F.L. Lewis Head Controls & Sensors Group Head, Controls ...

26
Organized and invited by John Gan Thank you Lim Ser Yong Decision & Control for Lim Ser Yong F.L. Lewis Sustainable Manufacturing and Green Engineering F.L. Lewis Automation & Robotics Research Institute (ARRI) The University of Texas at Arlington F.L. Lewis Moncrief-O’Donnell Endowed Chair Head Controls & Sensors Group Invited by Automation & Robotics Research Institute (ARRI) The University of Texas at Arlington Head, Controls & Sensors Group Decision & Control for Sustainable Manufacturing and Green Engineering Talk available online at http://ARRI.uta.edu/acs Outline 1. What, how, overall perspectives of Sustainable Manufacturing 2 Topics for further research and publication 2. Topics for further research and publication What isLife Cycle Design Green Engineering Sustainable Development Sustainable Engineering Design for Sustainability Reverse Logistics Reverse Manufacturing EoLEnd of Life Recovery Reuse Remanufacturing Recycling RecoveryReuse, Remanufacturing, Recycling, Redistribution What does it mean? Why?

Transcript of F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Page 1: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Organized and ginvited by John Gan

Thank youLim Ser Yong

Decision & Control for 

Lim Ser Yong

F.L. Lewis

Sustainable Manufacturing and Green Engineering

F.L. LewisAutomation & Robotics Research Institute (ARRI)

The University of Texas at Arlington

F.L. LewisMoncrief-O’Donnell Endowed Chair

Head Controls & Sensors Group

Invited by

Automation & Robotics Research Institute (ARRI)The University of Texas at Arlington

Head, Controls & Sensors Group

Decision & Control for Sustainable Manufacturing and Green Engineering

Talk available online at http://ARRI.uta.edu/acs

Outline1. What, how, overall perspectives of Sustainable Manufacturing2 Topics for further research and publication2.   Topics for further research and publication

What is‐

Life Cycle Design Green EngineeringSustainable DevelopmentSustainable EngineeringDesign for SustainabilityReverse LogisticsReverse ManufacturingEoL‐ End of LifeRecovery Reuse Remanufacturing RecyclingRecovery‐ Reuse, Remanufacturing, Recycling, Redistribution

What does it mean?

Why?

Page 2: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

http://smc.simtech.a‐star.edu.sg

Dr. Song Bin, Directorg , The Phases of ManufacturingDr. Stephan Biller, GM

Traditional manufacturing (Henry Ford 1905)Traditional manufacturing (Henry Ford – 1905)

Lean manufacturing (Toyota – 1970s)

Green manufacturing (environmental philanthropy‐ 2000s)Green manufacturing (environmental philanthropy 2000s)

Sustainable manufacturing

Sustainable Product life cycles Supported by economic profit benefits 

F. Giudice, G. La Rosa, A. Risitano, 

THE TAO WORKS TO USE THE EXCESS, AND

Product Design for the Environment, Taylor & Francis, 2006.

,GIVES TO THAT WHICH IS DEPLETED.

THE WAY OF MAN IS TO TAKE FROM THE DEPLETED, AND GIVE TO THOSE WHO ALREADY HAVE AN EXCESSGIVE TO THOSE WHO ALREADY HAVE AN EXCESS.

To be ecologically responsible and socially responsive, Design must be revolutionary and radical in the truest sense.It must dedicate itself to Occam’s Razor, nature’s principle of least effort. This is accomplished through proper methods of Decision and Control.

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Page 3: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Process industries

The Limits to Growth1972 D H Meadows D L Meadows J Randers and WW Behrens III1972, D.H. Meadows, D.L. Meadows, J. Randers, and W.W. Behrens III. 

Exponential population growthSuper Exponential resource depletionSuper Exponential resource depletion

The amount of time left for a resource with constant consumption growth is :

where:y = years left;g = 1.026 (2.6% annual consumption growth);R = reserve;

constant consumption growth is :

Fossil fuels gone Starvation DiseaseFresh water gone

C = (annual) consumption.

