r i b e d i n T a bl e UA-50 of t he Code), h

    from t h e g a s ke t -l o ad r e a c t i o n t o t h e b o l t c i r c l e , and hT

    i s

    t h e r a d i a l

    d i s t a n c e i n i n c he s from t h e b o l t c i r c l e t o t h e c i r c l e on which H a c t s

    ( a s p r e s c r i b e d i n Ta b l e U A - 5 0 ) .

    e a r l i e r i n t h i s c ha pt er .

    de fo rmed s ta te ,

    a

    s u b s c r i p t

    2

    r e f e r s t o t h e f i n a l deform ed s t a t e , and

    p r im e d q u a n t i t i e s r e f e r

    t o

    t h e m a ting f l a n g e .

    The term

    %

    i s

    th e hyd ros ta t i c end fo r ce ( i n pounds) on

    i s t h e r a d i a l d i s t a n c e i n

    D

    i s

    t h e r a d i a l d i s t a n c e i n i nc he s

    G

    T

    Symbols,

    C , B , G ,

    g o , and p a r e d e f i n e d

    Again,

    a

    s u b s c r i p t

    1

    r e f e r s t o t h e i n i t i a l

    hT

    = [C -

    (G

    +

    B)/2] /2

    ,

    (c)

    h +

    =

    [C

    -

    ( G

    +

    B1 ) /2 ] /2

    ,

    (d)

    hG = ( C - G ) / 2 ,

    ( e>

    71

    H D 2

    = - B2p ,

    (

    f>

    (h 1

    T

    =

    -

    ( G 2 - B 2 ) p ,

    HT2 4

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    42/149

    3 2

    M

    = W h = H h

    ( R )

    (m)

    1

    i G G I G '

    M

    = HD2hD+ HT2hT

    +

    H

    G 2h

    G

    '

    M i = H'2h '

    H+2h+

    HG2hG *

    2

    and

    (n)

    Su bs ti tu t i n g Eqs. (70a--R) i n t o Eq. (69) g i v e s

    Tb~bLO qb2W2 - qblW1 = TgEgv0 - 'g2('2 - 'D2 - HT2)

    I n o r d e r t o e l i m i n a t e M , and M 2 from Eq. (7 4) ' Eqs. ( 7 3 L and m ) a r e

    u se d; t h e s i x t h term on t h e r ig h t - ha n d s i d e of Eq. (74) then becomes

    The l a s t term i n Eq. (74)

    i s

    t r e a t e d s i m i l a r l y . C o l l e c ti n g terms c o n t a i n i n g

    W,

    on

    t h e

    l e f t

    g i v e s :

    + h 29 ' > w

    =

    (qbl

    +

    q g l

    +

    h 2 q 'fi 1

    2

    (qb2 qg2 h G q f2 G f 2

    2

    3 2 )

    T E V + T E ~

    T ' E ' ~ '

    T E L

    g g o f f 0 f f o b b o qg2CHD2

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    43/149

    3 3

    and

    2 2

    Q,

    = qb2 + qg2 h~qf2 hGqi2

    D, H i , HT,

    and

    H,

    Eq. (75) becomes

    nd using the given definitions of

    H

    r '

    1

    +

    T'E't'

    -

    T E

    R )

    f f o b b o

    T E

    v

    +

    TfEftO

    Q, 1 42

    g g o

    Q,

    = - w

    hG

    -

    qp

    Q2

    +

    q')p - hG

    qtA

    +

    q;c')

    .

    (76)

    P Q2

    In order to compute the flange stresses under the various loading

    conditions, it is necessary to compute the flange moment M

    From Eq. (73m) and the definitions in

    E q s .

    (73a-k),

    or

    Mi.

    2

    7

    M, = 4

    P[B 2 h D + ( G 2

    -

    B2)hT

    - G 2 h G ]

    + W2hG

    .

    And similarly for the mating flange,

    M i

    =

    t

    p

    {(B'I2h;

    +

    [G2

    -

    (B')2]h+

    -

    G2hG

    +

    W,hG

    .

    The computer program was written to separately evaluate the various

    effects involved in bolt-load changes. The residual bolt load due to

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    44/149

    34

    temperature differences that produce differential axial strain is

    (78)

    1

    = W 1 + - ( T v

    + T E ~ T ' E ' ~ ' - T E R ) .

    '2a

    Q, g g o f f 0

    f f o b b 0

    The residual bolt load, after internal pressure (acting in an axial

    direction) has transferred the bolt load on the gasket to a tensile load

    on the attached pipes due to a shift in

    lever arms, is given by:

    The total effect of internal pressure due

    to

    both the shift in the

    lever arms and the radial effect of pressure acting on the integral

    flangeis) and/or on the inside surface of a blind flange is given by:

    The residual bolt load due to a temperature difference between the hub

    and the ring is given by:

    A

    slight modification of the above is required for the case of a

    blind flange. If we designate the blind flange as that with the primed

    nomenclature, then all* of Eqs. (7Oa-9,) are valid except Eqs. (70f

    and

    9,

    for 6; and

    6;.

    *For

    v2 it should be noted that

    H D 2 -

    HT2

    =

    nG2p/4; hence, this

    equation

    is valid for blind flanges.

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    45/149

    35

    For blind flanges, W is used rather than M as the loading parameter

    because the relationship M = W(a - b) is not valid for the blind-flange

    analysis. For blind-flange analysis,

    E q . (65)

    gives

    a

    value of w

    .

    here

    C '

    -w is the equivalent of -w + w in Eq.

    (72)

    because

    w f 0

    in the

    blind-flange analysis.

    c g

    g

    For blind flanges we define

    where (-w

    )

    is the axial displacement per unit total bolt load W. The

    equation for W2 for a blind flanged joint is then:

    c w

    Ql 1

    W = - W ,

    + - ( T E V

    + T E

    t

    + T ' E ' ~ '

    T E E )

    42 42 g g ~ f O f f o b b o

    h G

    P Q2

    + q'lp - - A

    G

    - qp

    Q2

    ( 8 3

    In E q .

    83) the primed values refer to properties of the blind flange.

    After the internal pressure has transferred the bolt load on the

    gasket to a tensile

    load on the attached pipe due to a shift in the

    lever arms, the residual bolt load for the case where a blind flange is

    used is

    It

    should be noted that q;A' does not exist for an integral flange mated

    to a blind flange.

