Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

348

description

Finite Element Method. Fluid Dynamics.

Transcript of Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Page 1: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor
Page 2: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Page 3: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

!" ! # ! $ % ! % & '()' '(*( & % % + '()* & , - - + # % ./ 0 12 & + 3 & % + '(4* & , 5 5 6 # & & 6 7'(*'8 6 7'(*98 ! 6 7'((*8 6 76 : 8 7'(((8 %& + &1 '()4 &1 &- '(4'

;9 < =% > '((' &% 6 & + % %% #? : '((. '((/ $1 ! & ! $1 '((4 # , 6 !% , 6 !% 6! @ # % % + > ,6 > > ,6 % &1 > + %&

, A 6 , % 74)9B;9%8 # 5#! # + & " 7 " C < % DE< F ;9 / ''B3''/ 6 '(((8

Page 4: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

!" !#$%" &'' %' #'#

(' ' ' %' #'# '' &'' ) #'# '' ( '

%' #'# $)' * "

!+ '&'' ,' "

-' ) )' #'#$)' ' '

' '

"G,"5 6!:6 $"#" @" 6$5H :$"5 :

Page 5: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

$>

: @ "= "G. *..9 6 & 6 B'*B'>.B/'

6 5 & :

, %& '()4 & H> , %& & $> .BBB

"! 0 12 5: # .BBB

6 % %&

& % 7

%% &

%& 8

% % =%

% !%

6 '(**

& !% : 6 :

(B # ! 5 : ' (

6%% % < %

% % %&

& %&

!6 &1 & $ :&

!6 &1 & :& !

$ B 49B) 9B9B *

" # $%&

$ & ' %" # (' #)

#% & 6 I # #% $ & & H $1 :

Page 6: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# &1 : %% % %% &1 & 1 + % 1

" J % ! % %%

%% %

Page 7: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Preface to Volume 3......................................................Acknowledgements...................................................................

1 Introduction and the equations of fluid dynamics..1.1 General remarks and classification of fluid mechanicsproblems discussed in the book................................................1.2 The governing equations of fluid dynamics.........................1.3 Incompressible (or nearly incompressible) flows.................1.4 Concluding remarks............................................................

2 Convection dominated problems - finite elementappriximations to the convection-diffusionequation..........................................................................

2.1 Introduction..........................................................................2.2 the steady-state problem in one dimension.........................2.3 The steady-state problem in two (or three) dimensions......2.4 Steady state - concluding remarks......................................2.5 Transients - introductory remarks........................................2.6 Characteristic-based methods.............................................2.7 Taylor-Galerkin procedures for scalar variables..................2.8 Steady-state condition.........................................................2.9 Non-linear waves and shocks.............................................2.10 Vector-valued variables.....................................................2.11 Summary and concluding..................................................

3 A general algorithm for compressible andincompressible flows - the characteristic-basedsplit (CBS) algorithm.....................................................

3.1 Introduction..........................................................................3.2 Characteristic-based split (CBS) algorithm.........................3.3 Explicit, semi-implicit and nearly implicit forms...................3.4 ’Circumventing’ the Babuska-Brezzi (BB) restrictions.........3.5 A single-step version...........................................................3.6 Boundary conditions............................................................

Page 8: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

3.7 The performance of two- and single-step algorithms onan inviscid problems..................................................................3.8 Concluding remarks............................................................

4 Incompressible laminar flow - newtonian andnon-newtonian fluids.....................................................

4.1 Introduction and the basic equations...................................4.2 Inviscid, incompressible flow (potential flow).......................4.3 Use of the CBS algorithm for incompressible or nearlyincompressible flows.................................................................4.4 Boundary-exit conditions.....................................................4.5 Adaptive mesh refinement...................................................4.6 Adaptive mesh generation for transient problems...............4.7 Importance of stabilizing convective terms..........................4.8 Slow flows - mixed and penalty formulations......................4.9 Non-newtonian flows - metal and polymer forming.............4.10 Direct displacement approach to transient metalforming......................................................................................4.11 Concluding remarks..........................................................

5 Free surfaces, buoyancy and turbulentincompressible flows....................................................

5.1 Introduction..........................................................................5.2 Free surface flows...............................................................5.3 Buoyancy driven flows.........................................................5.4 Turbulent flows....................................................................

6 Compressible high-speed gas flow..........................6.1 Introduction..........................................................................6.2 The governing equations.....................................................6.3 Boundary conditions - subsonic and supersonic flow..........6.4 Numerical approximations and the CBS algorithm..............6.5 Shock capture.....................................................................6.6 Some preliminary examples for the Euler equation.............6.7 Adaptive refinement and shock capture in Eulerproblems....................................................................................

Page 9: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

6.8 Three-dimensional inviscid examples in steady state.........6.9 Transient two and three-dimensional problems..................6.10 Viscous problems in two dimensions................................6.11 Three-dimensional viscous problems................................6.12 Boundary layer-inviscid Euler solution coupling................6.13 Concluding remarks..........................................................

7 Shallow-water problems............................................7.1 Introduction..........................................................................7.2 The basis of the shallow-water equations...........................7.3 Numerical approximation.....................................................7.4 Examples of application......................................................7.5 Drying areas........................................................................7.6 Shallow-water transport.......................................................

8 Waves..........................................................................8.1 Introduction and equations..................................................8.2 Waves in closed domains - finite element models..............8.3 Difficulties in modelling surface waves................................8.4 Bed friction and other effects...............................................8.5 The short-wave problem......................................................8.6 Waves in unbounded domains (exterior surface waveproblems)..................................................................................8.7 Unbounded problems..........................................................8.8 Boundary dampers..............................................................8.9 Linking to exterior solutions.................................................8.10 Infinite elements................................................................8.11 Mapped periodic infinite elements.....................................8.12 Ellipsoidal type infinite elements of Burnnet and Holford..8.13 Wave envelope infinite elements.......................................8.14 Accuracy of infinite elements.............................................8.15 Transient problems8.16 Three-dimensional effects in surface waves......................

9 Computer implementation of the CBS algorithm.....

Page 10: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

9.1 Introduction..........................................................................9.2 The data input module.........................................................9.3 Solution module...................................................................9.4 Output module.....................................................................9.5 Possible extensions to CBSflow..........................................

Appendix A Non-conservative form ofNavier-Stokes equations...............................................

Appendix B Discontinuous Galerkin methods inthe solution of the convection-diffusion equation.....

Appendix C Edge-based finite element forumlation..

Appendix D Multigrid methods.....................................

Appendix E Boundary layer-inviscid flow coupling...

Author index...................................................................

Subject index.................................................................

Page 11: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

. /

' % A . 6 %% %& ; H 2 + % H1 > %%

/ % 9 6= ) #> 4 > + %& 3 % D D

* C < C< % A !B

( %% 3 C + < C < 'B # % > '' = 3 % + '. %& %& = % '; = 3 % 7&8 + & >

O#L2 '/ % '9 6% + + ') >& %%= P > H1 3 '4 # 3 >2 + %&

%'* # 3 %%= '( !% .B !% % + 6%% = 6 = &6%% = $ # > %%= %&6%% = ! $ K % 6%% = 6%% = 6%% = , &6%% = H & %6%% = = 6%% = = 2 %

Page 12: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

0 " ''

' H %& > . > & K ; / & %%= A 7L8 % !' K>

9 C#1< 5 3 % 3 & = ) & D 4 6= * % > 3 5 3 %

( > + % 3 C+ %<

'B H > %& 3 + '' > %& 3 % &'. > 3D=& &'; !% % +

6%% = 6A >

Page 13: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

&'

# %% + % # % & % 1 &- % D %% %% L %# + +

7 &8 =% " %% % D % + %& & % # %& >- >- %& H1 % %> , H1 % % D %& # % D

F ' >>- %& D %&> % & &

+ &- D + % & F ' & > + L = > & - F ' 1K D N 7'8 # +

# 1 % % N 7.8 % N & K %2 > &2 % + %& >% D + %% %& L > L D & 6 % D & & % >% % % D K % = > ! 7"#8 &

Page 14: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%%& D K %2 % % 2 % &1 & %= &>

- D , % & =% % % D 7!,8 + % % %%

1 #

# 1 1 $ & % 7!% *8 & "2 + + %% !$ > K " " J D %& D % 7!% 98 % % # 1 @ # " & > H1 5 ! %% 1 & = # 1 @ 2 @ & & % + !$ # & + !, %% >% >

D + % & 1 5 :Q @ K "& & % % &1 # 1 !$ & % & + & %% 667H 6HO.'.4 6 ! & (B>'//8 %% > % & - H% 1 , + 7"! 0 128 =

1 % !$ % %

"!0 5:#

6 1 F ' & @1 $ % & &- = F ' ;!% % & & %&< & %A %AOO&O% O

&'

Page 15: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(' 2 3

.. ,' '' 4 3 -'/ /

# %& D & % & & % # -L # D %% D # % % & 6 1 = %% % % D

D & % D %& % D# & 2 & K & 1 % % K D D %%

& % % % & L D 7 8 # % 1 D K >>- & & L # & >- %%= K & H1 % % # D D 7% D8 D %

D %& K & 2 %& = F ' %&

Page 16: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

N 7!% '. F '8 D N D %%= & %& %& & # % %& &1 +

K %& D D % $ % 1 $ K !% & + & K + L> %% % + % D # %%% %& % # % &>1 %& # D % D K %%= K K # + L '(9B & + % & > % F ' + % # & & & & % %%= >- %& % K % & + L 6 %% %

+ & + L F ' % 1 + & %%= % %% # + %%= + # + & # %%= % &1 & %&

& %& D D % 7!% /8 , D >%& & %%, % L &

& % # + + % + D 1 D % > 1 D %>& & & % 1 D & & & & % > %

(' 2 3

Page 17: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

D 7D 8 & %% %& % = !% / %& D % & % > = = & # %& %# &- &

%+ !% 9A N %& & %& D>% # % %& D > L % + %&> %& % & # = D %

D %& L %& %&>% & % % K % & K & %&D & 1 % D# %& D % & K

%& D D % = % 1 % # &- - % + & % !% ) - % %& D % & % L

+ 2 & 7 8 D & & # + > D % %+ %&" %+ % D

!% / F ' % D % N $ > = & %&6 - + D D

% D 2 !% 4 %& & % > > %& D

%& % %%

& &1 % 7!% *8 % % D % % % %& %& = + &1

,' '' 4 3 -'/ /

Page 18: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

= " %% !% * & L % % K D

%& %& D % %+ %& & & % 2 % % !% ; %& L # !%. % 3L K !% ; %& D %& &1 6 %& P %2 L %% !% ; % & %2 + = % > %

.0 #)'# 2 3 .5

# D & C< % %& 6 % & % 7 = ' . ;8

' . ; ''# % % & % % # %

+ +

.'.

# >1 + & + = F ' & % # # &

# '' .. . '. '' .. '. '; A

# '' .. ;; . '. . .; . ;' '/

(' 2 3

Page 19: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

'9 1 % K 7''8# 3 7 8 % D K

+ # + 1 A

; .

;

')

& K K &1 1 1 % = P

'' .. ;; '' .. ;; '4# N 1 78 % # &

# + %

; B '*

N &1 B % % 7 B & + % %8 C < D K 7')8

7'*8

.

;

B

'(

. .; B '(&

# :R %

.; ''B

& 7'(8 & # & = 1

B ''' 7 %% N= B8

.

;

''.

% %& B

#)'# 2 3

Page 20: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

&

.

;

.

;

''.&

6 & % %& D !% '. F ' &2 % %&%& > D D & N %

D C > <

D & D + 7, ''8 K

# B '';

B '';&

& & K& &

x3; (z)

x1; (x)

x2; (y)

dx1; (dx)

dx3; (dz)dx2; (dy)

# ..

(' 2 3

Page 21: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% % K

B ''/

7''.8

B ''9

7''.&8 %" & & K

A

.

B

''9&

K '.. '.; % & 7 8 7 %8 7 8 # + & K 7''.&8 % "& & K & %&

7 %& D8 % 1 % & & 7 D %&8 & % & % & %

& K

''), 1

''4

%% K

& K # K % % & & $ % K

+ K # % # % D % %

''*# % 1 %

.