2020 2030 2050

Fossil fuels gone Starvation  DiseaseFresh water gone

2070

timeline

Lotka‐Volterra Predator/Prey Model

x ax bxyd

Resources/preyy cy dxy Consumers/predator

Plots by Erin McNelis, Associate Professor, Mathematics and Computer Science Department, Western Carolina University

Logistic Function (Verhulst Model) – The Limits to Growth

Figure 1

Logistic Function (Verhulst Model)  The Limits to Growth

2y cy dy

http://www.gummy‐stuff.org/logistic‐growth.htm

Page 4: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

The Limits to Growthx ax

Resources/Prey/Carrying Capacity

y cy Consumers/Predator/Population

2y cy dy Logistic Function (Verhulst Model)

Consumers/Predator/Population

Resources/Prey/Carrying Capacity

C /P d t /P l ti

x ax bxyd

Lotka‐Volterra Predator/Prey Model

Consumers/Predator/Populationy cy dxy

BALANCE= Control the growth parameters:a= rate of resource increaseb= rate of depletion of resources by population

t f l ti d /

Figure fromT.E. Graedel and B.R. Allenby, Industrial Ecology and Sustainable Engineering, Prentice‐Hall, 2010.

c= rate of population decrease w/ no resourcesd= rate of use of resources

Human Technological Development Goes in Waves

T.E. Graedel and B.R. Allenby, Industrial Ecology and Sustainable Engineering, Pearson, 2010.

A Non‐Sustainable society Green manufacturing: Production can be environmentally friendly and cost‐effective

William Atkinson, contributing editor ‐‐Manufacturing Business Technology, 3/29/2008 5:20:00 PM, g g gy, / /

U.K.‐based Lanner Group survey:only 9% of respondents prioritized reduction of their carbon footprint in 2007only 9% of respondents prioritized reduction of their carbon footprint in 2007. 72 % of the respondents said they had other priorities to address first15% said the process is too costly8% said they didn’t know how to do it.8% said they didn t know how to do it.

Green products are more expensive than traditional products so it isGreen products are more expensive than traditional products, so it is difficult to create a market for them

Page 5: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

R. Florida, Lean and Green:  The move to environmentally conscious manufacturing, Cal. Management Rev., Fall 1996

Environmental concernGovernment regulations

Drivers for Sustainable Manufacturing

Government regulationsCustomer preferences – redefining satisfactionPreferences of New Staff Hires – Dr. Stephan Biller, GM

R. Florida, Lean and Green:  The move to environmentally conscious manufacturing, Cal. Management Rev., Fall 1996

Drivers for Environmental Industrialism

T.E. Graedel and J.A. Howard‐Grenville, Greening the Industrial Facility, Springer, 2005.

Sustainable Industrial Life CyclesSustainable Development:Meets the needs of the presentDoes not compromise the ability of future generations to meet their own needs

1987 W ld C i i E i t d D l t (WCED)‐ 1987 World Commission on Environment and Development (WCED)

Functions of Nature and the Environment:Functions of Nature and the Environment:•  Provide raw materials and all other primary resources that support human activities

•  Constitute a cleaning reservoir to absorb, and sometimes recycle, waste from activities

P f h i l bl f i f h lif f ki d ( bili i f•  Perform other irreplaceable functions for the life of mankind (e.g., stabilization of climatic conditions on the global scale, or defense from UV rays by the ozone layer)

H ?F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

How?

Page 6: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Biological Food WebSustainableSustainable 

The Circle of LifeCircular dependenciesLife/death cycleLife/death cycleResource ReuseRegeneration

The Industrial Life Cycle

Circular dependenciesLife/death cycleResource ReuseResource ReuseRegeneration

Must close the loopp

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Industrial Ecology

Industrial Manufacturing WebT.E. Graedel and B.R. Allenby, Industrial Ecology and Sustainable Engineering, Prentice‐Hall, 2010.