    The combined effect of all of the above is also obtained from the

    computer program

    by

    calculating W2 from Eqs.

    (76)

    and (83).

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    46/149

    36

    External Moment Loading

    Up t o t h i s p o i n t , a l l loa ds conside red have been axisymmetric . For

    f l an g ed j o i n t s i n p i pe l i n e s , t h e r e

    i s

    o ne o t h e r s i g n i f i c a n t l o a di n g ;

    t h a t

    i s ,

    th e bending moment imposed on th e f lang ed j o i n t by th e at tac hed

    p i p e . T o d i s t i n g u i s h t h i s f rom t h e l o c a l moments a p p l i e d t o t h e f l a n g e

    r i n g , t h e bending moment

    w i l l

    be de sign ate d a s an l le xte rna l" moment.

    The external moment

    c an be r e p r e s e n te d by a d i s t r i b u t e d a x i a l e d ge f o r c e

    a c t i n g on t h e a t t a c h e d p i p e :

    F

    ( e ) =

    F

    COS e ,

    M m

    where

    8

    = ang l e a round t he c i rcumference ( e =

    0

    a t t h e po i nt of maximum

    t e n s i l e

    s t r e s s

    i n t h e p i p e du e t o t h e e x t e r n a l moment). S i n c e t h i s

    r e p o r t d e a l s o n l y w it h cases i n which a l l c o n t a c t o c c u rs w i t h i n t h e

    b o l t - h o l e

    c i r c l e ,

    a reasonably good f i r s t a pp r ox im a ti on f o r t h e e f f e c t s

    of the external moment

    lo ad in g can b e o b t a in ed by r ep l a c in g t h e d i s -

    t r i b u t e d a x i a l f o r ce

    F

    ( e ) w i t h t h e axisymmetric t e n s i l e f o rc e

    Fm =

    F (max). Then, si nc e F i s axisymmetric, t h e r e i s some pr es su re p* th a t

    w i l l p ro du ce t h e same a x i a l f o r c e i n t h e p ip e ; o r a l t e r n a t e l y , t h e r e

    i s

    an e q u i v a l e n t p r e s s u r e p* t h a t w i l l p ro d u ce an ax i a l s t r e s s i n t h e p ip e

    which

    i s

    e qu al t o t h e

    maximum

    t e n s i l e

    s t r e s s

    S

    produced by an external

    moment.

    M

    M m

    b

    The r e l a t i o n between p* and Sb is g i v e n by

    where S i s th e bend ing s t r e s s i n t h e a t t a c h ed p i p e due t o t h e e x t e r n a l

    moment. The change i n b o l t load W i s t h en o b t a in ed b y r ep l ac in g p

    2b

    with p

    +

    p* i n Eqs. (79) and

    ( 8 4 ) .

    I t s h o ul d b e no te d t h a t t h i s e qu iv -

    a l e n t p r e s s u re

    i s

    i n c lu d ed o n l y i n Eqs . (79) and

    (84)

    an d n o t i n

    E q .

    b

    (80)

    *

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    47/149

    3 7

    8 .

    COMPUTER

    PROGRAM

    A

    Fortran computer program named

    FLANGE

    h a s bee n w r i t t e n t o c a r r y

    o u t t h e c a l c u l a t i o n s a c co rd i ng t o t h e a n al y s e s d e sc r ib e d i n t h i s r e p o r t .

    The progra m c a lc u la t e s a ppr opr i a t e loa d s , s t r e s s e s , and displacements

    f o r t h e f l a n g e s , b o l t s , and g a s k e t s when t h e fl a n g e d j o i n t i s s u b j e c t e d

    t o in t e r na l p r e s su r e , m oment, a nd /o r ther m al g r a d ie n t loa d ings ; t hus ,

    t h e program

    i s

    much more gen eral tha n t h at needed onl y t o determin e

    compliance wit h t h e ASME Boi ler and Pre ss ure

    Vessel

    Code. The program

    a l so ha s t he a dva n tage o f in t e r n a l ly comput ing th e va lu e s o f th e Code

    v a r i a b l e s F ,

    V ,

    and f t h a t m us t o the r wise be e x t r a c t e d m a nua l ly fr om t he

    cu rv es gi ve n i n Code Fi g s . UA-51.2, UA-51.3, and UA-51.6. Loose hubbed

    flanges, which

    a r e

    covered by t h e Code, however,

    a r e

    not covered by t h e

    computer program.

    The m ain f unc t ion o f t h i s c ha p te r i s t o d e s c r i b e t h e i n p u t a nd

    o u t p u t f o r t h e v a r i o u s c o mp u ta ti o na l o p t i o n s a v a i l a b l e t o t h e u s e r . For

    more de t a i l e d in f o r m a t ion , t he r e a de r i s u rg ed t o c a r e f u l l y s t ud y t h e

    examples given

    i n Appendix A where a f l a nge d j o i n t , s e l e c t e d f rom API

    Standa rd 605 (Ref .

    8), i s

    analyz ed. Sev era l sample problems a r e worked,

    and t h e da ta i npu t and program out put a r e g i v e n f o r t h e v a r i o u s p ro gram

    o p t i o n s a l on g w i t h a d i s c u s s i o n o f t h e r e s u l t s . F l ow c ha rt s a nd l i s t i n g s

    of t h e program and

    i t s

    subr ou t ine s a r e g ive n i n Appendix

    B .

    I n t h e

    f o ll o w in g s e c t i o n s , t h e i n p u t d a t a f o r o p t i on c o n t r o l a nd t h e i n p u t d a t a

    and program ou tpu t f o r Code compliance cal cu la t i on s and f o r more ge ner al

    c a l c u l a t i o n s are d i sc usse d .