''(

#)'# 2 3

Page 22: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, +

.

'.B

& & 1 % & & 7 >

& + & 8 # D= +

'.'

% # % % #

& %+ % 7 8 % K 7''.8

'..

# & &

B '.;

%

B '.;&

% % 1 & &

# K % &

*+ , './

*

+ , './&

K 7'';8 7''98 7'.;8 % % # % 1 &

'

.

;

-

'.9

(' 2 3

Page 23: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

' '

. .

; ;

.

'.9&

*

B

'

.

;

*

B

'.9

+

B

'

.

;

+

B

'.9

.

;

# % 7'./8 1 &#' ( 6 % & 2 = 1 C K < B# & K & D

% & & & K . # & % + % K & K % %& 1 % 6%% = 6 % > K K # & =% %& & 1 = #

#)'# 2 3

Page 24: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

= > K %& >% D D % ,

K % & %+

%&A

& %& & % %A

& )* & > , > & D

=& D %& 31 K D& + % # &- & 1# & & % 31 K % % %& & & D % 2 %& % >% %& = 5 % % # % % & )* 7 D D

1 8, K % A

, - '.)

% & # %%& )* !% ) %& 7 %&8 D > K % >- % %%= !% / 6 % %%& %& D >% %

. (-'/ 6' ' -'/7 3

& 31 K % & = % SK 7'')8T

7 8 %& K A

' # %&

(' 2 3

Page 25: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

. # % &

# + % & = % % D %% % % %& > %>% 7!% 98 & % % & %>

& K & % #

'.4

&1 # &

'

. '.4&

'

.

'.4

&

K 7'./8 7'.98 & %7 8

'

.

B '.*

'

'

B '.*&

' . ; % K & % K 7'.*8

'

.

B '.(

+ %% % %&

.

'

'

B '.(&

&

'

.

;

1

(-'/ 6' ' -'/7 3

Page 26: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & K =% 7 8 !% '. F '

.8 # ''

& % 31 K & % & %& %& & 6 1

' %2 K > D & 7!% 9 4 *8 & & %

. # L K >>-

$ % 2 + D K % + % %

= % 3L3 K

!'

' ! $ , - !& '()4. :& . ) !& '(;.; ! " / ,* F ' !

'(**/ @ 5 " , 6&KK ='(4.

9 0 : '(99) : : :2 , : '(9(4 5 # &#' ( > '(44

* H ! , , H> '((;

(' 2 3

Page 27: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

) -'/ 94 --': )9 2

0. ('

% > K %

*

+ B .'

& % > & + )/ *

..

* *

+ +..&

& K K 7.'8 7..8 * &

K D= * K % D !% ' 6 K % % %%= # % K 7.'8 7..8 D=

#

+

*

.;

Page 28: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

K

B ./

& % % & K 1 + K &

% & & L L N & % = K &

% # K & +

& L

B .9

& %& >- =% # %% D 2

B % .)

K + %%& %& & 6 !$ !% ; K D & % % N , K 7.98 7.)8

B .4

K F ' SK 7;''8 ;'T % K 7.'8 & ( * % D= K & 7K .'8 & %%= A

&

& .*

%& & % 7 8 >>2 %

% . , .(& H1 7$& 8 = . & % %& %

) -'/

Page 29: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& & # % N &

%%= % %& K 7./8

% 2 > K A

B .'B

# & % # & L K A

B .''

& # & % & & & = %& & + %

L K %& !% ; F ' >>- % % # % % & % !

K 7.''8 K7.'B8 > 6 %& & % % & K 7.'8 &D = % =

&' ( "

00 ; -'/

!

2 K 7.''8

& .'.

% % 1 % 1 & # % %%= K

B .';

; -'/

Page 30: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

B

B

B

.'/

%& B , % H1 K

2 7, .'8 % &K

' ' . ' ' .

B .'9

..')

& # & + L %%= & & %

' '.

.'4

.

.

' . '.

.'4&# & K & >

% % % & %& % =% 2 , .. & B 7 %& %& & 8" & % %& & L

& & % L & ' = '

'

' .'*

h h h

Ni Ni + 1

i – 1 i i + 1 i + 2

1

# 0.

) -'/

Page 31: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& %% + L % + &%%= %& & ! + L %%= + .9 # % K 7.'48 % %%=> %

'

.'(

Pe = Uh/2k = 0

= =(All exact)

Pe = 1.0

Pe = 2.5

=(Exact)

Pe = ∞

L

h

1.0

Standard Galerkin α = 0Petrov–Galerkin α = 1.0 (full upwind difference)Petrov–Galerkin α = αoptExact

Exact

# 00

; -'/

Page 32: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

+ L %%= K & K 7.'98

. ' ' . . ' .

B ..B

* L %%= 7 8 & & & =% , .. & & ' = > & % , .. H1 + = % L % L & +

2 %= E # %& >- K + = > %%=> &

"# $ !%

# + %& 3H1 %

)( + & 0 12 ) '(49 & ! 4 % % , .' 1 , .;

..'

....

Ni

ih

or

Wi *

# 0 !"

) -'/

Page 33: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% F

%& & %+ 7 8A

.

..;

& %%= K K 7.'98 &

' ' ' . . ' ' ' .

B ../

B H1 %%= SK 7.'98T ' % K 7..B8 & = % L % %

% '

..9

= & # % 4 % >

''

..)

# , .. B H1 %

' ..4, ./ %

6 % % % % N 2 = & % % > , .9'B & N 2 % H1 % " & =% 3H1 &%% K 7 % + L % 8 & & + L , .) '' % # L %% K 7../8 & D

# 7

8 , .; & >

& S K 7.'/8T

&K % &

; -'/

Page 34: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

B

B

! N & L &%

B

% B

+ # N

% * '

, .; & % 2 & L %% B

&

# % K 7.'98 7.')8 & L 3H1 % K H1 % L

'. ..*

L K 7.''8

1.0

0.8

0.6

0.4

0.2

02 3 4 5 6 7

Pe

α

αopt = coth Pe–1/Pe (optimal)

αcrit = 1–1/Pe (critical)

# 08 # $ %!&

) -'/

Page 35: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & K % K 7.''8

B ..(

& =% K 7../8 % H1 %

15

10

5

01 x

φ x 104

– d2φdx2 + 200 dφ

dx= x2

0 < x < 1φ = 0, x = 0, x = 1

1.00

0.95

0.90

0.85

1.002.0 x

φ

– d2φdx2 + dφ

dx= x2

1 < x < 2φ = 1, x = 1φ = 0. x = 2

60x

ExactOptimal Petrov–GalerkinStandard Galerkin

# 0< #$ ' #$ ( ! ) #$ !

; -'/

Page 36: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% % 3H1 % % % 3H1 % + K =% , .) % + L % %%=> # % $ % K + L

L &1 & -+ & L %%= %%

K 7 H1 %8 & > % K # C < L & % &

' !!

K 7.''8 >- & % % &H '. % % % 7 >- K 8 % %% & & # 1 K 7.''8

B

B .;B

2

1

00 5 10 15

Exact and Petrov–Galerkin(α = 1) solution

Finite differenceupwind solution

x

U

Q

# 0= ! !" "

) -'/

Page 37: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & %B

B

B .;'

% & >- %%= + K &1 2 7 !% ; F ' ;''. 8 # K &

B .;.

. .;.&, % = % % C&<

%%= H1

.;; F '

= 7 6%% = F '8 & K & & 3H1 %%= K 7.;;8 K 7.;'8 K 7.;.8 + K

.

. B .;/

' ' # & % K A' . ' . . ' . '

.

. . B .;9

* * * / 712138 * % (2 712148 2 % % %%

3H1 ';'/ &1 = # N K 1 # % & 1 & ! + 1 % K 7.;98 # %& & .. K K & '; K & # N %% %

% % K % %& %

; -'/

Page 38: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# !!( )#*+

% %% L %% 7 8 %%= % % % & H1 K %%= '9')

K 7.''8

B & .;)

.;)&

H1 %%= K B&

B B .;4

& K 2 7 !% ; F '

;'/.8

'

.

B.

B

B .;*

B

B .;(

+ %%= & K 7.;48 7.;(8

B

B ./B

# 3H1 %%= > % > 7 & , .;8 1

. ./'

%%= 3H1 & K 7..'8 7...8" 3H1

B

.

B ./.

) -'/

Page 39: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%% ../ =% % & &

, -$ . )/01+ 2 $

6 % % 3H1 %%= + & % %P % % & %% > K # % & " J '((*'4 & & & K % &

K 7.98 + C< 2 + =% & # 7&18 & K 7.''8

.

B ./;

& + K 2 5 &

.

.

B .//

& K =% L % , K &2 &

. 3H1 7K ..*8# % % +

% = & % > L K '4 && & % % & & 3H1

3 4$5 !!(

# 3H1 % L K %& + =% ( 0 12 % = % % % K % % %% % ../

; -'/

Page 40: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& =% & % %%= % =%

& = K 7.;/8 %%% K 1 K , .4, % %% %& = 3H>

1 % K 7..'8 7..;8

% '

/

./9

# % = L & 31 K '*

&- % % > %%= & % '(.B 1 % 1 5' N > %%= #% %% 3L %& %& D & " 1.'.; 6 & % & % 6%% = $

0 ; -'/ 6' '7

#

%% H1 2 > 3L K % %& % & # K > K 7.48

B ./)

i–2 i–1 i i+1 i+2

hh

Ni Ni+1

# 0> * (

) -'/

Page 41: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

B ./)&

& "& %& % >

% 6 %& %% %%&

)6!% + "# %$ )6"#+

# & % 3H1 % ... K 7..'8 7..98 1 % 5 > %

-

.-

'.

./4

C< K % & C <# + & %

% 3H1 & % - & + & & %*(

6 & 2 & & L % & ..; 7 8 > - % & % & % N L 2 # & $1./.9 'B

& % & 1

.

'' ..-

.

-

./*

& % =% 7...8 A

% '

./(

-.

.9B

- .' ..'.

.9B&

; -'/ 6' '7

Page 42: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & =% %%% % ' . % & 2 & & + , .* & & K

- 2 =% 7.9B8 & , .* % = 2 # K 7./*8 C > < 2

L % 2 # & L 7 8 - # & + K 7./)8 7 8

B .9'

2 C& L < S& + & K 7./*8T &

.9'&

-

..9'

# % L 2 N %'B./.9 % 3H1 %# L

%%& + %%= & % % =& C1 1<& , L 1 %%% .).(

h

h

U

U1

U2

U

# 05 ! * + ,

) -'/

Page 43: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# % & & & @ ;B ' % H1 % % % & K 7./(8, .( % K 7./)8

C> L < %% D & ;'

6 C%< & & %% =% 1 %& >- # % % ../ % & =%

.9. & 1 # %% & + % & %;' & %&

z

yx

z

yx

(a)

T (y ) T = 0

T = 0

T = 0x

y

Boundary conditions for test problem

U

θ

(b) Solutions for θ = 45° (top) andθ = 60° (bottom)

# 0? %-& ! . /

; -'/ 6' '7

Page 44: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& & 3H1 %

# )#*+ . )/01+ !

& %% C < 3H1 K 7./*8 & K H1 % ../ = > K % = K 7.;)8 7./.8 K 7./*8= H: 7

8

B .9;

& K > 1 % 6 7K ./B8

.- .9/

& &2 3H1 % 7K .9'8# + & '4

.

B .99

% # & > &2 % %-

- .9)

6 3H1 &2 & 7K .9'8 # & H: ,! % K & 3H1

08 " 9 # ''

.. .; % % > 3L K & 6 3H1 2

) -'/

Page 45: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

+ & K >- ../ % 6$ % % & % = % % %& & % >%% % > % L

% % & % = % & % &2 > % % 7 8

1 & & % & + % & & > $ % K

%% & > K 7.''8

! B .94

K % K 7.'B8 & % , % %

.9* &

B .9(

& %=# 3H1 % K 7.948 7.9(8

& % %% ../

78 K >- P

7&8 %% % 7 ..;8 3 % %%

6 & % K %& C % < %& >%% % K % K # % A

' % 7 B8 & 3 3 & %+ & , .. H1

" 9 # ''

Page 46: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

. %+ & B K % 2 D= K %& H1 K &

&' (( '

0< ' 9 ' ' ''

$

# &- % % %%& & >%% K 7.'8

A

B .)B

% > & % % & % K SK 7.'B8T

B .)'