Must have economic drivers

Re‐Design reduces Consumption of resourcesresources

Recycling reduces Depletion of natural resourcesnatural resources

T.E. Graedel and B.R. Allenby, Industrial Ecology and Sustainable Engineering, Prentice‐Hall, 2010.

Page 7: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Manufacturing & Distribution

Life Cycle Engineeringg

Reverse Manufacturing & Reverse Distribution

B. Madhevan, D.F. Pyke, M. Fleischmann, “Periodic review, push inventory policies for remanufacturing, European J. Oper. Res., v. 151, 2003.

Life Cycle Engineering

T.E. Graedel and B.R. Allenby, Industrial Ecology and Sustainable Engineering, Prentice‐Hall, 2010.

End of Life EngineeringReverse ManufacturingReverse Logistics

Manufacture Distribution and logistics

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Reverse manufactureReverse logistics

Page 8: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Resource Use and Waste Emissions 

J. Heilala, S. Lind, B. Johansson, “Simulation‐based sustainable manufacturing system design,” Proc. Winter Sim. Conf, 2008.

The productIs notThe onlyThe onlyOutput

I ROut:  Toxic Gases emitted

Industrial Metabolism for Toyota AutoOut: C02

In: ResourcesEnergyWater

Production

Use 

Out:  Wastewater & Toxins into waterwaysOut: Wasted energy, thermal

T.E. Graedel and B.R. Allenby, Industrial Ecology and Sustainable Engineering, Prentice‐Hall, 2010.

Life Cycle Resource Usage and Pollution

Old: Best product for minimum cost expenditures

Resource = money (cost), natural resources, electric power, water, carbon footprint,

Old:  Best product for minimum cost expendituresNew: Best product for minimum resource expenditures

y ( ), , p , , p ,waste cleanup fines 

PRE‐PRODUCTION DISTRIBUTION USERETIREMENT – EOL

PRE‐PRODUCTIONRaw material extractionProcessingShippingStorage

PRODUCTIONFormingAssemblyFinishing

DISTRIBUTIONPackageShippingStorageDelivery

USEOperationMaintenanceRepairUpgrade

RecoveryReuseRemanufacturingRecycleDisposalDisposal  

Raw materials Energy 

WaterCatalysts

PollutantsToxins

CO2

Catalysts 

REVERSE DISTRIBUTIONPackageShippingpp gStorageDelivery

Page 9: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Industrial Ecology

Socio‐Biological systems are sustainable.g yA key feature is a cyclic structure of birth, life, and death A cyclic dependency of organisms on each other that returns resources to the environment

Socio‐biological Food ChainsSocio‐biological Food Chains

• Cyclical structure of the subject’s life (conception, birth, development,maturity, the end of life)

(• Functions of metabolic type (ingestion of resources, transformation,growth of systems) • Capacity to reuse and to recycle resources (potentially zero waste, interms of the system)terms of the system)

• The processes of transformation can be considered cyclical, giventhat single organisms draw on flows of material and energy andproduce waste but the entire network to which they belong does notproduce waste, but the entire network to which they belong does notproduce waste.• The exchange of resources between systems is sustained by forms ofcooperation.

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Sustainability‐ How?

• Reducing the use of materials, using recycled and recyclable materials, and reducing toxic or polluting materialsM i i i h b f l bl l bl• Maximizing the number of replaceable or recyclable components 

• Reducing emissions and waste in production processes• Increasing energy efficiency in phases of production and use• Increasing reliability and maintainability of the system• Increasing reliability and maintainability of the system• Facilitating the exploitation of materials and recovery of resources by planning the disassembly of components• Extending the product’s useful life Extending the product s useful life• Planning strategies for the recovery of resources at end‐of‐life, facilitating reuse, remanufacturing and recycling, and reducing waste• Controlling and limiting the economic costs incurred by design interventions g g y gaimed at improving the environmental performance of the product• Respecting current legal constraints and evaluating future regulations in preparation