    ODtion Control

    Data

    Card

    The f i r s t c a r d

    of

    e ac h d a t a s e t , h e r e i n c a l l e d t h e o p t i o n c o n t r o l

    c a r d , c on ta ins c on t r o l i n f o r m a t ion f o r e xe c u t ion o f t he va r ious pr ogra m

    o p t i o n s . I t c o n t a i n s i n fo r m a ti o n s p e c i f y i n g t h e t y p e o f f l a n g e b e in g

    a na ly ze d, t h e boundary c on di t i on p la ce d on t h e d is pl ace me nt ( u ~ ) ~ =

    t h e

    s t r e s s e s

    a nd o t h e r v a r i a b l e s t o be c a l c u l a t e d , an d t h e j o i n t c on-

    f i g u r a t i o n and wh ich f l a n g e ( of t h e p a i r )

    i s

    t o be ana lyzed. These

    spe c i f i c a t io ns a r e under c on t r o l o f th e f ou r va r i a b le s ITYPE, I B Q ) N D ,

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    48/149

    3 8

    ICgDE, and

    MATE.

    The a d m i s s i b l e v a l u e s a nd t h e i r s i g n i f i c a n c e a r e as

    fo l lows .

    ITYPE ( in di ca te s the typ e of f la ng e being analyzed)

    1

    f o r a t ape red-h u b f l an g e

    2

    f o r a s t r a i g h t - h u b f l a ng e

    3 f o r

    a

    bl ind hub

    IBOND ( s p e c if i e s th e displac emen t u a t x = h)

    r

    0 f o r ( u ~ ) ~ = ~

    0

    t o conform with th e ASME Code ba si s

    1

    ( s e e f o o t n o t e ) *

    2 fo r (u r Ix zh # 0 [see Eq. ( 2 0 - 6 ) o f t h i s r e p o r t ]

    ICgDE (c on tr ol s t h e amount of ou tput d at a )

    0

    f o r a wide v a r i e t y o f s t r e s s e s , moments, and l o ad s f o r s p ec i f i e d

    moment, pressure, and

    AT

    1

    ( s e e f o o t n o t e ) *

    2 f o r a s e l e c t

    l i s t f o r checking Code compliance i n accordance

    wi th Sec t i o n

    V I I I ,

    Div.

    1

    of t h e ASME Code

    MATE ( s p e c i f i e s t h e j o i n t c o n f i g u r a t i o n and t h e f l a n g e t o be a n a ly z ed )

    1 fo r o n ly o ne f l a n g e t o b e ana lyzed (T hi s i s t h e s i t u a t i o n f o r

    ASME-Code re la te d ca lc ul at io ns . )

    2

    f o r t wo i d e n t i c a l f l a n g e s m ated t o g e t h e r

    3 f o r t h e

    f i r s t

    o f two f l a n g e s t h a t a r e n o t i d e n t i c a l , n e i t h e r of

    which

    i s

    a b l i n d f l a n g e

    4 fo r t h e s eco n d of two f l a n ge s t h a t a r e no t i d e n t i c a l , n e i t h e r

    of which i s a b l i n d f l a n g e

    5 f o r a b l i n d f l a n g e

    6 f o r a f l a n ge t h a t

    i s

    mated with

    a b l i n d f l a n g e .

    The da ta card wi th the above in fo rmat ion

    i s

    fo ll o wed by o th e r d a t a ca r d s

    c o n t ai n i ng p h y si c a l -p r o pe r t y d a t a , e t c . , f o r t h e p a r t i c u l a r f l a n g e b ei ng

    analyzed.

    Si nce th e program can be used t o ana lyz e any number of f l an ge s

    *

    In t he o r ig in a l concept ion of th e program, IBgND and I C g D E were

    e n v is i on e d a s c o n t r o l l i n g a d d i t i o n a l c a l c u l a t i o n s t h a t w ere n o t i mp le -

    m ented i n t h e p re s en t v e r s i o n . A s i t i s now wr i t te n , th e program does

    n o t d i s t i n g h i s h be tween v a lu es o f 0 o r

    1

    nor between 2 and numbers

    g r e a t e r t h a n 2 f o r e i t h e r IBgND or 1CQ)DE.

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    49/149

    39

    or flanged joints sequentially

    (as done in the examples of Appendix A),

    the data card set for each flange must start with an option-control data

    card.

    Different types

    of

    flanges and different types of calculations have

    different input data requirements. These data and their formats are

    discussed in the following sections.

    Input for Code-Compliance Calculations

    Since the ASME Code calculation procedures consider only one flange

    at a time, the input data requirements for the computer program are

    quite simple and straightforward.

    by the three data cards illustrated in Table

    9.

    The nomenclature is the

    same as that used in the Code.

    Input data are completely prescribed

    The first card is the option control card discussed in the previous

    sections. The first variable ITYPE may be equal to 1, 2 , or 3 , de-

    pending on the type of flange being analyzed.

    will always be 0, in which case the displacement u will be equal to zero

    at x

    =

    h, as specified by the Code.

    always be

    2

    and will therefore cause the program to compute the stresses

    in accordance with Code paragraph

    UA-50

    for straight or tapered-hub

    flanges

    o r

    paragraph UG-34(~)(2) for blind flanges. The last variable

    MATE will always be 1 for Code-compliance calculations. This variable

    essentially controls the bolt-load-change calculations made by the

    program.

    determining compliance, when MATE =

    1

    these calculations are not per-

    formed

    The next variable IBgND

    r

    The third variable ICgDE will

    Since the ASME Code does not consider bolt-load changes in

    The second card in the data set enters the physical dimensions of

    the flange being analyzed, as shown in Table

    9.

    These dimensions are

    the outside and inside diameters of the flange ring A and

    B ,

    the ring

    thickness

    t,

    the pipe-wall thickness go, the hub thickness at the hub-

    to-ring juncture g,, the hub length h, the bolt-circle diameter C, and

    the internal pressure. All dimensions are expressed in inches; the

    pressure is in pounds per square inch.

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    50/149

    l a h l e 9.