& # % K 7.)B8

.)'&

# %& + > > > K 7.)'8 % K # & % & K & &

% &

.).

.);

# > K 7.)'8 & %

B .)/

) -'/

Page 47: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

K % & 2 >- % % & % % % F '# K 7.).8 &

& 6 B B %

B

7.)98

S & & T# % K %% , .'B # %& > 7L 8 2

" 2 !

% % %%& > K # % L > # 3H1 %% & >1 &K -+ & > % # H1 K 7H:8 % & % K K & % & & 1& & & 3H1 & # 1 & + 7,!8 %& > K , & + %% &

% >

φ(x ); t = 0 φ(x – Ut )

x

# 0.@ 0 ! ! ! *

' 9 ' ' ''

Page 48: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& .)// 3H1 & K= & %% 3H1 > & N =% % & & N H1 K 7H:8 %

% & %> + # %% %& & 5 ;. ! @ ;;;/ @ 1;B;9;) ;4;* %> =% =% % & %E & %%

& E # K % L %% & -+ % + L & %& 3H1 & K # & A 7'8

% & > H1 .)P 7.8 % %% %& > %%= #3H1 " %% + &

% & & & # K & & & %%

% # & D K !% ; & =% % % & K

L & %% D K > 3L K & % 7K .'8 # %% % #3H1 % & K >% %& D %& % %% + % %& % % K %& 1 % # & %% H H: %& F '!% '. % H: % &2 N %& & # - % & !% ;, % % &

= = >% &

) -'/

Page 49: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

0= '';/

, $ ! ! $

& % C < % & K 7.).8 %& +> %% %& % L 2 % H1 % %%= % 7 8# & + = % %

% , .''78 % > %& K 7.)'8 ,

.))

t

t

Characteristic

Updated nodeposition

Initial nodeposition

h

∆t

∆t

(a) Forward

x

x

tn+1 = tn + ∆t

tn–1 = tn – ∆t

tn

tn

(b) Backward

# 0.. 1 " ' #$ 2!) #$ . !

'';/

Page 50: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% %

' '

.)4

C< & % & K 7.)98 , %

' .)* % % # % & & " % >% L %& &

F ' # # % % L %&

%& %% > > > + N & , & % % & & >% % % # % & &1>

, .''7&8 %%% % # & & & &

6 $&&/9 '(4/ % K # % & 2 % & > 3H1 /)

# L % % + % %%= % L % # =% % =

, 1$# !

K L > 7.)'8 % %

.)(

B .4B

%

B .4B&

) -'/

Page 51: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% >- S T$ & %%= & =%

& & .4' % '

B .4. H1 2 L K ' &

+= & K

% . .4;

'

%& , .'. % & % S K 7.4'8T & # &

' & .4/6 K ' & %%= & %

%- &#&' & B .49

%' &#& .4)

& & %

% &#& .4)&

# & %= % % = # % & %

N (y )

x

N (x )

1

1

∆tt

tn + ∆ty = x + u∆t

tn

# 0.0 3

'';/

Page 52: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

/) # & = % = 7 & 8 & & & L %%= &

, ' ! (! $# !

& % %& K 5 /939) % %% %= % > , % % N =% & # + %& '(*/94 & %& 9*)' # =% , .'; K 7.)'8

B .44

6 %% L K > K >- H1 % %%= % # 2 & K 7, .';8

'

'

'

'

.4*

K 2 =% & 2 > % 6 1 & K % % N

t

x

δ ≈ U∆t

φn + 1

φnφn(x – δ)

# 0.

) -'/

Page 53: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, # =%

.

.

.

."; .4(

B9'

.

'

.

.

". .*B

'

.

.

.

.*B&

& % > 7, .';8

.*' L %%= L &2 # ).);

.*.

K 7.4(837.*.8 K 7.4*8

'

'.'.

.

.

.

.

.

.

.*;

'. '.

' '.

.*;&

'. '

..*;

& K > 7 K .*B8 # #3H1 % & = &2 L , %& K 7.*;8 & %%= '. 7 =% 8

'

.

.

.

.*/

'';/

Page 54: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

6 %%= ).

' .

.*9

# =%

". .*)

K 7.4*837.*'8 K 7.*98 7.*)8 K B9

'

' '.

.

.'.'.

.

.

'.

.'.

.'.

.*4

'. '

..**

%%= '. =% #

'. " .*( L %%= # + =%3H1 &

'

.

.

.(B

H 2 & K K 7.98A

.

.

.('

# L &2 & & L %%= L & & %%= &2 &1 %%= K 7K .('8

) -'/

Page 55: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

6 % H1 % %%= -+ 3H1 % %%=

& .(. &# =% # &

%' / / # .(;

=% > &K

% &#&

&#

&

/

&#

&

&# &

.(/

/ # & 2 6 & % =% / #

/ '.

&

#

& .(9

# '.

&

# & .()

& & > & K # %%= K

% > K , & & % %%= & % =% K 7.(;8 & ,

> %& & 7 L 8

.(4

> %& % & % ).);

.(*

& K 7.(48 .. L > %, > 78

L & & % % % % # > &- % & /

'';/

Page 56: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

6 % =% %% '. L 7 8 % &

.((

% %%& & +, .'/ & %& & K 7.(48

% = & = &

3 >%% K 7.(;8 % + & 1

'

// # B .'BB % .. .; &

3H1 %%= = =/ & L &

'. 1

'. .

..'B'

# & K

.'B.

! &

1.0

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6 7

Pe

Unstable

C = αopt = coth Pe – 1/Pe

Stability limit C = 1/Pe + 1 – 1/Pe

U∆t

/h

# 0.8 -* !

) -'/

Page 57: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, .'/ % % K 7..98 7 ! ! * &5' % + & H1 > 2 & & % 1 % & = K 7.(;8 H1

& & & %% 3H1

&#

.

&#

K 7.)B8 = H1 &# !% & > %& K 7./*8 > &6 > %% 3H1 %

, .'9 % & D 1& % % # % & & + L := L)/ > 3H1 =% = % + L L %%

= % % % = % =% % = & % K 7.(;8

% .'B; & > K 7.(;8

'

& % =% % A

$ %' %$' $' .'B/

$ & # % % , .') % > %% % 6 & =

'';/

Page 58: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, &

6 3L %& & %

.'B9

(a) Original form

(b) Form after one revolution using consistent M matrix

(c) Form after one revolution using lumped mass (Lax–Wendroff)

# 0.< " " 4 * ' #$ 5") #$ 2 " ) #$ 2 " #67$

) -'/

Page 59: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

.'B9&

7 8 & % % K L % % L K

+ % & N & =% , .. = & % & K 7.'B98 % > % & & P = & & %& %, %& % %+

% % #

B .'B) %& & %+ %& L

Lumped

C = 0.5, 1/T

Lumped

C = 0.1, 1/T

C = 0.5, 2/T C = 0.1, 2/T

Consistent

C = 0.5, 3/T

Consistent

C = 0.1, 3/T(a) Courant number = 0.5 (b) Courant number = 0.1

Lumped/consistent M Courant number = 0.5 Courant number = 0.1

# 0.= ! " + "

'';/

Page 60: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%+ C & < K %

B .'B4

= & , .'4 1 )9

%+ %& , .'9 +)')9 & %

Initial configuration

# 0.> " * .* 4

) -'/

Page 61: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

0> '9,' -' ' ' ' )'/

#3H1 % # =% % H1 % 2 , & =% & # 9*))

'

.

.

.

."; .'B*

, K 7.)'8

.'B(

.

.

.''B

& K 7.'B(8 7.''B8 K 7.'B*8

'

.

.

.'''

6 &

'

.

.

.''.

K 7.'B(8 K 7.''.8 >

'

.

.

.

"; .'';

6 & K K 7.*;8 %% ! & & #3H1 % &2 # & -+ 3H1 & # #3H1 % 3L K >

&

'

.

.''/

'9,' -' ' ' ' )'/

Page 62: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% %%% 3H1 # #3H1 + K :=3 L % + L> =)/

05 " ;

$ #3H1 3H1 % H H: L 7> 8

.

.

.''9

% N 3H1 & -+ %& & %%% K

0? %;' )

# % % % % % & & > %& 7 =% % %% & % N 8 U % K

B .'')

% #

.''4

> & K %

B .''*

% > 6 % %& $ + &

'..

B .''(

, .'* K L % %% % % + % 1 # & % > !% ) 1 % %& D %

) -'/

Page 63: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

φ t1 t2 t3

x

Creation of a shock

# 0.5 " ! ! *

A B C D E F G

A B C D E F G

(a) Profile at time t = 0

φ

φ

(d) Profile at time t = 2

(c) Profile at time t = 1 x

t = 2

t = 1

(b) Characteristics

Shock

2

1

φt = 0

x

t

x

x

# 0.? 3 #." ($

%;' )

Page 64: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# % 1 %%> %+ , .'(78 1 , .'(7&8 # L %% % . 1 %% # 1 %% + %7 = 8 1 L K &

#

#

# ## # B .'.B

B .'.'

# % 1 %% % K 7.'.'8 1 5 1 3 + 1 % K = %&

D > D 7!% ) 48 = % L K 1 %+ & % ! %%= + 1 % B & & % , ..B N %

%& % % K %& & %&+ L K # + L > A

' 2 2. L &

6 % L + &:%)4 + L & & %%)*)( # L

:%.

.'..

= , ..' %& %% $

K % :% N 1 % > & =% %

) -'/

Page 65: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, %& % & %& =% 2 7.'..8

:%. %%

0 .'.;

%

" %& % 1 &- C1 %< %& !% ) % >% D %

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70Normalized length

1.3

0.8

0.3

–0.3

Adve

cted

sca

lar

(b)

θ = 1/2

θ = 0

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70Normalized length

1.3

0.8

0.3

–0.3

Adve

cted

sca

lar

(a)

# 00@ " ! * 0* ' #$ + 8 ! 8) #$ + ! 8

%;' )

Page 66: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

&' ((( ';)

0.@ ';) )'/

7 -$ -# $ 5

# % & #3H1 % % % .* & > K % 7K .'8 % % =% & # ))4B

'

.

.

.

.

.'./

& B ', K 7.'8

*

+

.'.9

C = 0.1, CLap = 0

C = 0.1, CLap = 1

# 00. " ."& ( ! " 6 6

) -'/

Page 67: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

L .

.

*

+

.'.9&

&

1

*

+

.'.9

1 + + +

+

+

*

+

.'.9

%%= K 7.'./8

'

*

+

.

.

1

*

+

*

*

+

.'.)

" * % & '

'

+

*

'

*

'

.

.

1

+

+

'

.

.

1

+

+

' .'.4

6 H1 %%= %% % >%% & '

. 6 =% % >2 % B

&

&#&

&#

*

+

.

&#

1

*

+

.

&#

*

+

.'.*

';) )'/

Page 68: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & % = K 7.(;8

% / / .'.(

*

7 L 8 K 7.(/8

&#1

&

/

&#

11

.

&

/

&#

&

&#

.1

&#

+ &

% &#&

.'.(&

'; & %%=

% %&4' = % & '

; ' '

; %% K % K 7.'B/8 % & K

7 -%5! ! $ -%5!-# !

# % % %%%= # =% % % & % = 1 & %3 7 5 3 %8 = =%# + H1 % %%= & %%

& K 7.'8 #

%

% & .';B

) -'/

Page 69: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% = %& C<

&#

.';'

% C<

& &#

*

.';'&

L =%

% %' .';. > K = % % > 1 & %" % %

& & L = # > %&

> K L '

' & + '

, ...78# & >% %3 %

& % A

# 2 !% '. =% %%= K 7.';.8

'.