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Sustainability‐ How? SustainabilityIs Optimal DesignWith a Global View

Must have 

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

economic drivers

Environmentally-Conscious Product Design

Green manufacturing: Production can be environmentally friendly and cost‐effectiveWilliam Atkinson, Manufacturing Business Technology, 3/29/2008

Page 10: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

DFE= Design for EnvironmentPC&P P ll ti C t l d P tiPC&P= Pollution Control and Prevention

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

• Study of the flows and transformations of materials and energy• Change in the conception of transformation processes from linear• Change in the conception of transformation processes from linear(open) to cyclical (closed)• Holistic vision of the interaction between industrial and ecologicalsystems• Harmonization between industrial systems and ecological systems• Emulation, in the structuring of industrial systems and in their organizational

manufacturingmanufacturing

Reverse manufacturing

Design for Environment

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Life Cycle Engineering

• Depletion—The impoverishment of resources, imputable to all theresources taken from the ecosphere and used as input in the product–

Three main effects of Human systems on the Environment

system (e.g., depletion of mineral and fossil fuel reserves as a resultof their extraction and transformation into construction materialsand energy)• Pollution—All the various phenomena of emission and waste,caused by the output of the product–system into the ecosphere (e.g.,dispersion of toxic materials or phenomena caused by thermal andchemical emissions such as acidifi cation, eutrophication, and globalwarming)• Disturbances—All the phenomena of variation in environmentalstructures due to the interaction of the product–system with theecosphere (e.g., degradation of soil, water, and air)F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Page 11: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Reverse Logistics and Reverse Manufacturing

EoL RetirementEoL Retirement• Reuse‐ Regain the original functionality of the product, reusing it whole• ReManufacturing• Reuse some components, either directly or after they have beenReconditionedReconditioned• Recycle‐ Exploit the resources used through processes of recycling materials or of energy recovery• Eliminate all or part of the product in waste disposal sites

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Life Cycle Engineering

Reverse LogisticsReverse ManufacturingEoL‐ End of Life

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Life Cycle Design

As a design approach, LCD is characterized by three main aspects:• The perspective is broadened to include the entire life cycle.• The assumption is that the most effective interventions are thosepmade in the fi rst phases of design.• There is simultaneity in the operations of analysis and synthesis onthe various aspects of the design problem.

• Resources utilization (optimization of the materials and energy use)• Manufacturing planning (optimization of the production processes)• Life cycle cost (optimization of the total cost of life cycle)• Life cycle cost (optimization of the total cost of life cycle)• Product properties (harmonizing a wide range of required productproperties, such as ease of production, functionality, safety, quality,reliability, aesthetics)• Company policies (respect for the common company position and• Company policies (respect for the common company position andobjectives)• Environmental protection (control and minimization of environmentalimpacts)

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Page 12: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006. F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Life Cycle AssessmentGovernment, Society, and Industry Regulation

Life Cycle Costs

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Page 13: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Life Cycle Costs

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

End of Life & Re‐Manufacturing Costs

R f iReverse manufacturingmust have Economic Drivers

Government subsidiesat first 

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Integrated Economic‐Environmental Analysis

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

DFX‐ Design for X

• Design for Producibility/Manufacturability• Design for Assembly• Design for Variety D i f R b /Q li• Design for Robustness/Quality 

• Design for Reliability • Design for Serviceability/Maintainability Design for Serviceability/Maintainability • Design for Safety

• Design for EnvironmentDesign for Environment• Design for Repair • Design for Retirement/Recovery• Design for Disassemblyg y

assembly tree depth• Design for Reuse• Design for Recycling

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Page 14: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

DFX‐ Design for X

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Commercial Software for Ecology‐Based Design is Already Available

EcodesignMeasure and optimize the environmental performance of products. 