    Inpu t da t a fo r ASME bo l t a nd f l a nge s t r e s s c a l c u l a t i o n , u s i ng s ym bo ls de f i ne d

    i n

    ASME

    Code, Secti on VII I, Div ision 1 , Appendix

    I 1

    Option-Control Card (Read-in i n FLANGE)

    Column number

    Quant i ty

    V a r i a b l e

    0-10 11-20 21-30 31-40

    4 1 - 5 0

    51-60 61-70 71-80

    Flange Flange

    ou ter inne r Ring Pipe- wall Hub Hub

    diameter diameter th ickness th ickness th ickness length diamete r Pressure

    B o lt - c i r c l e

    C

    A

    B t g0 g 1 h P

    XA X B TH

    G O

    G1 H L

    C

    PRESS

    Column number

    Quant i ty

    Variable

    d

    0-10 11-20 21-30 31-40 41-50 51-60 61-70e 7 2 d 73-80

    Minimum A 1 lowable Allowable Basic

    de s i gn G as ke t G a ske t bo l t s t r e s s bo l t s t re s s Bol t gaske t

    G a ske t s e a t i ng ou t e r i nne r a t de s i gn a t a t m os pher i c c ro s s - s e c t i ona l s e a t

    f a c t o r s t r e s s d i am e t er d i a m e t er t e m pe rat u re t e m pe rat u re a re a O p ti on w i dt h

    I

    Y

    GO

    Gi b a %

    XM

    Y GOUT

    G I N SB

    SA A B INBO

    BO

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    51/149

    41

    The third card inputs other physical data, including the gasket

    factor my

    the minimum-design seating stress y, the outside diameter of

    the gasket Go, the inside diameter of the gasket G

    stress at design temperature

    S

    the allowable bolt stress at ambient

    temperature S the total cross-sectional area of the bolts A an

    option-selecting variable I, and the basic gasket-seating width b

    .

    The

    option variable I controls the calculation o f b and G.

    the allowable bolt

    i'

    b y

    a'

    b'

    0

    Output for Code-Compliance Calculations

    For Code-compliance calculations, all of the output for each flange

    being analyzed is printed on a single page (e.g., see examples

    1

    and

    2

    of Appendix A).

    effective gasket seating width b and the loads, bolt stresses, and

    moments identified under the headings shown in Table 10. For compliance

    with Code criteria, the value of SB1 must not exceed the allowable bolt

    stress at design temperature, and the value of SB2 must not exceed the

    allowable bolt stress at atmospheric* temperature.

    The program prints the input data followed by the

    0

    Immediately below, the program prints the flange stresses needed

    for comparison with the ASME Code criteria.

    hub flanges (ITYPE =

    1

    or 2), the program prints five stresses under the

    two headings ASME FLANGE STRESSES AT OPERATING MOMENT, MOP and ASME

    FLANGE STRESSES AT GASKET SEATING MOMENT. The stresses are identified

    as follows:

    For tapered-hub and straight-

    2 / 3 ( S H )

    = two-thirds

    of

    the longitudinal stress on the outside

    surface at the small end of the hub,

    ST = the tangential stress on the hub side of the ring,

    SR = the radial stress on the hub side of the ring,

    (SH

    +

    ST)/2 = the average

    of SH

    and

    ST,

    and

    (SR + ST)/2 = the average of SR and

    ST.

    *

    Although ambient would probably be a better term here,

    the word

    atmospheric is used as it is used in the Code.

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    52/149

    4 2

    T a b le 1 0 . Ou tp u t d a t a i d e n t i f i c a t i o n , ICgDE

    = 2 ,

    (ASME Code s t r e s s e s )

    ASME Code Program

    symbola symbol

    Desc r p

    t

    iona

    BO

    H WM11

    wM12

    W M 1

    SB1

    'm 1

    WM 2

    SB2

    'm2

    (e)

    MOP

    ( d )

    MG S

    MGS 1

    b

    See ASME Code, Ta bl e UA-49.2.

    (Th is

    w i l l

    b e i n p u t d a t a f o r I = 2 . )

    ~ G ~ p / 4

    2~bGmp

    -irG2p/4 + 21~bGmp

    B ol t s t r e s s ,

    TbGy

    B ol t s t r e s s ,

    W m 2 /

    H ~ h ~

    % h ~

    H ~ h ~

    [(Am + A, ) S a /2 ]

    x

    [ (C - G)/2]

    'm i / %

    E x c e p t f o r

    ITYPE =

    3

    (B1 in d

    f l a n g e s )

    x

    [(C - G ) / 2 1

    'rn2

    A l l s ym b ol s a r e d e f in e d i n t h e ASME B o i l e r C od e, S e c t i o n

    V I I I ,

    bSee Foo tno te d of T a b le

    9 .

    e

    dMGS

    i s

    t h e g a s k e t s e a t i n g moment

    as

    def in ed by t h e ASME Code.

    Div. 1 (1971), Appendix 11.

    MOP

    i s

    the opera t ing moment

    as

    de fi ne d by t h e ASME Code.

    For compliance with the Code Criteria, each of the above values printed

    under the first heading must not exceed the allowable stress for the

    flange material at the design temperature.

    second heading must not exceed the allowable stress for the flange

    material at atmospheric temperature.

    The values printed under the

    For blind flanges ( IT Y PE = 3 ) , the program prints the following

    five quantities under the heading ASME CODE STRESSES FOR BLIND FLANGE :

    SP = the stress due to pressure loading only,

    SW1 = the stress due to the bolt load Wml only, where W

    =

    mi

    rG2p/4 + 2~rbGmp,

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    53/149

    4 3

    SOP = the stress at operating conditions,

    SW2

    =

    the stress due to the bolt load Wm2, where W

    SGS = the stress at gasket-seating conditions.

    =

    nbGy, and

    m2

    For Code compliance, SOP must not exceed the allowable stress for the

    flange material at design temperature, and

    SGS

    must not exceed the

    allowable stress at atmospheric temperature.

    Innut for General PurDose Calculations

    When the computer program is used for general purpose calculations,

    (i.e., when it is used for calculating displacements and stresses other

    than those needed specifically for checking Code compliance), the user

    may select almost any combination of admissible values for the four

    variables ITYPE,

    I B g N D ,

    ICPDE, and MATE coded in the option control data

    card. The only specific requirement is that the variable I C O E must be

    less than two for other than Code-compliance calculations.

    the input data are structured somewhat differently than those described

    in the previous section.

    In this case

    When I C a D E

    = 0

    and MATE = 1, ( i . e . , only one flange is to be

    analyzed and the user does not wish to obtain bolt load changes), three

    data cards

    a r e

    needed as shown in Table 11. These are the option-control

    card (for which ITYPE may be 1, 2 , or

    3

    and T B g N D may be 0 or 2) and two

    physical-property data cards.