.%' .';;

t

xi – 1 i i + 1tn

tn + ∆t

(a) Single-step explicit

t

xi – 1 i i + 1tn

tn + ∆t

(b) Standard predictor–corrector

t

xi – 1 i i + 1tn

tn + ∆t

(c) Local prediction–corrector(c) (two-step Taylor–Galerkin)

tn + 1/2∆t

tn + 1/2∆t

# 000 " !

';) )'/

Page 70: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# 3 !% ' % '. > K 7.';.8

' %''. .';/# % K > 5 3 & %%

L K 7.';B8 , ...7&8 > =% C%< '

&% . . & L

%6 %& >% #3H1 %

K 7.'8 % A

# 2 , % '. #

'.

.

+

.';9

'.

%%= =%

'.

.

.1

.1

*

+

.';9&

#

1

*

+

.

'.

.';9

# 3 & & #3H1 %%= K 7.'.*8

%

&#

*

+

&#

'.

&#'.

.';9

& % % & %

%

&#

'.

*

&#+ '.

&#'.

*

.';)

) -'/

Page 71: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

A

' # & =% 5' / (2 71288 =% % % & % K 7.';98

. # + K 7.';)8 K 1

& % K 7.'.(8 %& %

6 % % & A

; > %& % +

&

% #

'. & K 7 8

% '.

& K 7.';98 % , '. '. 1 '. '. %%% % % > =% %

, ...78 # &%%% #* * 94)94.*B %& >% D K & & % !% ) !% ; & % 1 #3H1 % & = D # % & N & *'*. %&

7 ! % !

& % & & L & % % & & K 7.'8

1

*

+ , .';4

1 = 2 % & # K % ' %&

1

.';*

';) )'/

Page 72: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & %&$ % &

K 7.'8 & L 1

& %

1 44' .';(

& = 4

4 4 .'/B K 7.';48 & 7 & L 8

44

'

, .'/'

% & 4' & 7 5 8

4' .'/. & % K % % A

B .'/;

% >% K % 6 % =% & > %& & &

B

'

B

# & K 7.'8

# & K 7.'/.8 &

' .

K % 7.'/;8

'

'

B

.

.

B

% %

) -'/

Page 73: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

K 7.'/B8 % > % %& % # = % % %& & $ !% ; % >& % % = -+ %%

0.. "' # ''

# & & %% %% % # & = & % & + %% % - %& > %& > - # - % % & >

3L K # % % > K 3H1 % %& &2 & 3H1 H: % % & , %& % % & % %& >- % H1 %%= % 1 & += %= % % & &

% % #3H1 =P -+ %& , K D % % % 3L %& & = % !$ !

!'

' 6 $1 #@5 % O3H1 D % % %& 1 K "2 2 2 2 2 53 '((3.9( '(*.

. 5 ! 5 " > %& L K & + L "2 2 2 0 ./;399 '(9.

; 6 5 %

31 K 2 2 2 #2 22 //939; '()(/ $ % 6 + L L K & + 2 2 2 2 2 6 99'3( '(4.

9 $ # %& & %&92 2 2 2 2 37 943)* '(4/

) "! 0 12 5 H >

%& D #% D +

!'

Page 74: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, 7 @ 8 F 6 : '(4) 7$ '(498

4 ! , HN 65 "! 0 12 , L K + + 2 2 2 22 2, ';*(3() '(4)

* "! 0 12 @! 1 65 6 % + % K 2 2 2 22 22 ';'3// '(44

( @! "! 0 12 U + 3 % %& 2 2 2 2 2 22 '*;'3// '(44

'B 12 "! 0 12 6 % & %> + %%= L %& 2 2

2 2 2 28 '4B9>'' '(*B'' $ : 6 + L %

% & K , "

- ,* 7 #@5 8 6 F ;/ 6 '(4('. H: H F :5 6

L 3 K & + 7 +

+2 9 ')''3'4 '(4B'; #@5 @ 61 6 & C% < +

# 7 >8 %% ;*43('

"= '(*B'/ H, ! =% % 2 "2

2 2 2 2 943)B '(*9'9 @ # $1 1 6 2 H1

3L %& %% K % "2 22 2 2 6: .93/; '(*9

') #@5 : , H & 0 @ , 1& # H1

K L K + - "! , 7 # #2 #@5 8 6 (9 6'(**

'4 " J &2 K 3L % D D %& "2 2 2 2 2 282 .;;3)9'((*

'* 12 @, "! 0 12 D

% , , 7 5 H 8 F /% '; %% .9'3*; ! '(*.

'( 5 ! " J ! # %

3H1 K "2 2 2 2 2;6 .;(3). '((.

.B 5 ! & L K

H % 2 2 2 2 2 59 '//93)/ '((;.' @# " $&V 1 ! $ 6 % +

L %& 2 "2 2 269 /('39'( '((*

.. ! $ @# " 6 % + L %& "2 2 2 2 2 278 ;''3/' '(((

.; ! $ @# " 6 % + 31 K 2 2 2 2 , 52 4(3(9 '(((

./ #@5 6 $1 6 > % L , " - ,* 7 #@5 8 6;/ 6 '(4(

) -'/

Page 75: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

.9 #@5 6 $1 6 1 3H1 , , 7 5 H

8 F / %% /43)9 ! '(*..) ! @ 6 2% " +

%& 2 "2 6; /.43// '(*4

.4 , 1& #5@ 0 @ 6 + %> D A G # %& 31 K "22 2 2 2 :; '/'3.'( '(('

.* 5 ! 6 % 3% + L K "2 2 2 2 2 22, ;.93/. '((;

.( "! 0 12 $F 5 ! FR 2K21 % D 2 2 2 2

, 3: ';.939; '((*;B ! @ F Q @ 1Q , %&

%& "2 2 2 2 2 68 .*93;'. '(*/

;' 6$ % 6 + % L %& 2 # 6 : 7$28 %% '*B3;'(**

;. @ 5 6 %3 K + 3L K "2 2 2 2 2 63 ;;'3/. '(*/

;; H, ! $ @ : K + + %&

2 2 2 2 2 39 *'3(; '(**;/ $ @ H, ! 6 & >K + >

%& %& 2 2 2 2 , : (;;3/. '(**;9 ! @ L %& D ,

, 7 5 H 8 F ) %% .9'3)' ! '(*);) ! @ # -% ( ,

!& !& '(*4

;4 !! ? @! 3H1 % % K 2 2 2 2 2 35 **;3(B' '(*)

;* !! ? @! 3H1 % >

L K 2 2 2 2 36 ..B'3'9 '(*4;( ! $ 6 5 6 3H1 K

% D "2 2 2 2 2 ;8 /(34B '((./B 6$ % 5 : 3H1 >

%& 31 K % & % "2 2 2 2 2 2,9 '/;34* '((;

/' @6 ! 6 + 3H1

L K 2 2 2 2 2 5: '4'3*' '((9/. 5 @! " J 3H1

3L K % 2 2 2 2 2 5; '/9934;

'(()/; 5 ! !% + L 3 >

3 K "2 2 2 2 2 289 '*93.'B '((*

// - H $ 6 D % % 3H1 2 2 2 2 2 68 '/434/ '(((

/9 56 6 !6 $&& , W % , 7 !6 $&& @@ ! 8 %% ;.939/

% '(4//) H H1 %& %& "2 2 2

2 2 83 */434' '(*9

!'

Page 76: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

/4 5 #, 5 % H1 3L %& " - 7

5 F 1 5 % 8 F F 6! %% .*3;) 5 $ 1 @ '(*'

/* @ @ #, 5 L

%& & & + + L % # 2 2 2 2; *4'3*9 '(*.

/( " " % L %% 3

1 K 2 2 5: ;B(3;. '(*.9B $ " ? & : ! +

%% K D , ! 7 @5 8 F F %% /4'3* 6 : '(*.

9' @ H& , ! :& : 5 , K & K> % % 2 2 2 2, 6 '''43;) '(*/

9. $ " F , %&3%& %& 2 2 7 *(3() '(*;

9; @ $ K @ H 6 = 6%%

% = K K + : "22 " #2 2 F '.3') '(*;

9/ 6 $2 @ ! F2K2 6 %

%3L 3 2 2 2 2 2 3: .B.'3/B '(*/99 G : ! H1 >

% # 2 2 2 56 44(3() '((49) " @ : ## #2 ! H1 H1

K %> 3L K % "2 2 2 2 2 2,, ''43/' '((.

94 "! 0 12 5 :Q 12 , D

3 % , , 7 5 H 8F 9 % ' %% '3.) ! '(*/

9* 5 :Q "! 0 12 # > %&

K & + 2 2 2 2 , 6 'B/;3);'(*/

9( "! 0 12 5 :Q @ % %& D %& D , , 7

5 H 8 F ) % . %% /'3** ! '(*))B 5 :Q "! 0 12 6 % + %

%& % D "2 2 2 2 2 82 //'3)9 '(*9

)' "! 0 12 5 :Q % % D &

+ , 7 @5 8 F F %% '3.9 6 : '(*9

). "! 0 12 5 ! 6 %& %&D 3 # % & 2 2 2 2 , 3, *)(3*9'(()

); "! 0 12 5 ! FR 2K2 # ! $% %A 6 N D %& 2 2 22 , 52 ;9(3(. '(((

)/ := $ L "2 2 2 25

.'43;4 '()B)9 @ 6 + D

'(*)

) -'/

Page 77: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

)) @ 6 #3H1 % %& 2 2 22 2 3, 'B'3'( '(*/

)4 6 :% 6 1 & + L 2 "22 3 '9/344 '()4

)* @ $ : $1 ,= % 3 D %

1 2 "2 2 22 ;*3)( '(4;)( # 01 , D= % D

2 "2 2 52 ;;93). '(4(

4B F @ : U% , > "2 2 2 2 2 83 *'43/9 '(*9

4' : $ "! 0 12 =% >% H1 "2 2 2 2 9 ;*43(; '((B

4. 5 :Q @ "! 0 12 : , %& D , - 7 @$ 8 F %% .439. ! "= '(*)

4; @ "! 0 12 ! %& ! " ,* & , -% (6 4* %% '.(3/4 6 '(*4

4/ "! 0 12 @0 0 ?! : @ % , % %& D , 7 @5 8 F F 6 : '(**

49 @ @ : , "! 0 12 , % 1: # %% 666>*4>BB;. 5 6 @ '(**

4) @ @ : , "! 0 12 ,

% ;> 2 2 2 2 2 39 .';939( '(**44 5 :Q @ F , D= %

7,3,!#8 31 K 2 2 2 2 , 7

'B(;3'B( '(*44* 5 :Q "! 0 12 # % =%

%& "2 2 2 2 2 68 ;';3.( '(*/

4( 5 :Q 6 % %& 2 2 2 2 2 36 'B'3'9 '(*4

*B "! 0 12 =% 7 =%8 %& >%& D K + % 5% (B9 ! #

H & '((B*' " @ 6 %%

% "2 2

2 2 2 256 '43;) '(()*. @ $1 " %

%& "2 2

2 2 2 283 '9434/ '((*

!'

Page 78: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1 #' #' '-'/ -'/3 9 '';/

- 6 "7 #'

. ('

+ % D K %%& & %& %& D # K %& % K K + %%& %2 %& D % %% %& > K & & L D !% /34 %2 # K & !% '

SK 7''8T & & % & K &

'

.

;'

% % %

.

;.

%+ K , D %>&

.

;;

&1 % %% %%% .

Page 79: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

( ;/

& + D D=

;9

;)

& % P %+ % & % ( % & % & 7K ''.&8

.;

;4

1 ' B &K % %%% & # K % & D % %&A

;* # & - L >

K 7;/8 % & & 7F '8 % # % H1 %%= K >>- & & % % 3H1 % & &%% % >- & 3L K % % 3H1 % % K % K &

6 %& > K % O 76%% = 68 % & %

& D & %% % %% & D % D %% % & % % % & #3H1 % & % % 7 .'B8 % K L %& D =% % & & ,

('

Page 80: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%& D + & %& + =% > %%= %& > 7 > $&M 13$22 8 !% '. F ' %& &2 %& !% '. F ' & # K & & K 7;'837;*8 >

# > 2 K % D & & %& D % A

.

.

. . .