ECO‐it software allows you to model a complex product and its life cycle in a few minutes. ECO‐it calculates the environmental load, and shows which parts of the product's life cycle contribute most. With this information you can target your creativity to improve the environmental performance of the product.

1. Do not design products, but life cycles2. Natural materials are not always better2. Natural materials are not always better3. Energy consumption: often underestimated4. Increase product life time5. Do not design products, but services6. Use a minimum of material7 U l d t i l7. Use recycled materials8. Make your product recyclable

The Industrial Sectors

T.E. Graedel and J.A. Howard‐Grenville, Greening the Industrial Facility, Springer, 2005.

Page 15: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

The Future Industrial Sectors

T.E. Graedel and J.A. Howard‐Grenville, Greening the Industrial Facility, Springer, 2005.

SIMTech Sustainable Manufacturing Centerhttp://smc.simtech.a‐star.edu.sg

Dr. Song Bin, Director

Re‐Engineer ManufacturingRethinkResources 

RedefineSatisfaction

Revive Waste

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Decision & Control for Greening the Supply Chain

Cycles, Reuse, and Recovery

F. Giudice, G. La Rosa, A. Risitano, Product Design for the Environment, Taylor & Francis, 2006.

Page 16: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Recovery, Remanufacturing, Recycling

T.E. Graedel and J.A. Howard‐Grenville, Greening the Industrial Facility, Springer, 2005.

The Metal Recycling Industry

T.E. Graedel and J.A. Howard‐Grenville, Greening the Industrial Facility, Springer, 2005.

Page 17: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Inventory levels of supplier and buyer Reverse manufacturing Inventory levels

Total Costs of Green Supply Chain

Design and manufacturing:g gDesign costRaw material costsholding costunit assembly costsetup costssetup costsinspection cost

Lifetime:Operating costsrepair costs

Reverse manufacturing:Salvage costreuse collecting costreuse collecting costcleaning and disassembly costremanufacturing costrecycle cost

An Ops. Research Nonlinear Programming Problem:Minimize cost subject to constraints and temporal precedence relations

f hDefine the costs to minimizeUse J. Pearl’s message passing algorithm on Bayesian decision networks

Reverse Logistics

Reverse Manufacturing

Reverse Logistics

Formulate and SolveFormulate and Solve Ops. Research Programming problem

Page 18: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Customer model

Order/Procurement Control

Production WIP Control

Add a control loop for Recovery

Robust control, H‐inf, Optimal Control, MPC, transfer functions

Recycling Dynamics

Closed‐loop Recycling (same facility) Open‐loop (Between Different facilities)

T.E. Graedel and B.R. Allenby, Industrial Ecology and Sustainable Engineering, Prentice‐Hall, 2010.

Decision & Control for Sustainable Manufacturing

Life Cycley

PRE‐PRODUCTION DISTRIBUTION USERETIREMENT – EOL

PRE‐PRODUCTIONRaw material extractionProcessingShippingStorage

PRODUCTIONFormingAssemblyFinishing

DISTRIBUTIONPackageShippingStorageDelivery

USEOperationMaintenanceRepairUpgrade

RecoveryReuseRemanufacturingRecycleDisposalDisposal  

Raw materials Energy 

WaterCatalysts

PollutantsToxins

CO2

Catalysts 

REVERSE DISTRIBUTIONPackageShippingpp gStorageDelivery

Page 19: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Decision & Control for Sustainable Manufacturing

Old: Best product for minimum cost expenditures

Resource = money (cost), natural resources, electric power, water, carbon footprint

Old:  Best product for minimum cost expendituresNew: Best product for minimum resource expenditures

Forming Assembly Finishing PackagingMachining

Raw materials Energy 

WaterCatalysts

PollutantsToxins

CO2

Catalysts 

S i bili O i l D i U i Gl b l ViSustainability = Optimal Design Using Global View