    When

    I C g D E

    =

    0

    and MATE = 2 , 3 , . . . 6, the program will analyze a

    pair

    of

    flanges mated together and give bolt load changes.

    If

    MATE

    =

    2,

    the program performs the calculations

    f o r

    a pair of identical flanges

    mated together. The input data requirements include the data cards

    shown in Table 11

    plus

    the three cards shown in Table 12.

    three cards

    contain data on the physical properties of the bolts and

    gasket,

    supplemental data on the initial and final state of the flange,

    and other conditions. For this case, the six cards listed below com-

    plete the input data set when MATE =

    2 .

    These last

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    54/149

    T a b l e

    11.

    I n p ut d a t a f o r t h e g e n e r a l p u rp o se a n a l y s i s o f a s i n g l e f l a n g e

    a nd p a r t i a l d a t a f o r p a i r e d f l a n g e s

    41-50 51-60 61-70

    Hub

    Hub B o l t - c i r c l e

    t h i c k n e s s

    l e n g t h d i a m e t e r

    h

    C

    G l a j b HL, C

    g l

    O p t i o n - C o n t r o l C a r d :

    [FgRMAT (415) re ad - i n i n

    FLANGE]

    71-80

    P r e s s u r e

    P

    PRESS

    I C ~ D E

    MATE'

    Column number

    V a r i a b l e

    V a l u e

    1, 2 ,

    o r 3

    0

    o

    2

    1 o r

    ( 2 )

    0-10

    11-20 21-30 3 1 - 4 0

    olumn number

    T h e r m a l

    M o m e n t C o e f f i c i e n t

    g r a d i e n t M o du lu s o f

    a p p l i e d t o o f t h e r m a l

    p i p e o r h ub e l a s t i c i t y

    f l a n g e r i n g e x p a n s io n t o r i n g f l a n ge

    Q u a n t i t y

    A E

    f

    Var i

    b

    1 X M O A ~ E F ~ DELT ^ YM

    S e c o n d C a r d :

    [FgRMAT (8E10 .5 ) ; r ea d - in i n

    TAPHUB,

    STHUB, o r BLIND]

    41-50

    G a s k e t

    c e n t e r l i n e

    d i me

    t

    er

    2g

    G

    F l a n g e

    F

    1 n g e

    Column number

    Q u a n t i t y

    o u t e r i n n e r R in g

    V a r i a b l e

    31-40

    P i p e - w a l l

    t h i c k n es

    s

    go

    GOa'

    T h i r d C a r d : [FgRMAT ( 5 E1 0 .5 ) ; r e a d - i n i n TAPHUB, STHUB, o r BLIND]

    % h e n ITYPE

    = 2 , GO

    m u s t b e e n t e r e d ;

    G 1

    a n d

    HL

    a r e n o t u s e d .

    bWhen

    ITYPE

    = 3 ,

    X B ,

    G O ,

    G 1 ,

    HL, E F ,

    and

    DELTA are

    n o t u s ed ; t h e v a l u e f o r

    XMOA i s

    t h e t o t a l b o l t l o a d

    W

    When

    MATE = 2 ,

    a d d i t i o n a l d a t a a s d e s c r i b e d i n T a b l e

    1 2

    a r e a l s o r e q u i r e d .

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    55/149

    Table

    1 2 .

    Last three input da ta ca rds f or th e genera l purpose ana lys is of pa i re d f l a nge s

    21-30

    Bolt

    c o e f f i c i e n t

    of thermal

    expansion

    'b

    Card

    No. 4

    o r 7 : a

    [FORMAT

    (7E10.5); read-in in FLGDW]

    31-40 41-50 51-60 61-70

    F i na l s t a t e ; C ros s- s e ct i ona l

    bol t Out s id e Ins ide root a rea

    tempera ture diamete r diamete r of a l l

    of gaske t of gaske t bol t s

    Tb

    Column number

    Quantity Nominal

    diamete r

    Column number

    Variable

    11-20

    0- 10 11-20 21-30 31-40 41 -50 51-60

    In i t i a l s t a t e ; G as ke t Equ iva le n t

    g a s ke t c o e f f i c i e n t F i n al s t a t e ; A f r e e p re s s u re

    Gasket modulus of

    of thermal gasket

    bo lt see Eq. (86)

    t h i c k n e s s e l a s t i c i t y expans ion tempera ture

    length of text

    V

    5

    VO YG E G TG F A C E b PBE

    T v a r i a b l e

    P*

    g g R

    d

    I n i t i a l s t a t e ;

    bolt modulus

    o f e l a s t i c i t y

    E

    b

    Column number

    Q ua n t i t y

    Variable

    0-10 11-20 21-30 31-40 41-50 51-60 61-70

    F i n a l s t a t e

    i n al s t a t e F i n a l s t a t e F i n al s t a t e F in a l s t a t e

    I n i t i a l

    temperature temperature fla nge modulus

    fla nge modulus

    F i na l s t a t e ga s ke t

    bo1t of

    flange , of f lange ,

    of

    e l a s t i c i t y , o f e l a s t i c i t y , bo lt modulus modulus of

    load s i d e one si de two si de one sid e two

    o f e l a s t i c i t y e l a s t i c i t y

    E

    I

    T f 2

    T i 2 E f 2

    E

    ;2 Eb

    W l T F ~

    T F P ~ YF2

    Y F P 2

    Y B 2 Y G Z

    Card K O .

    5

    o r 8: [FONIAT (6E 10. 5); re ad -i n i n FLGDW]

    Quant i ty

    a .

    bThe

    e f fe c t i v e bo l t l oa d i s c a l c u l a t e d

    as

    Lo = X L B =

    TH

    +

    THP +

    VO + BSIZE

    +

    FACE.

    F i r s t card number applies when MATE =

    2 ; second number applies when MATE

    =

    3 and 4 or 5 and 6.

    'Values fo r

    G I

    and

    A

    a re c a l c u l a te d u s i ng i npu t va r i a b l e s

    X G O

    and XGI.

    n'-

    . *

    >

    g

    -initial-state t empera tures a re de rlneo as zero.