.

;(

>& > K &% % K 6%% & > K A

"

'

.

;'B

"

'

( ;''

(

(

.

;'.

5 & > & %> & K 1 K &

"

'

)

'

;';

) & &

)

;'/

1 #' #' ' -'/ -'/ 3

Page 81: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(

'

;'9

& K # > K % % %

'.

. ' ;')

' '.

# & > K !$ & %

0 '';/ - 6 "7 #'

-$ !

# % % & ! '. %& D%& + L = 6 = % + L %% %& D & & ;.4 % = % D K & %& %& 3H1 %.*/) # + '((9 & 0 12 ! .*.( % /49'

6 ! %'. & =% %%& %& D & =% >% # % % =% %& > %& C+< %& L > %& = D % =% % % % + H & % %& && % %& & &

-$ ! ! 2

2 K 7;/8 3H1 % =% % K 3L K

'';/ - 6 "7 #'

Page 82: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

7.''8 # & 1 7 %8 K % % % $ % K 7;/8 & >3H1 & %%

( . ;'4

. & 1 K . & K

. .

;'*

.

.

'

' .

;'(

.

.

;.B

' ;.' K 7.('8 % % % &

'

. (

.

(

;..

6 C%< & &%%= % & ' # %%= & # # % + % K 7;..8P K % % & % # %% % & + % % 6

# = &

(

.

(

;.;

1 #' #' ' -'/ -'/ 3

Page 83: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# K & &K & =% % %% 2 % %& # C < & & % A

'

.

.

.

;./

, K 7;'8

'

.

'

'

;.9

5% ' & 1 = &

>

'

.

'

'

.

.

.

;.)

% & K K 7;./8

# & K >- & 7 8 1 H1 >% % & % % %%= K & % 2 A

78 K 7;.;8 & P

7&8 K 7;.)8 & P78 K 7;./8 & &

'

6 % & 7 8 K % ' & & 3H1 % %% K 7;)8 % 1 K

K 7;'8 7;/8 7;)8 N K % K # % % %& 1 & % % K

# % = &

1

(

.

(

;.4

'';/ - 6 "7 #'

Page 84: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%% & %%=

'

'

.

;.*

& %% % 6 K 7;./8, =% . X B 78 % % % 6

'

.

'

'.

.

.

;.(

# % % 6

! 2 !

# K & H1 % %2 -+ 3H1 % !% . %%= % + %

&- &-

&-

& &# & ;;B

& K

- ' . !

#

& ' . !;;'

7 &8 & 7 & ' !8$ & 1

K 7;.;8 H1 %%= 7 % 8

(

.

.

$$

(

;;.

& & K % H1 %%= 6 &2 & % &

1 #' #' ' -'/ -'/ 3

Page 85: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& % & & & & & &2 & K 7.('8 %% &2 > & K 6 !% ' = +

K 7'48 !% ' % &

. ;

;;;

K &1 &

'

.

;;/

;;9

+ & =>% 7 & >% 8 & 7%% %8

'' .. ;; .'. ..; .;' # . . . # ;;)

= ' +

' ' ' ' B B B # ;;4 +

'' .. ;; '# ;;*# & % 7 K ;;;8

* ';' $ '

;''#

$* ;;(

$* $ ';''#

;/B

$* ';

. ' ' B B B

' . ' B B B

' ' . B B B

B B B ; B B

B B B B ; B

B B B B B ;

;/'

'' .. ;; '. .; ;' # ;/. '' K K '' =% '. '.

'';/ - 6 "7 #'

Page 86: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%% K 7;;;8

* $* $B* $B .

;''#

;/; = $B

$B

.

.

.

'

'

'

;//

# % & %%%> +

;/9

' . ; # ;/)

%%% = 7%8 + &

'B B

B

.B

B B

;

.

'B

B

;

.

;B

'

;/4

&% ' . ; % %, 1 & = + % &

& ;/* K 7;;B8 7;;.8 7;/;8

= A

# 8

- %'

- / /- #

;/( K 2 + !% . 3L K 7K .(/

1 #' #' ' -'/ -'/ 3

Page 87: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

.(98

% &#&

&# &

/ # $B .

;''#

&#

&#

*

;9B

(' (. (;# * % % # = / + % F ' 7 1 !% '.8 K 7;/(8 / # & 2

6 & % =% / #

/ '.

# &## & ;9'

# '.

# &# ;9.

# 1 3% K

'

.

' '

.

'

.

'

.

;9;

& % & % ,

2 %& %& D & & % 2 & K

# 1

% .'..# *- '*- '.# ;9/ & ##

. &#& %

&#

'

.

&

* &#&

&#

#- '- . ;99

& & &

'';/ - 6 "7 #'

Page 88: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% # 1 % K 7;.98

'

.

.

.

;9)

# + % D ' % &

=

#

- - %' *## .#

.#

;94

&#& ;9*

6 % -' #' & % ' ' % & " K 7;)8

%& 3L & 1 #1 K 3H1 %%= K 7.('8

'

.

.

;9(

& &

;)B

# 3

%'

# / / /

/# # ;)'

% & 7 & & 8

1 #' #' ' -'/ -'/ 3

Page 89: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

#

% &#&

&## &

&## &

/ &#& /

#$B .

;''#

/ '.

# &#&

&#

#*

/ '.

# &#&

;).

# # & K 2 & % % / & =

K & % K &> %;) + % '3; & %

# % $ 2 % & + : 2 % + % & 2 A

# 8

- %'

- / *## /

- #

.#

;);

% 6 =%

&#

&#

* ;)/

% & & %

# 1

% .'..# *- '*- ;)9

#

- - %' .*

## ;))

% / # L & K % 6

'';/ - 6 "7 #'

Page 90: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

:- ;- ' - '

# =% % + 3H1 % % % & =% % %& = % . L & %% & =% >% % % . 2 >2 % %& + % % %

% % K> 7 8 % =% %& %& D

/ (!

=% '. ' ' . B % =% 3L K %%&

;)4

L & # % %& D %

& & %= %& !% ) %> =%

5!

>% %%

'. ' '

'. . '

;)*

6 & # %& % & % 3H1 =% % ' # 3L %& !% . & %%

;)(

O

.

.;4B

1 #' #' ' -'/ -'/ 3

Page 91: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1 6 % & &

;4'

# & %%% % , %& %& %& % 2

>% N & = . K 7;9/8 7;)98 % % # . & % %> 6 & + % % % %K & - %

85 )+ !

# % & L 7 8 & % # % %

% K & % & > D &D';'9.;/B % %% & & %

! * !

# + 2 % & , ;' 2 & 2 K % & % &

h3

h2

h2

1

2

3

# . + , "

:- ;- ' - '

Page 92: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%& & & &% %& % + > % % & %& : %% & %% %& 7'8 = % 7.8 > % =# %% % % # K % %& % - % %& - % % 1 & & > %& 2 %%

= & %%

&2 & 3H1 % 1 % % L P %% % > %& & 1 78 % % 7&8 % % # & %& % , %& & A 7'8 = % & & P 7.8 % = & % & % # 3= & % %&

L 6 = &2 > %& % 2 % % + N % %& , %& = % L 9.

8 A')#B /C9 ' 6 7 ''

% % % & & % % $$ %& !% '.F ' 7!% / %& % 8 % %& %& & % >+ & & % 6 % $ % 6 % & % % % : =

1 #' #' ' -'/ -'/ 3

Page 93: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

K & > , % 1 K %% , 1 D %& % K % K 7;/(8 7;9/8 7;948

- %' /

# '

'..'*- '*- '.#

- - %' *## .#

;4.

# - , - 7%% %% 8

/ *## ;4; + K 7;4.8

*- '*%' *##'.# B ;4/

K 7;4.8 + &

/ *#

* '*%' *# .

-

#

! " '

.

! ";49

' . # % + >

& & =% &1 K % &

& & X & % & & # % % % 6 & + % K 7;.48

% $ K 7;498 2 $$ & & ,K 7;);8 7;)98 7;))8 %& 1 D

- %'

/ *## # '

'..'*- '*-

- - %' .*

##

;4)

6 # - , K A

/ *## ;44

*- ;4*

A')#B /C9 ' 6 7 ''

Page 94: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

- 2 K 7;4)8 6 % 6

/ *#

* ,

-

#

! " '

.

! ";4(

' . % 6 ! $$ & %% K 7;498

K L & > > >%%= % # -+ % & + L %% 9;

< 1 #;- )'

- K 7;.)8 &

&

7 8 # %%= # %%= K 7;'8 =%

=% &

%# % ;*B & %+ % 6 K

H1 %%=

%'

&#

*

'

.

&#!

;*'

7 * =% !% ' K 7'.988 & # &2 ! + & & & %

.'.

'

'

.

.

;

;

;*.

# CL < % 1 L %% 7 #3H1 %8

1 #' #' ' -'/ -'/ 3

Page 95: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%% % = ! & % > % ;B

%+ K 7;*'8 L & K % ;B & L & ;4 # % >% K - # - & & >% %& % >%

1 K % 6 2 L 7K ;*.8 K 62

/ *#

* '.

-

#

! " '

.

! ";*;

! >% % >%& & %& & & %& %& % = 1 % &2 &$22 1Q 9/ !% '. F ' % > >% ;4

%

= '

, /

& D %& D % 6 % % & D % , ;. %& & % % + & %+ & D & H &- &

D D + # % & , ;. 6 = L L & 1 %& %& & % 1 1

' D & %+ K =% & & &

'

Page 96: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

. % D & & %& = & % % & & + & & & %

& = %= %& = , ;.

" A & %

" A 6 % 2 = %% = %& D ! $ + & 0 12 /4 & % 99 # % 1&

% & %& &1 % 1 L %& D L = " & % %

&

, 9

$ & D % + L %& =

SIDE(Free-stream)

INLET(Free-stream)

EXIT

SIDE(Free-stream)

SLIP or NO-SLIP

X1

X2

a b

u2 = 0t1 = 0

(parallel flow)

tb = (τ11, τ12)a

(A)

(B)

# 0 2

1 #' #' ' -'/ -'/ 3

Page 97: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

' # * A " & D 1 & % &2 "& %& D

. # )* 7 8A D %% & % %+ K 2 > & & & % %& D %& %&

; A # %& # 2 D %& & & %

# & 1 & & % D % & % %

, '!! $ 2 $ 1& !

+ & & 7'8 7.8 % " &

B 2 ;*/

# B 2

7;*98

# B 2

%% !$ %% %>

& & % & % % >% % % 6 % & & % % $ % # K %& & < % =% % & % & 7K ;9;8

'

.

' '

.

'

.

'

.

;*)

'

Page 98: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & K > K 2 K 7;./8A

'

.

B ;*4

K 7;*/8 , >2 % & %+ # % &W %

B ;**

& = 5 & &

+

;*(

& & % 6 % % % ' 7 K 7;;.88

;(B

% % & %&# & & C%- <

& # % K & +

' ! & & %

%6 & & %

& & & & % %

, & 1 2 7 % 8 %+ % % ' >

% & %

K 7;(B8 % ; + % & % & % . S K 7;*)8T # 7 '.4) F ' %% !$ %&8 & % % , D & % %%= & &

1 #' #' ' -'/ -'/ 3

Page 99: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

> -'' ; #;- #' ) -'/

% > >% %& & D % 6!6BB'. # %& + , ;;78 7&8 # 2> + % & ()( '*./

1.500

1.250

1.000

0.750

0.500

Den

sity

L.E

.

0 500 1000 1500 2000 2500Iterations

Multi-step1.500

1.250

1.000

0.750

0.500

Den

sity

L.E

.

0 500 1000 1500 2000 2500Iterations

Single step

(d) (e)M = 1.2

1.5001.4501.4001.3501.3001.2501.2001.1501.1001.0501.000

Den

sity

at L

.E.