EnergyWaterRaw materialsHazardous materials

INTEGRATED DECISION & CONTROL:Smart Building SystemsHVACCo2 and air qualityMinimum energy buidingMinimum energy buiding

Energy Power SystemsRenewable vs. grid

Fluid distribution and Recovery systemsManufacturing Line System

Singapore Zero Energy Buildingg p gy g

SIMTechSIMTech Web Web based Environment Monitoring Systembased Environment Monitoring System

SIMTech Level 5 floor plan displaying temperature

Wai Yie Leong, SIMTech

displaying temperature sensor nodes

Trend data analysis

d d l

Trend data analysis

• Temperature data display• Trend analysis• Alarm and Messages• Real‐time web‐cam monitoringg

SMS alarm message systemWeb based Graphical Interface for effortlessaccess and monitoring of environmentparameters in real time as well as historical

76Copyright © 2009 All rights reserved

Singapore Institute of Manufacturing Technology

parameters in real time as well as historicaltrends analysis

Page 20: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Energy Use and Loss for Industrial Facility

T.E. Graedel and B.R. Allenby, Industrial Ecology and Sustainable Engineering, Prentice‐Hall, 2010.

Discrete Process Energy Use/Loss and Wastes

System Modeling for Energy‐based Control

T.E. Graedel and J.A. Howard‐Grenville, Greening the Industrial Facility, Springer, 2005.

Dynamic Energy Labeling –Customer Preferences for Green Products =  Competitive Advantage 

Forming Assembly Finishing PackagingMachining

Raw materials Energy WaterCatalysts 

PollutantsToxins

CO2

Use RFID Tag to store energy informationduring manufactureduring manufacture

Product Energyb lLabel 

RFID for energy labeling of:ProductsProcesses

Add (wireless) sensors to compute energy used at each stage

Page 21: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

How do other disciplines do energy‐aware scheduling?

Scheduling for communication systems

O R h Li P i P blOps. Research Linear Programming ProblemMinimize energy while guaranteeing enough flow through a directed graphto satisfy the BW demand.y

User‐Configured TDMA for Wireless Sensor NetworksA. Tiwari, P. Ballal, and F.L. Lewis, “Energy‐Efficient Wireless Sensor Network Design & Implementation for Condition Based Maintenance,” ACM Trans. on Sensor Networks, vol. 3, no. 1, pp. 1‐23, March 2007.

1 State Machine for WSN Nodes

, , , , pp ,

Energy aware cross‐layer decision & control for WSN communication systems

It takes 69.78 % more Energy to startup Node in Tx Mode than that in Rx Mode

1.  State Machine for WSN Nodes

Sl St t

Emergency

Looks For Commands from BSRadio Turned Off, 

Continuous Sensing Sleep State

Receive State

Time out

Data out

Sleep cmd

Done

Continuous Sensing

Setup State Transmit State

Set cmd

Data out

Transmit cmd

Done

Sets up Various Node parameters

Transmits Data or Parameters Desired

User‐Configured TDMA for Wireless Sensor NetworksA. Tiwari, P. Ballal, and F.L. Lewis, “Energy‐Efficient Wireless Sensor Network Design & Implementation for Condition Based Maintenance,” ACM Trans. on Sensor Networks, vol. 3, no. 1, pp. 1‐23, March 2007.

2.  The Battery Consumption Equation= a detailed energy model

, , , , pp ,

Time taken by radio to switch to 

Transmit  mode from sleep/receive mode

A /

Number of times per hour, radio switches to

transmit mode from sleep/receive mode

Actual time for which radio transmit,

each time it is in transmit mode

t/ttt

rxrxtxrxrxtxrxrxsrxrxs

txtxmtxtxrxtxtxrxtxtxmtxtxstxtxs

TITTINTTINTTINTTIN

TITTINTITTINAmpHrs/Hr

onturnrx/txsstxsstxssrxssrx TITTINTTIN

Time taken by radio to switch to 

receive mode from sleep/transmit  mode

Number of times per hour, radio switches to

receive mode from sleep/transmit mode

Actual time for which radio receives, 

each time it is in receive mode Itx> Irx > Is

Page 22: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

A. Tiwari, P. Ballal, and F.L. Lewis, “Energy‐Efficient Wireless Sensor Network Design & Implementation for Condition Based Maintenance,” ACM Trans. on Sensor Networks, vol. 3, no. 1, pp. 1‐23, March 2007.