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    56/149

    46

    Card No. Identification

    1

    2l

    6

    Option control card with MATE

    = 2

    Data cards per Table

    11

    Data cards per Table

    12

    When ICgDE

    =

    0 and MATE

    = 3 ,

    the program performs the calculations

    for a pair of nonidentical flanges, neither of which, however, is

    blind

    ( i . e . ,

    ITYPE

    = 1

    or 2 # 3

    on

    the option-control card).

    the first flange of the pair follows the option-control card.

    the second flange in the pair will follow an option-control card with

    MATE = 4.

    data requirements.

    nonidentical flanges

    (neither of which is blind) consists of the follow-

    ing nine cards.

    Data for

    Data for

    The three cards described in Table 12 will

    then complete the

    The complete input data set for analyzing a pair

    of

    Card No.

    Identification

    1

    32 l

    4

    6

    Option-control card,

    ITYPE

    #

    3 ,

    ICgDE

    =

    0,

    MATE

    =

    3

    Data cards per Table 11 for first flange of pair

    Option-control card, ITYPE # 3, ICgDE = 0, MATE = 4

    Data cards per Table 11

    for

    second flange

    of

    pair

    Data cards per Table 12

    When

    IC@DE

    = 0 and MATE

    =

    5, the program performs the calculations

    for a flanged joint that is closed with a blind flange. For this option,

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    57/149

    47

    the blind flange is designated as the first flange and the mating flange

    is designated

    as

    the second with MATE =

    6.

    set is completed

    by

    using the data cards described in Table

    12.

    The

    complete input data set for this case consists of the following nine

    cards.

    A s befo re , the input data

    Card No. Identification

    1

    Option-control card, ITYPE

    =

    3 , 1CP)DE =

    0,

    MATE = 5

    32 l

    Data cards per Table 11 f o r blind flange

    4 Option-control card, ITYPE

    =

    1 or 2, ICgDE

    =

    0, MATE

    =

    6

    Data cards per Table 11 for second flange

    9"i

    Data cards per Table 12

    Output from General Purpose Calculations

    The amount and format of the data printed out

    are

    determined pre-

    dominantly by the number and types of flanges being analyzed, which in

    turn are determined by the value of the option-control variable MATE.

    When

    MATE = 1,

    the output consists of one page

    of

    printout, which gives

    (1) the input data; ( 2 ) the three sets of stresses for moment loading

    only (the bolt load for blind flanges), pressure loading only, and

    temperature-gradient (hub to ring) loading only (except for blind

    flanges); and

    ( 3 )

    the displacements produced by the calculated stresses.

    The symbols used on the printout are explained in Tables 1 3 and 14.

    When MATE

    = 2,

    the output consists

    of

    three pages

    of

    printout. The

    first page gives

    (1)

    the input data and (2) the parameters involved in

    the bolt-load-change calculations. The second page gives

    (1)

    the

    loadings, (2) the residual bolt loads, and ( 3 ) the initial and residual

    moments. The symbols used in the first and second page of printout are

    explained in Tables 15 and

    16.

    The third page gives the stresses and

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    58/149

    4 8

    Table 13. O ut pu t d a t a i d e n t i f i c a t i o n , s t r e s s e s ,

    disp lacements , and ro ta t ion

    Theory Program

    Symbol symbol

    Descr ip t ion

    u

    a

    r = o

    r t

    u

    r = g

    r

    u r = g

    t

    u

    r = c

    r

    a t , r

    =

    c

    a r = a

    t

    & C

    SLSOQ

    SLSP

    SCSOa

    sc

    s U

    s

    L L O

    S L L I

    SCLO

    SCL

    I

    STH

    STF

    SRH

    SRF

    Z G

    zc

    QFHG

    Y O

    Y 1

    THETA

    SORT

    SGR

    SGT

    SCR

    SCT

    SAT

    zc

    S t r e s s , l o n g i t u d i n a l , small end of hub,

    o u t s i d e s u r f a c e

    St r es s long i tud ina l , smal l end of hub , in s id e

    S t r e s s , c i r c u m fe r e n t ia l , small end of hub,

    S t r e s s , c i r c u m fe r e n t ia l , small end of hub,

    s u r f

    ace

    o u t s i d e s u r f a c e

    i n s i d e s u r f a c e

    St re s s , long i tud ina l , l a r ge end of hub ,

    o u t s i d e s u r f a c e

    S t r e s s , l o n g i t u d i n a l , l a r g e end o f hu b, i n s i d e

    sur f ace

    S t r e s s , c i r c u m f e r e n t i a l , l a r g e e nd of hub,

    S t r es s , c i r cu mferen t i a l , l a rge end of hub,

    o u t s i d e s u r f a c e

    i n s i d e s u r f a c e

    S t r e s s , t a n g e n t i a l , hub s i d e of r i n g, a t r = b

    S t r e s s , t a n g e n t i a l , f a c e s i d e o f r i n g ,

    a t r

    = b

    S t r e s s , r a d i a l , h ub s i d e o f r i n g , a t

    r

    = b

    S t r e s s , r a d i a l ,

    f a c e s i d e of r i n g , a t r = b

    ( 6

    E

    0

    a t r = b)

    Axial displacement a t r = g

    Axial displacement a t r = c

    - 6

    +

    6

    Radial displacement , small end of hub

    Radia l d i sp lacement , l a r ge end of hub

    Rota t ion of r in g a t

    r =

    b

    c g

    b

    S t r e s s , r =

    0 ,

    r a d i a l a n d t a n g e n t i a l

    S t r e s s , r = g r a d i a l

    S t r e s s , r = g , t a n g e n t i a l

    For

    b l i n d f l a n g e s

    S t r e s s , r = c , r a d i a l

    S t r e s s , r = c , t a n g e n t i a l

    S t r e s s , r =

    a ,

    t a n g e n t i a l

    Axial displacement a t r = c

    ( 6

    F

    0

    a t r =

    g )

    For Straight Hub Flange, these

    are a t

    j u n c t u r e

    of

    hub with r ing.

    b A l l

    s t r e s s e s

    are

    f o r t h e s i d e

    of

    t h e f l a n g e o p p o s i t e t h e p r e s s u re -

    b e a r i n g s i d e .

    r e v e r s e d s i g n s .