0 250 500 750 1000 1250 1500No. of iterations

Multi-stepSingle step

(c) M = 0.5

(a) (b)

# 9 4! : ' #$ ; <= >?> ) #$ 3 " ) #$ " 8 ! ! " * ) #$ " ! ) #$ " "

-'' ; #;- #' ) -'/

Page 100: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & & K B9 & =% %& # % = $ % & & % K 2 6 %% & %& !$ L & , ;;78 % %

& L & > >% & , & '. D & % L & 7;49;8 74;9'8 & %+ = 6 , ;;78 78

1.250

1.000

0.750

0.500

0.250–50.00 –40.00 –30.00 –20.00 –10.00 0

Distance X

Den

sity

T–G scheme (Cs = 0.0)T–G scheme (Cs = 0.5)Present schemes (Cs = 0.0)

(a) (b)

(c) (d)M = 0.5

# 8 - 4! : ! 8' #$ 3 * ! 0 ! *) #$ 3 * ! 0 ! *)#$ 3 * ! .- ! *) #$ * " "

1 #' #' ' -'/ -'/ 3

Page 101: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

>% % % # >% & >% & D %& , ;/ % >% &

7+ B98 & & #3H1 & !$ % + L #3H1 % & & & L !% % & 7, ;/8 #3H1 L !$ + L

5 # ''

# !$ % K D !% & > >% D % %% >% L D%% 6 % % & % 6 & % !$ = % D %& >% #3H1 % %& %& %& D %& > %&

!'

' 6@ ! 31 K 2 "2 33 4/93).'()*

. 6@ ! " %%= 31K 2 "2 35 ;/'39; '()(

; H ! H , %& 31K 2 . 8 /);34* '(4.

/ H H 5& ? , %& D D % K % % ! # !6 $&& 78 0

,* '(4*9 @ H : : U% , 31 K & % "2 2 2 2 2

55 9;34; '(*.) H # ! 5: : ! % 6 + + %& 31 K 2 2 2 2 ,

6 9943(* '(*/

!'

Page 102: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

4 " , D 2 2 2 2 , 8 (*'3(; '(*9

* @H 5 5@ %1 6 K> 3% =& % % "2 2 2 2 2 8: ';93/( '(*)

( $ 5 #1 : +

%& 2 2 2 2 , 9 )9(34B '(*)'B $ 5 , D"2

, 29 ;/(3** '(**

'' # + D % #2 2;(' 2 8 .993); '(**

'. H5 66 $ 5 : D % 2 2 2 2 , ;

'')9344 '(*('; $ 5 #! @ @ 61 >% =% +

% D %& 2 2 2 2 2 56 )493() '((.

'/ 5 5 " ! %- %& 31K 0 285, ')43*; '((;

'9 $ 5 # % >% +

%& D "2 , 33 4.93/4 '((;') !$ ? 6 % + %>

& D "2 2 22 ;9934B '((;

'4 H 5 # 6 + % %&31 K + 2 2 22 , 27 ;/(3)/ '((;

'* $F 66

K & =% + 2 . 38 9(;3)B( '((/

'( 5 1 6 6 ,

D # & 2 2 2;4*93*') '((/

.B H # ! 6 ! 6! 6 &2

U7'8U7'8 %& D 2 2 2 , 32 *;439)'((9

.' ?# H 66 = % > 2 . 52 99'3). '(()

.. 65 ! # - + "2 2 2 2 25 (B(3.' '((4

.; # - ,

>% 2 2 2 2 . , ,* :'((3..B '((*

./ - H $ #> D %

& L H1 "2 22 2 2 297 ')43(B '((*

.9 H 6 1 %

%& D "2 2 2 2 26 ;;93/) '((*.) @ $ 5 ! 6 6 >% %&

31 K %3 2 2 22 , 3: ';('3/'( '((*

.4 $F 1 66 = % D & 2 2 . 63;/(939B4 '(((

1 #' #' ' -'/ -'/ 3

Page 103: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

.* "! 0 12 5 ! D , " , - 6 ! 2 @

?1 'B'3'; '((9.( "! 0 12 5 ! 6 %& %&

D # % & 2 2 2 2 , 3, *)(3*9

'((9;B "! 0 12 $F 5 ! FR 2K2 6

%& %& D 3 # =%

2 2 2 2 , 3, **43('; '((9;' "! 0 12 "2 6 % & +

K 2 2 2 2 , 3, 'B)'3*B '((9;. "2 "! 0 122 % +

" / < !G '((9;; "! 0 12 6 D !%& %&

& 2 = 2 "2 , , & * /(3

99 F 2 " '((9;/ 5 ! FR 2K2 "! 0 12 6 % %&

DA $ %& 2 = 2 "2 ,

, & * /B(3'* F 2 " '((9;9 "2 "! 0 12 # & %% &

2 = 2 "2 , , & * '9/;3

9. F 2 " '((9;) "! 0 12 $F 5 ! % & >

% O& %& D 2 2 2 2 ,35 '3.; '(()

;4 "2 "! 0 12 6 % + %& H, H 78 , ?1 )'3*/ '(()

;* 5 ! FR 2K2 "! 0 12 H %& %& D 3 6 >% 2 2 2 2 , 37';3;. '((*

;( $F "! 0 12 # 2 5 : H %% % % D 1 2 2 2 2, 37 943*B '((*

/B 5 ! FR 2K2 "! 0 12 6 %

%& 31 K 2 " ", - +* 8==> 0 2 ;;'3/4 + & '((*

/' "! 0 12 !>&>% 7!$8

%& D %& 2 2 2 2, : ()(3(B '((*

/. "! 0 12 5 ! FR 2K2 "2 !>

&>% P # 0 2 ""<# ",- 8==> 03 % %% /3') 6 H

/; "! 0 12 !>&>%

P %& D %& 0 2 ""<# ",- 8==> 03 % %% '43.' 6 H

// "! 0 12 "2 # !$ 7>&>%8 D # 2 #2 + # 2 .

;3'. '((*/9 "! 0 12 @ 5-1 5: # # =%

2 2 2 2 65 9)93*; '(((

!'

Page 104: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

/) "! 0 12 5 ! FR 2K2 # & %%A 6 N D %& 2 2 2 2

, 52 ;9(3(. '(((/4 "! 0 12 @ 2 @ !%& %& DA

"2 2 2 2 2 7: 'B93.' '((B

/* "! 0 12 =% >=% %& >%& D K + % + =?;4 ! # '((B

/( "! 0 12 , % D > # " 9)3)' H ! '(('

9B "! 0 12 @ %& Y = 2 2 2 2 2 53 ''*/3.B; '(('

9' "! 0 12 @ 6 =% >=% %& %& D 2 2 2 2 2 58 /9434( '((.

9. "! 0 12 " &2 !$

= % 2 2 2 2 2 7 %89; 6 @ @ % ,

K !>4!?34 '(*9

9/ , $22 @ 1Q " &2 + %%= 1 %& @ # 1& 2, F & & '(*/

99 #! % 6 D & 2 2 2 2 , 26 9*43)B* '((.

1 #' #' ' -'/ -'/ 3

Page 105: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(-'/ ' 3 9 ; 3

8. (' / 2

# %& %& D % D , % &1 % &- % % > D & %%% % & = % D & %%% % >& &% 6 &D % &- & F ' N

%& % K + = %& D% D & 7> 1 D8 !% 7 !% '. F '8# L K %& D

%& D % & K K 1 K K & % % % %& D K # % K D

& !% ' ;P % & %& %&

"

'

.

/'

. &1 %& & > % 2

Page 106: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

"

( /.

& + D D=

/;! % & % A

//

& % P %+ 78 % & % ( % & % & 7K ''.&8

.;

/9

& & + K & % = % & 1 % % %& %& K & !% '. F ' !$ & &1 %

% %& 1 1 K & % # K %& & &>

% %+ # K & %

/)

3L K % !% . & % 1 & K 1 % %& D & K 7%+ 8 & % %& %

1 % K % N !% 9 & L % > & & % L % & % % &

% %> 1 & % % %& & %% + %

(-'/ ' 3

Page 107: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% % > D !$ & !% ; % K %% & $$ & !% '. F ' %& & = % > % % & % %

2 & % = % D %% + K & >- , %& H1 %%= & !% 4 F '

80 () -'/ 3 6- 37

& %& K K 7/'8 7/.8 &

B /4

'

( B /*

# K % +

'

'.

.;

;/(

% = 7/(8 7/48 K

.

. B /'B

%%% & & & !% 4 F ' , D % & A

/''

() -'/ 3 6- 37

Page 108: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1 F ' % & %% +

% K F ' &' , /' =% % % " & % =

= & + %& % > K 7/*8 + > % %

.

.

/'.

+ 7/(8

' '.

.'

B . .;

;.

B ; ;'

';

B /';

# D % & = % + % + K 7/*8 K

7/48 7/';8 K

'

.

B /'/

% &

(

/'9

#

B /')

'.

% %+ &%

'.

/'4

# & 1 = % = > D % >1 $ K % & % + &

(-'/ ' 3

Page 109: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# 8. 4! 1

() -'/ 3 6- 37

Page 110: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%& %+ D ./ :% K % & % & , /. =% D ;

%& & % %

(;

% K 7 8

'. .' .; (; B

> & =% D . & % K >-

% >%% N

Movinggrid

V /Vj r0

s

R0

R0/ r0s / r0

β

= 1.6 = 0.8 = 50.5°

β

# 80 2 4! " * @ "" # - * A/$

(-'/ ' 3

Page 111: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

8 $ " #' ' -'/ ' '-'/ 3

-$ 5!

, %& %& & K + =% % > % !$ >% 7!% ; ;;.8# =% K & % % % 7 K 8# & & % % &

!% ; % &K & % % L > # % %

% & ! &

'

/'*

%& %&

. .

./'(

K & & = %# =% % + & + # %& 1 - %

& 94 # & & % 7> % 8

# & L 5 & % # %& & & %&&

H 9 K L 5 & % + + , /; & +

# %

1 % 2 %&

2

$ " #' ' -'/ ' ' -'/ 3

Page 112: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & > L 5 & B % 1 D 5 & 9BBB , // % & 2 , /9 L 5 & , /) %

5 & , /4 % % & >

L 5 & K 2 71 D8# & & & !$

H 9 + L + 7'.' '.'8

85!

1 !% ; =% % & K & % + # =% % 5 & & & % & & & % & K 7/'*8 %& 5 & 9BBB K>% * =% # & , /* # &

u1 = u∞, u2 = 0

u1 = u2 = 0 u1 = u2 = 0

u1 = u2 = 0p = 0

# 8 6 * * *

(-'/ ' 3

Page 113: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& K 5 & 5 & 'B BBB , /(

/ (! . !

%& %& %& =% & % % 2 & > + K

'

.

/.B

> & . + # + & % ( %

1.0

0.8

0.6

0.4

0.2

0

x2

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0u1

'CBS'

(a) Stokes flow, viscosity 1

1.0

0.8

0.6

0.4

0.2

0

x2

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0u1

'Ghia''CBS'

(b) Re = 400

1.0

0.8

0.6

0.4

0.2

0

x2

–0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0u1

'Ghia''CBS'

(c) Re = 1000

1.0

0.8

0.6

0.4

0.2

0

x2

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0u1

'Ghia''CBS'

(d) Re = 5000

# 88 6 * ' * " B* # $

$ " #' ' -'/ ' ' -'/ 3

Page 114: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

6 !% ; % =% %> 1 % N > & & =% % & & & %& L = = # & 'B =% % L %

88 ';:

# = & & % % 7!% ; ;)8 D % &1 % # & , /'B78 , /'B /'' & = & !% ; , 1

1.5

1.0

0.5

0

–0.5

–1.0

–1.50 0.2 0.4 0.6 0.8 1.0

x1

p'CBS'

(a) Stokes flow, viscosity 1

–0.01–0.02–0.03–0.04–0.05–0.06–0.07–0.08–0.09–0.10–0.11

0 0.2 0.4 0.6 0.8 1.0x1

p

'CBS'

(b) Re = 400

–0.02–0.03–0.04–0.05–0.06–0.07–0.08–0.09–0.10–0.11

0 0.2 0.4 0.6 0.8 1.0x1

p

'CBS'

(c) Re = 1000

–0.02

–0.03

–0.04

–0.05

–0.06

–0.07

–0.08

–0.09

–0.100 0.2 0.4 0.6 0.8 1.0

x1

p

'CBS'

(d) Re = 5000

# 8< 6 * " , B* # $

(-'/ ' 3

Page 115: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Streamlines Pressures

(a) Stokes flow, viscosity 1, 9600 iterations

(b) Re = 400, 4400 iterations

(c) Re = 1000, 6100 iterations

(d) Re = 5000, 48000 iterations

# 8= 6 * - B* # $

';:

Page 116: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% % & 1 % 6 % & =% !% ; ;)

8< 1 -) '4

% + !% '/ '9 F ' & & K # % & = D % %& % + % % # % & & % %& D 5 ''3)( & + % % D

)+ .