f ll d b f d f h d f h h h d (

3.  Optimal Sleep Schedule Calculations

Given, sweep rates for all node, number of data points from each node, frequency at which each node transmits (every r hours), the  sleep durations for all the nodes in network is given by : 

Sweep Rate Matrix (1Xn)Time Period Matrix

Sleep duration for any given node is

)2(givennotRateupdatingiffTNdiagNTS

SdiagUTT

pTs

Tspd

rp

Sweep Rate Matrix (1Xn)

Sleep Duration Matrix

Time taken by each node in transmitting its data

Sleep duration for any given node is 

Total time – its own transmission time

)3(3600 givenRateupdatingiffTNdiagRS Tp

Ts

Tud

No Of Data Points Matrix (1Xn)

(in Sec)

Updating Rate Matrix

No. Of Data Points Matrix (1Xn)Total time taken by all nodes for 

transmitting their data

Updating rate is actually – approximate sleep Duration for that particular node

If Updating rate is 1 hr for some node which transmits for 2 sec in each slot  => the node will tx 2Sec, then sleep for 3600‐2sec, and then again repeats..

Optimal Scheduling For Manufacturing Systemsp g g y

1. Different states for machines ‐ idle, working, shut down1.  Different states for machines  idle, working, shut down

2.  Derive a detailed energy model

3 Optimal Schedule Calculations3.  Optimal Schedule Calculations

Scheduling for Computing Systems

t e1

2

4

12 12,t e1 1,t e

3

4

6

node= instructionEdge= data dependence

56

Performance scheduling‐ finish fastestList scheduling‐ for each node, compute exec. time to end of code

Start at root and go towards leaves‐ schedule the node with max exec. time   

Energy scheduling‐ finish with least energyFor each node compute min energy path to end of codeFor each node, compute min. energy path to end of code

Combine performance and energy

(1 )Perf time energyPerf time energy

Energy cost table

Spatial thermal‐aware job scheduling:• Algorithms MinHR [2] and XInt [3] schedule jobs to reduce heat recirculationR d th S l H t I d b th 15%• Reduce the Supply Heat Index by more than 15%

Spatio‐temporal thermal‐aware job scheduling:• Reduce the Supply Heat Index by twice the amountpp y y• A job is usually submitted with a runtime estimate, which is largely overestimated.

e g Weekend effect:e.g. Weekend effect:• a burst of jobs is submitted on a Friday night• causes inefficiency in data centers;• first‐come first‐serve with back‐filling (FCFS‐backfill) scheduler will cause a period of high and cooling expensive data center utilization followed by an energy wasting period of idleand cooling‐expensive data center utilization, followed by an energy‐wasting period of idle servers.

Also – off‐peak energy hours

Page 23: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Virtualization‐ software program wrappers that allow any program to run on any machine.Allows use of standard multi resource/multi job scheduling routines

D= Heat distribution matrix 

1 12 2

inlet temp of machine power consumed by machinei l f hi h di h i f h k d b hi 2 . . 2

at time t+1 in time interval t

inlet temp of machine heat dist to mach i from mach k power consumed by machine

HVAC li l t HVAC supply( 1) ( ) ( )inletTemp t Dp t Temp t

Power generated during time interval t

HVAC supply( 1) ( ) ( )inletTemp t Dp t Temp t Select cij and HVAC supply tempusing Ops. Research programming

Power generated by node i:

( ) ( ) ( ) ( )i i ij ijj jobs

p t t c t power t

Power generated by node i:

Power used by job j on node i

Allocation of job j to node i

Idle power of node i

Energy‐Aware Scheduling for Machine Tools

Energy time traceEnergy time trace

Compute weighted costs and profitsCompute weighted costs and profits

Page 24: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

Power consumed= current x voltage

Power delivered= force x speed

P IVMeasure with installed power meter

k

Power delivered= force x speed= torque x angular velocity

P torque

compute from voltage and current measurementsSankey Diagram

compute from voltage and current measurements

Efficiency= power delivered

Also proportional to material removal rate

Efficiency=  power delivered  power consumed

Energy=  power x time

0

( )t

E P t dt

Machine state transition diagram Compute power consumed in each state

Energy Consumption Model and Forecasting

p p

Energy Consumption ForecastingSystem Modeling for Energy UsagePredict Energy required for each jobPredict Energy required for each job 

Motor Failures:

energyefficiency

Energy aware operation extends machine lifetimes

MTBF‐Mean time between failures

These concepts require improved Discrete Event Routing Flow Control

Page 25: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

multiply = AND & addition = ORNew Matrix Formulation for DE Supervisory Control

US P t t

DE Model State Equation: Compare with xk+1=Axk+Buk

US Patent

DDucrcv uFuFrFvFx Fire next tasks

Tasks complete

Task sequencing matrix – by Mission Planner

Resources available

Resource assignment matrix – by onsite Leader

Targets / parts in

Decision/Command input1 0 001

cv

Means jobs 1 and 4 have just completed

110

cr

Means resources2 and 3 are available

70 1S4m1S5m1R1gS2

mobile wireless sensor network DE simulation priority 2-->1

1

u1

Simulation Results

40

50

601R1gS21R2gA1R1rS21R1lis1R2m1R1gS11R1dS21R1m1S2m

2S1n2

Mis

sion

u2

Mission/Task 1 jobs

10

20

30

2S1m2R1gS32R1cS32S3m2R1dC

R1R2UGS1UGS2ur

ces

Mis

sion

Mission/Task 2 jobs

Resources 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

10UGS3UGS4UGS5

Time [s]

Reso

u

1S4mobile wireless sensor network DE simulation priority1-->2

u1Event traces

50

60

70 1S4m1S5m1R1gS21R2gA1R1rS21R1lis1R2m1R1gS11R1dS21R1

M

issi

on1

u1 Event traces

• Up means task in progress

• Down means resource in use

20

30

401R1m1S2m

2S1m2R1gS32R1cS32S3m2R1dC

R1s

Mis

sion

2

u2

Simulation 2 –

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120

10

R2UGS1UGS2UGS3UGS4UGS5

Time [s]

Reso

urce

sSimulation 2 change mission/task priority

Simulation of Steady‐State Behavior

Resource Percent Utilization

B ttl k D t tiBottleneck Detection

Can use for steady‐state energy comsumption analysisCan use for steady state energy comsumption analysis

DDucrcv uFuFrFvFx DEC for Energy‐Aware Scheduling and Dispatching

DDucrcvResource assignment matrix

1jobt

Define time vector for jobs 2jobtT

1resP Define power consumed vector for resources 2resP P

Energy vector of power consumed by jobs E F P

Then total energy (= power x time) needed for the mission (all jobs) is Ttot rE T F P

Energy vector of power consumed by jobs rE F P

Energy needed for currently schedulable jobs 1 ( )Tstep rE x T F P (Hadamard product)

Now can do optimal scheduling using e g Model Predictive ControlNow can do optimal scheduling using, e.g., Model Predictive Control

Can also compute energy remaining and time remaining for each mission (EDD)

Page 26: F.L. Lewis Head Controls & Sensors Group Head, Controls ...

DEC for Energy‐Aware Scheduling and Dispatching

Define Energy BottleneckDefine Energy Bottleneck

Can use existing methods in bottleneck detection and load balancing

PHM slides