    S t r e s s e s on t h e p r e s s u r i z e d s i d e o f t h e f l a n g e h av e

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    59/149

    49

    Table 1 4 . Outpu t d a t a i d en t i f i ca t i o n when

    MATE = 2 ,

    3 and 4 ,

    o r 5 and 6

    Theory

    Program

    symbol

    symbol

    Descr ip t ion

    QFHG Axial d isplacement from

    C

    t o G , u n i t moment l oad

    f l h G

    qP 1 G

    QPHG

    Axial displacement from C t o G , u n i t p r e ss u r e

    load

    Q T H G ~

    Axial d isplacement from C t o

    G ,

    u n i t

    DELTA

    t l h G

    2b In si de diameter

    GOa Pipe

    wall

    t h i c k n e s s

    t

    TH

    Ring th ickness

    Modulus o f e l a s t i c i t y of f l a n g e m a t e r i a l , i n i t i a lYM

    s t a t e

    f

    1

    YF2C Modulus of e l a s t i c i t y o f f l a n g e m a t e r i a l , f i n a l

    s t a t e

    f

    f

    E

    F~

    Coe ff i c ie n t o f thermal expans ion

    of

    f l a n g e

    m a t e r i a1

    ( 1

    (

    > p The above nine symbols with a prime m a r k I ) on

    t h e t h eo ry s ym bo ls a r e f o r t h e m a ting f l an g e .

    The program symbol has th e added f i n a l l e t t e r

    rrp.

    11

    a

    For b l i n d f l a n g e s , t h e s e v a l ue s a r e n ot s i g n i f i c a n t ; an a r t i f i c i a l

    b The se v a l u e s a r e i n p u t d a t a f o r f l a n g e s i d e o ne , i n p u t c a r d s

    2

    and

    v a lu e o f -1.0000 i s p r i n t e d o u t .

    3

    ( s ee T abl e 1 1 ) . For MATE

    =

    2 , t h e s e v a l u e s , a lo ng w it h c a l c u l a t e d

    vg lues of

    QFHG,

    QPHG, and

    QTHG,

    a r e u sed fo r s i d e one and s i d e two ( i . e . ,

    an i d e n t i c a l p a i r ) . I f MATE

    = 3

    o r 5 , t h e p rim ed v a l u e s a r e s t o r e d ; t h e

    unprimed values

    are

    r e a d i n by i n p u t c a r d s

    5

    and

    6 ,

    and values of QFHGP,

    QPHGP,

    and QTHGP a r e c a l c u l a t e d.

    and 6 (see Tab le 11) .

    e

    Input from card 6 f o r MATE

    =

    2 , card

    9

    f o r

    MATE =

    3 and 4 o r 5

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    60/149

    50

    Table 15.

    O utp ut d a t a i d e n t i f i c a t i o n , MATE = 2 , 3 and 4 ,

    or 5 and 6 , b o l t s , g a s k e t , a nd lo a d in g s d a t a

    Theory Program

    symbol symbol

    a

    D e s c r i p t i o n

    R

    *b

    C

    Eb1

    Eb2

    'b

    VO

    E

    E

    g1

    8 2

    g

    E

    w 1

    Tf 2

    TL

    Tb

    T

    A

    A '

    P

    g

    X LB

    A B

    C

    Y B

    Y B 2

    E B

    vo

    X

    GO

    X G I

    Y G

    Y G 2

    EG

    w1

    TB

    TF

    T F P

    TG

    DELTA

    DELTAP

    PRESS

    E f f e c t i v e b o l t l e n g th

    C r o s s - s e c t i o n a l r o o t area o f a l l b o l t s

    B o l t - c i r c l e d i a m e t e r

    Modulus of e l a s t i c i t y , b o l t s , i n i t i a l s t a t e

    Modulus of e l a s t i c i t y , b o l t s , f i n a l s t a t e

    Co e f f i c i en t of t h e rma l ex pan s io n , b o l t s

    Gasket th ickness

    Outs ide d iameter o f gaske t

    In s id e d i am e ter o f g a s k e t

    Modulus of e l a s t i c i t y o f g a s k e t , i n i t i a l s t a t e

    Modulus of e l a s t i c i t y o f g a s k e t , f i n a l s t a t e

    Co e f f i c i en t of t h e rm a l ex p an sio n , g a s k e t s

    I n i t i a l t o t a l b o l t l oa d

    T em pe ra tur e o f b o l t s , f i n a l s t a t e

    T em pe ra tur e o f f l a n g e r i n g , s i d e on e, f i n a l s t a t e

    T em pe ra tu re of f l a n g e r i n g , s i d e t wo , f i n a l s t a t e

    T em pe ra tu re o f g a s k e t , f i n a l s t a t e

    T herm al g ra d i e n t , p ip e/h u b t o r i n g , s i d e on e

    T he rm al g ra d i e n t , p ip e /h ub t o r i n g , s i d e two

    I n t e r n a l p r e s s u r e

    A l l

    v a l u e s a r e i n p u t d a t a , e x ce p t

    X L B

    which

    i s

    c a l c u l a t e d by t h e

    equat ion :

    X L B

    = TH + THP + VO

    +

    B S I Z E

    +

    FACE.

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    61/149

    51

    T a bl e 1 6. O ut pu t d a t a i d e n t i f i c a t i o n , MATE

    2 , 3

    and

    4 ,

    or 5 and

    6 ,

    res idua l bol t loads and moments

    a

    Theory Prog r a m

    symbol symbol Ef fe ct inc lud ed

    W2A R e l a t i v e ch an ge i n t em p e ra t u re o f b o l t s , g a s k e t

    f l a n g e (AXIAL THERMAL)

    W2B

    Change i n moment arms (MOMENT SHIFT)

    W2C T o t a l p r e s s u r e

    W 2 D Thermal gr ad ie nt , pip e/hub t o r i n g (DELTA

    2a

    '2b

    w

    W 2 C

    ' d THERMAL)

    W2 A l l of th e above , p l us change i n modulus of

    e l

    as

    t i c i y (COMBINED)

    W2

    ? ' h e c h an ge i n b o l t l oa d ( e . g . ,

    W 1

    - W2A) and r a t i o of re s i du a l t o

    i n i t i a l bo l t load (e .g . , W2A/W1) are a l s o p r i n t e d o u t , a lo ng wi t h t h e

    cor responding va lu es of th e i n i t i a l moment (Ml) and re s i du a l moments ,