L %%

1.5

1.0

0.5

0

–0.5

–1.0

–1.50 0.2 0.4 0.6 0.8 1.0

x1

p

'10x_uniform''40x_unifom'

40x_non-uniform'

# 8> , - 4! * # $ *

(-'/ ' 3

Page 117: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

+> 7 8 > + % & 2 # + % =% %& & + & + # & & " ;.;;9'9. & & + %

x

u

u

# 85 6 * C B* 8

1 -) '4

Page 118: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% D %& =% > %%# & >

> # 1 > ".

x

u

u

# 8? 6 * C B*

(-'/ ' 3

Page 119: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& 7 .. 8

..

. .

.

./.'

+

2 % %& .. # 1 & =

h

h

hh

u

u

u

u

tn

u

# 8.@ 2! ! " + * B

# 8.. 2! ! " - ! " B

1 -) '4

Page 120: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% 7 , /'.8

= '

*..

./..

5 %

5 ''.B

..

./.;

=% 7/..8 7/.;8 = 6 F ' % % K & & > %& K & # 1 &

..

. /./

# %% & =% 7/./8 % %& % %

..

. /.9

X >%+ % &

N K # 2 +> > % & % $ %

x1

x2

n1 n2

emax

Exact φ

Linear φ

hn1, n2, nodesh, element size

# 8.0 9 !

(-'/ ' 3

Page 121: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# = % %& 7 >8

.

/.)

+ K # % % =% # 7 8

& 7 % 8 %

& /.4 2 & + & # & %%= L $ !% '/ F ' & %

+ % % % & % % > % % % % & %% K + % % & %%= % , K + & % & # % K !% '/ F ' & % & & & % & % K" % +

K & 6 = & % % %

% = %%=

.

&

.

/.*

1 -) '4

Page 122: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# %%= & K %%= &

&# &

.

.

B /.(

& % .

%'

&#

.

%'

&#

&

/;B

% = &

% &#& /;'

& C%<

K C > <% 1 & # + %% % '(*4 & .. & D %&4B4; $ %& & % & 6 1 & % # & = & ;(9;9) 0 12 9B )9 %& D = & % & "& % % D % = & + + = 2 & & # %% 1 . K = , /'; ,' ,. = % %

# K & %

.

.,..

.=

.,.'

/;.

#

# =

.,..

.,.'

#$$$$$$% /;;

% & % % & =

(-'/ ' 3

Page 123: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& % %+ A

' , . & % & =

; ! 2 = K 7/;.8

/ ! = 2 7K /;;8 & = &

9 5 & 2

# & % N K % &1 % %.. =% % # % 2 % &1 & % %

7% %& D8 = &2 % # = & %% & 1 2 D & % % 2# % - & & %%

% % & 1 = % # & >

& &1 & & >% K & % %

x1

X 1

X 2

hmin

s hmin = hmax

α

# 8. + " ,

6 & # & & 9/ 9(3). )93)4 4/3*9

1 -) '4

Page 124: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

/ ) + .

# D D %& % & > & & K & %& , %& %& %& =% %% % &

/;/

= 2 7 28 # & =% & 2 % = K 6 % = 2 & " + 6 % = 2 && 0 12 9B =

= /;9

& B ' & = 2

1$

& + % & & + # K & & % & %% # % % & N % & & %& %& D %& %& D + % 7F %& D & K & 8" & & & &

% % & ! % & & %& & 9().)( =% &

(-'/ ' 3

Page 125: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# 8.8 6 * B 8 " "

1 -) '4

Page 126: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(!

=% %& D %& &> % % + %& D % = /*' **B , & & & & % , /'/ > & % & + %7, /'/8 & + % & + 7, /'/&8 $ = % & 1 H 9 7, /'/8

(a) Final adapted mesh, Nodes: 1514, Elements: 2830

(b) Streamlines

(a) Final adapted mesh, Nodes: 1746, Elements: 3293

(b) Streamlines

(c) Pressure contours

II Gradient based refinement

I Curvature based refinement

(c) Pressure contours

# 8.< 2! ! " B > " "

(-'/ ' 3

Page 127: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

6 = & D &1 % % , /'9 + & & % 6 & & % % &

+ & % N F ' & % K %&

8= 1 -) #' ' ' -'/

% % % % 1 "& + & 7 ) + 8 % & % %& %" K L % & /B & A = & % , /') %& +=

& !% '9 F ' % & &

1/'/.

8> (-' /# )) '

% L &2 & !$ 5 & D # %&D % %% L %& D %& # D &2 D L 5 < &'BB 9BBB % , /'4 & 5 & # L &2 5 'BB 5 9BBB % & &2 # % &2 S %% . K 7;.;8 7;./8T %& 5 < & %& % &2

85 " 3 9 : - '

: ' %$ !

%& D % = %& /. 7 8

" 3 9 : - '

Page 128: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

#8.=

0

4

!

*

B

8

*

%

"

&

(-'/ ' 3

Page 129: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

K 7/'8 7/.8

B /;)

( B /;4

# & % &

.

;

/;*

%& %& %A

78 % &

With stabilization Without stabilization

With stabilization Without stabilization

(a) Re = 100

(b) Re = 5000

# 8.> + ," * B*&

" 3 9 : - '

Page 130: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

7&8 & 78 & %

K !% ' ;

: ( ! 2

# 2 & / % %%=>

& &# /;( & % K 7/;)8 & % %

'#

B //B

& % % %%& K = 2 & & & & *) 7 !% '. F ' 86 % =

% % % % 2 & = 2 # % D '(4B*4*(

(B(.

# 2 K &

/ *

*# .$

#

,

//'

% 2 $ =

/ #$B &

* &#&

&#

&#

//.

% & % # 1 (B(.

'B4'B*# & & % % >

%& D # %%& D D & & %% % = & & & % & # !% '. F ' & % , /'* &

(-'/ ' 3

Page 131: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

+

+

O (h ) (T3B1/3C)

O (h2) (T6/3C)

+ O (h2) (Q9/4C)

(a) Continuous p interpolation

+ O (h2) (T6 B1/3D)*

+ O (h) (Q4/1D)*

+ O (h2) (Q9/4D)*

+ O (h2) (Q9/3D)

+ O (h) (T6/1D)

(b) Discontinuous p interpolationVelocity nodePressure nodeDenotes elements failingBabuska–Brezzi test butstill performing reasonably

*

# 8.5 - * * "* "

" 3 9 : - '

Page 132: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% (; D (/() & % % & K B %

% D % % % % % %

1 %& % # & = %& 1

D & + + D %%

8? %; 3 9 -' '#

; 5% % ! !

D % & % & % #% & % =% %

B !' //;

B B 3 % ! % & + K7;;/8 7&8 % # & & & % &

K 7;;;8 %+ & %%% % , /'( #& =% K 7//;8 1 " , /'(7&8 & % %

% & %& 1 , , /'(78 % $ D & = & & # >% D > & # &

!

///

(-'/ ' 3

Page 133: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# % % % D % B %

//9

" & % D

//)# 7 D8 & & &

% K 7//'8 & & = /& %

/ / / / //4 & %

σ

ε•

µ

(a)Linear, newtonian, fluidε•

σ ∝ εm

σ

ε•

µ

(b) Non-newtonian polymers

σ

ε

|m | < 1

µ = σ/3ε

ε•

σ

ε•

µ

(c) Viscoplastic-plastic metals

σ ∝ (σy + γεm)(Bingham)

γ = 0(Ideal plasticity)

σy γ = 0

γ > 0

ε•

# 8.? - *

%; 3 9 -' '#

Page 134: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# % & % 7 F .8 # K 7//'8

1

#

,

//*

1 1 #

#

' 1'

,

1 1 # //(

& % & % % 7 % %

2 + 8 % + + K & L ' ' % 7 8 # + > D %% %

'(4B(4(( 6%% % &K & %*('BB'.4

%% N 2 & D & & % 'B) % = 7 % + 8 -+& # & & % % & )* % %> =% # % & C>%<'B9'B) %= %# % %

% %% & # ''9 '.* '.( % +

; 5 !

# %& #! )* + D , /.B78 %% & & += % % % , /.B7&8 % % > %& % + % 1 + & % &

(-'/ ' 3

Page 135: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

C< D %& , /.' % = % & #& /' , = = & ';B & & D L , /'* (; # + % %& > D % &

% 7 % 8 % & %& K # & %%% K K 7/)8 K + , 1 & %&

%+ %

/9B %+ & 1 %

Prescribedvelocity

Prescribedtraction

Extrusion

Rolling

(a) Steady rate

# 80@ 2" **

%; 3 9 -' '#

Page 136: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Moving mesh

Extrusion

Rolling

Forging

Cutting

Sheet forming(deep drawing)

(b) Transient

# 80@

(-'/ ' 3

Page 137: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& &

/9B&

& K 7'(8

/9B

62 !% % = , /.' % => %& 7 % 8(;

' 78 . 7+ 8

% = , Z !78 = , Z !78

#)O' .* (B'B '.B. )4*' .9 ((BB B4; 94(4'#)$'O; ;' B/;B .B;. 494) .) .9*B '4* 4*B';#)$'O; .( B;'B '.9. 4;B* .) ..(B ')) )';(.#)O;! .4 (B.9 *'9 *4). .9 (49B B)4 *99;*

= .9 *BBB BBB [ .9 *BBB BBB [

CL

MESH I

CL

MESH I

v = 0u = 1specified

Slip boundary

Free boundary

# 80. # '$ ! *

%; 3 9 -' '#

Page 138: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& K 7'.8

./9B

% L % K 7/9B8 & & & %&

7 K /)8

( B /9'

# % %& & &1 & % 1 D + &1 % 1 K % % !% . % + '(4;

'(4*'B.'B; & % 'B(''B , /.. % % > %& 'B; %& & % %

& & 1 N % % '') # % % = N %

; - ! %$ $

# % %&& %& #%=% % & , /.; /./ % %% # & %

+ % % & 1 # + & & & & & =%

/9. % % % &

K 7/9'8 %+ %%

( ( B /9;

% 1 %> % =% % % !% ;

(-'/ ' 3

Page 139: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

9 1x

= 2.

25cm

9 1x

= 3.

25cm

9 1x

= 4.

9575

cm

9 1x

= 5.

915

cm

9 1x

= 6.

15cm

T = 400K

T =

460

K

Tem

pera

ture

con

tour

s fo

r ent

ry T

= 4

00K

at in

terv

als

∆T =

4.0

K

T = 700K

T =

722

K

Tem

pera

ture

con

tour

s fo

r ent

ry T

= 7

00K

at in

terv

als

∆T =

1.5

K

y,ν

30.2

ν tan

g =

ν tro

ll = 2

8.73

cm/s

k∂T

/∂n

= α 2

(T–3

22)

k∂T

/∂n

= α 1

(T–2

95)

T =

T1

0.88

9

2.25

3.66

52.

25ν

= 0

∂T/∂

n =

0x,

u

0.633

∂T/∂

n =

0

All d

imen

sion

s in

cm

k∂T

/∂n

= α 2

(T–2

95)

C L

Hor

izon

tal

Verti

cal

(a) G

eom

etry

Nodal points

20

301.

0 –1

.0–3

.0cm

/s(b

) Vel

ocity

pro

files

(c) T

empe

ratu

re d

istri

butio

n fo

r diff

eren

t ent

ry te

mpe

ratu

res

#800

-

*

"

!

"

>/

%; 3 9 -' '#

Page 140: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& % 1 % & % %& =% , /.;*( %

& 1% 1 & 6% & %& & % 3 & 1% % =% , /./ %&';'';.