    M2A, . . . , M2P. The r e s i d u a l moment i d e n t i f i e r s w i th f i n a l l e t t e r P ( f o

    p ri me) a r e f o r t h e f i r s t e n t e re d of a p a i r o f n o n i d e n ti c a l f l a n g e s . I f

    t h e p a i r o f f l a n g es a r e i d e n t i c a l , t he n M2B

    =

    M 2 B P , e t c . The r e s i d u a l

    moment values a r e n o t s i g n i f i c a n t f o r b l i n d f l a n g e s , ITYPE

    =

    3 ; t h e r e -

    f o r e , r e s i d u a l b o l t l o ad s a re u se d f o r b l i n d f l a n g e s .

    d isp lacements as f o r t he c a se when MATE = 1 p l u s t h e s t r e s s e s and d i s -

    p lacements fo r combined loading . The heading inc lud es th e va l ue of t he

    residual moments

    M 2 =

    M2P

    u s e d f o r

    t h e com bined-loa ding c a l c u la t ion s .

    When MATE =

    3

    and 4 o r 5 a nd 6 , t he ou tp u t c on s i s t s o f f ou r pages

    o f p r i n t o u t . The f i r s t two pages have the

    same

    format as f o r t h e c a s e

    when MATE =

    2 ,

    e x ce p t i n p u t d a t a f o r b o th o f t h e ( n o n i d e n t i c a l ) f l a n g e s

    ar e pr in te d . The re s i du a l moments on t h e l a s t l i n e of pa ge 2 a p p l y t o

    f l a n ge one; tho se on th e p r e c e d ing l i n e app ly t o f l a nge two. The

    l a s t

    two pa ges o f p r in to u t are f o r f l a n g e o ne and f l a n g e t wo, r e s p e c t i v e l y ,

    and a r e i d e n t i c a l i n form at t o t h e t h i r d p age of t h e p r i n t o u t f o r t h e

    case when MATE

    =

    2 .

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    62/149

    5 2

    Acknowledgment

    1.

    2 .

    3.

    4.

    5.

    6.

    7.

    8.

    The authors gratefully acknowledge the assistance of

    0.

    W. Russ

    of the Computer Sciences Division for converting the CDC 7700 Fortran

    program written at Battelle-Columbus Laboratories to double precision

    for operation on the ORNL

    IBM 360 computers.

    References

    ASME Bo il er and Pressure Ve ss el Code, Section VIII-1971, Nuclear

    Power Plant Components, American Society of Mechanical Engineers,

    New York, July 1, 1971.

    E.

    0.

    Waters et al., Formulas for Stresses in Bolted Flanged

    Connections

    I Trans.

    ASME 59, 161-69

    (1937)

    S. Timoshenko, Theory

    of

    Plates and Shells , 1st ed., McGraw-Hill,

    New York, 1940.

    E.

    C. Rodabaugh, F. M. O'Hara, Jr., and S. E. Moore, Analysis of

    Flanged Jo in ts w it h Ring-Type Gaskets (in preparation).

    E. C. Rodabaugh, F. M. O'Hara, Jr., and

    S.

    E. Moore, S t re s se s i n

    th e Bo lt in g and Flanges

    of

    B 1 6 . 5 Flanged Jo in ts wi th Metal-to-Metal

    Contact Outside the Bolt Circle

    (in preparation).

    D.

    B. Wesstrom and S. E. Bei-gh, Effect of Internal Pressure on

    Stresses and Strains

    in Bolted-Flanged Connections, Trans ASME

    73,

    553-68

    (1951).

    E. C. Rodabaugh, Discussion Section of Ref. 6.

    Large-Diameter Carbon S t e e l Flanges (S i ze :

    26

    Inches to

    30

    Inches,

    Inclusive, Ngminal Pressure Rating: 7 5 , 1 5 0 , and

    300

    l b ) ,

    API

    Standard 605, 1st Ed., American Petroleum Institute, New York,

    1967.

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    63/149

    53

    A P P E N D I X A

    E X A M P L E S OF A P P L I C A T I O N OF C O M P U T E R P R O G R A M F L A N G E

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    64/149

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    65/149

    55

    APPENDIX

    A

    CONTENTS

    Page

    57

    . . . . . . . . . . . . . . . . . . . . . . . . . .

    NTRODUCTION

    . . . . . . . . . . . .

    59

    ETAILS

    OF THE FLANGE

    USED

    I N

    THE EXAMPLES

    . . . . . . . . . . . . .

    62

    SME C O D E CALCULATIONS, EXAMPLES

    1

    A N D 2

    . . . .

    6 7

    Inpu t Data 67

    O u t p u t D a t a 70

    7 0

    esidual Bolt Loads

    Blind Flange St re ss es , Example 3(a) 80

    Tapered-Hub Flang e S tr es se s, Example 3(a ) 81

    Blin d and Tapered-Hub S t r e s s e s , Example 3(b) 83

    Disp lacements 83

    BLIND-TO-TAPERED-HUB FLANGED

    J O I N T , EXAMPLES 3(a) and 3(b)

    . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . .

    . . . . . . . .

    . . . . . .

    . . . . . . . . . . . . . . . . . . . . . .

    . . .

    DENTICAL PAIR OF

    TAPERED-HUB

    FLANGES, EXAMPLES

    4 ( a ) A N D

    4(b) 84

    . . . . . . . . . . . . . . . . . . . . . . . . . .

    npu t Data 84

    Output Data 84

    84

    . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . .es idua l Bolt Loads

    . . . . . . . . . . . . . . . . . . . . .

    l a n ge S t r e s s e s 93

    Displacements 94

    . . . . . . . . . . . . . . . . . . . . .

    96

    OMPUTER TIME . . . . . . . . . . . . . . . . . . . . . . . . . . .

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    66/149

  • 7/26/2019 FLANGE - A Computer Program for the Analysis of Flanged Joints With Ring-Type Gaskets

    67/149

    57

    INTRODUCTION

    Several examples have been selected to illustrate the input/output

    data of the computer program FLANGE and the significance of the results.

    The flange selected for analysis is one included in API Standard 60.5.

    The particular size and rating selected was the 60-in., 300-lb tapered-