% % % %& & 2 %+ & % %& % %&

!% '9 F ' % =% & % ';;';/ , /./ %

U

(a) t = 0

u∆t

U

(b) t = 15∆t

30%

U

(c) t = 30∆t

60%

U

(d) t = 45∆t

90%

# 80 #* $<> ; != 9* ) #$ #$ #$ #$ ! # " $

(-'/ ' 3

Page 141: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Initi

al m

esh

Upd

ated

mes

h 63

6 D

OF

η =

15%

Upd

ated

mes

h 12

00 D

OF

η =

18%

Adap

tive

refin

emen

t 808

DO

F η

= 11

%Ad

aptiv

e re

finem

ent 1

242

DO

F η

= 10

%

t = 0

t = 1

.1s

t = 7

.7s

#808

#$

"

!

#

"

"*

$

%; 3 9 -' '#

Page 142: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% % & # %% & =

&- # % % % " % > 6: 7& 3 8';9';( %& < + & K

644

CL‘Effective’ strain (ε) t = 2.9 s

CLTemperature (T ) t = 2.9 s

0.4

0.3

0.2

0.1

2 4 6 8 10 12 14 16Time (s)

Load

(MN

)

(c) Load versus time

(b) Contours of state parameters at t = 2.9 s

0.20.2 0.8 0.8

624

623624624 624643

649

# 808 #$ ! */ 0?D3 2" =<

(-'/ ' 3

Page 143: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

r b =

1.9

625

in

Punc

h

r c =

1.9

25in

Blan

k ho

lder

1.94

375

in

(Initi

al) 3

.60

in

0.035inRA =

1.

875

inµ 1

=

0.20

r d =

0.2

5in

Die

Geo

met

ry a

nd fi

nite

ele

men

tdi

scre

tizat

ion

of th

e bl

ank

usin

g lin

ear e

lem

ents

H =

445

T

µ 2 =

0.2

0

60 50 40 30 20 10 0

Stressσy (kips/in2)

0.05

0.15

0.25

0.35

0.10

0.20

0.30

Stra

inε

Dis

cret

ized

stre

ss-s

train

cur

ve

100 80 60 40 20 0

Punch load (kN)

20

40

60Pu

nch

trave

l (m

m)

0 Punc

h lo

ad –

pun

ch tr

avel

Num

eric

al

Expe

rimen

tal

0.5

0.3

0.1

–0.1

–0.3

–0.5

–0.7

Strain

20

40

60

800 Orig

inal

radi

al d

ista

nce

(mm

)St

rain

dis

tribu

tions

for p

unch

Trav

el =

60

mm

Expe

rimen

tal

Rad

ial s

train

Thic

knes

s st

rain

Circ

umfe

rent

ial

stra

in

z =

9.20

mm

z =

17.9

mm

z =

28.7

mm

z =

34.7

mm

z =

48.5

mm

The

arro

ws

indi

cate

the

velo

city

vec

tor

at e

ach

noda

lpo

int

µ 1 =

µ2

= 0.

20

Flat

bot

tom

pun

ch. D

efor

mat

ion

atdi

ffere

nt s

tage

s

#80<

3

!

"*

4

=

%; 3 9 -' '#

Page 144: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

K 7/9.8 %

% 7 %% P % % %8 & D K & %%

& % % + %%& $ %& %& & % # %% & & '/B3'9; %% & & & , /.9 /.) % %&

(a) Mesh of 856 elements for sheet idealization

X

Y

(b) Mesh for establishing die geometry

# 80= 2 " * 0 " ! 0 " 4 ! 8 0 0 " ! 1 ! 8/) ?> ! ! <8:!B # ( $=/

(-'/ ' 3

Page 145: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

; !

/(' L %& % & -+ & # & # & %& % " %& C% >&1< % %=

t = 900 s

t = 2400 s

t = 4280 s

(c) Deformed shapes of various times

# 80=

%; 3 9 -' '#

Page 146: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% % %& L & % '') '(*/ & D D & %& %& % D && # % %& K %= & &- = 1 ! # ,&'9/'); & "& &- & % % &1 & &

8.@ ' - --' ' '#

=% K = & > % % % # %% + % ?6. ?6; % : : :&')/')9 , %&> % N % & %& & % & %&> & %> & % =% & # &1 % & F . &1 &1 1 1 % K = % % + 1 > % % 78 1 %& %& !$ 1 7 8 % & %'))

%& % % & % 1 %& & % % # % % & & %%% % & N & 0 12 ')) , /.4 % & % & % = + % 7, /.4&8 % % K> 7, /.48 % # + K !$ + 7, /.4 8

(-'/ ' 3

Page 147: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, /.* & > %& & % & $ $ ')4

8.. # ''

# =% %& %% % =% & & 1 % % !% 9 %& %& & & %

(a)

(b)

(c)

(d)

(e)

CL

CL

CL

CL

CL

# 80> * ' #$ ) #$ " ") #$ ( ") #$ " .- ") #$ ( .- "

# ''

Page 148: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

!'

' @ 6 H 21 D & + 2 62'3.9 '(4.

. $ @6 $ 6 D % +

2 2 2 2 2 2; ')493*( '(*;; # %1 H , - % = D , , 7 @# " "! 0 12 5

H ! #8 F . % '/ %% .)934( ! '(49/ @ "<! 6 % % D % 2 2 2 2

2 28 4)43*( '(*B

9 H H !# >5 %& D 31 K 2 "2 2 6: ;*43/'' '(*.

) 5 ! FR 2K2 "! 0 12 H %&

%& D 3 6 >% 2 2 2 2 , 37 ';3;.'((*

4 "! 0 12 5 ! FR 2K2 "2 # & % 7!$8 %A 6 N D %& 2 2

2 2 , 52 ;9(3(. '(((* 5 ! FR 2K2 "! 0 12 6 % %& 31 K 2 " "

, - +* 8==> F ' ;;'3/4 + & '((*

# 805 0 ' #$ ") #$ .- "

(-'/ ' 3

Page 149: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

( "! 0 12 $F 5 ! FR 2K2 6 > %& %& D 3 # =% 2 2

2 2 , 3, **43('; '((9'B "! 0 12 " &2 !$

= % 2 2 2 2 2 6: *493*B .BBB

'' 6 H L 6 + % %% % D+ 3; './(39/ '(*;

'. 5 :Q "! 0 12 6% +

%& 31 K 2 2 "2 +$ , " :& '(*/

'; @ $ @ " 6% + %& % L K 2 "2 2 85 /*/39'. '(*/

'/ H, ! H & # 2 2 233 'B.*3/B '(*9

'9 "! 0 12 @ F 5 :Q ,

%& D B 2 "2 " # F '(*9

') F $ 6 = @ = % + +

K 2 ",- "2 , - 7 @ $ 8 ! "= '(*)

'4 @ # " # & 6% +

%& D "2 2 2 2 2 8; ;.43). '(*)'* "! 0 12 @ @0 0 =% 2

% P %& %& " & 7 6 8 6 49 6

'(*)'( 5 :Q "! 0 12 6% +

%& 31 K +$

, " !% '9 .*'3(* 7 $&1 "! 0 12 @H 5 6 "8 '(*) ?1

.B @, @5 $ 5& % % D

>:!?3=4 '(*).' $ @ H, ! 6% + >K +

& - 2 2 2 2 2 36 9*B3() '(*4

.. @ F "! 0 12 6% %& D % 2 "2 2 73 //(3)) '(*4

.; @ # " # & 6% + %

%& D 2 2 2 2 2 7 '.''3.* '(*4./ @ : @ "! 0 12 # H1

%& 3 "2 2 2 2 2 92

;9(3)( '(*4.9 @ @ "! 0 12 6 % + +

% D 14 # 5

666 *4>B99* '(*4.) "! 0 12 @0 0 ?! : @

%P % %& D , 7,0 >B8 @ 5 %% /*;39'. 6

: '(**.4 : , @ % +

2 2 23 '493*' '(**

!'

Page 150: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

.* "! 0 12 @ @ : , , D !%& D K % #

"2 + - , - 6 (9 6 '(**.( $ C6 > , % > D

"2 2 2 2 2 72 ;'93/B '(**

;B @ @ : , "! 0 12 , % ;> 2 2 2 2 2 39 .';939( '(*(

;' 5 :Q 6% %& "2 2 2 2 2 78

'(93.'/ '(*(;. : 12 @# " 52 " # ! %

+ ' ! %%= "22 2 2 2 77 4(3''. '(*(

;; @# " : 12 52 #6 # !% + . 6 % "2 2 22 2 77 '';3*B '(*(

;/ : 12 @# " 52 6 + %& 31 K & % % !% "2 2 2 2 2 :6 .493;.) '((B

;9 "! 0 12 6%>D>2 3 % 2 "2 #2 2 2 28 ';43/9 '(('

;) @ &" @ 6 % + >

%& D & 2 2 2 2 2 53 49'3)9 '((';4 @ & " @ 6 % +

%& D 2 2 2 2 2 53 ''/939( '((';* 6 @ @ 2 6% %&

D % % & .> &1 2 2 2 2 2 53 *(93('( '(('

;( " @ @ & 55 #- 6%

D '(('/B @ @0 0 @ 2 "! 0 12 %

31 %& D "2 92 ;B3( '(('

/' @, 6% %& D 2 5, '(*)3(. '((.

/. @, , % + %>& D 2 5, .)443*. '((.

/; @ @ 6% ;> %&D % 2 "2 2 2,5 .)(3*9 '((.

// @ & " @ 6% =% % +

2 2 2 2 2 58 )9934B '((./9 @ 2 @ 6 .> 31

K % "2 2 2 2 2 2,2 ;993

)* '((./) 5 :Q @ $ 6% >+ ;

%& 2 2 2 2 , 26 '/B43'( '((.

/4 @ 6% K %& D"2 2 2 2 2 2,9 *;3'B) '((;

/* 52 6 % >% + "2 2 2 22 2,; ')(3*' '((;

/( 6$ % 5 : 3H1 %& 31 K % & % "2 2 2 2 2 2,9 '/;34* '((;

(-'/ ' 3

Page 151: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

9B "! 0 12 @ 6 + % %& D 2 2 2 2 2 57 .'*(3.'B '((/

9' @# " 6 6 + %%= 31 K "2 2 2 2 2 222'*93.B. '((/

9. @# " F : 6 % + %%= 31 K 2 2 2 2 , 3, *;'39' '((9

9; " @ & @ %

%& % D 2 2 2 2 2 5: ''.;3/*'((9

9/ @ !>2 $1 : H , $ % 2 % 2 2 "2 ,

, & * '';(3/* F 2 '93.' " '((999 5 :Q % D 2 ,2 2 8, *'(3/4 '((99) " @ & @

D 2 2 2 2 2 5; 9/(3)4'(()

94 ? H & 6 # H F , 6

% & K 2 2 2 2 , 35 )4;3(B '(()

9* , H F @ % ? $ H & 6 %

% A %% " , - C=: '4/3*B'(()

9( @ !>2 $1 : H , $ 6 >% % !, " ,

- C=: '*'3*) '(())B F 6F5 $& # - 66

6 2 % 2 "2

2 2 2 25 (/'3/* '((4)' $1 : H , :

& %+ 6 , 2 2 -2 38 )'3*;

'((4). $1 : H $ &

%+ 6%% , 2 2 -2 38 *93'B( '((4); 52 6 % >% + %& 3

1 K "2 2 2 2 2 269 .;'39. '((4)/ @ +

D , 2 2 -2 38 ;/;39) '((4

)9 @ " # %

D , 2 2 -2 38 '((3.'* '((4)) $1 , @ , 2 2 2 2 ,

65 ''/;3)9 '((*)4 $1 @ , 6% >K 2 2

2 2 2 62 ('93;/ '((*

)* @ > + 31 K & & "2 22 2 2 28; '(3/* '((*

)( "! 0 12 6% % D

%& 2 2 2 2 2 67 ).(3). .BBB4B @ "!0 12 6% & 2

%& 2 2 2 92 ;B3( '(('

!'

Page 152: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

4' ! 5& "! 0 12 @ F & % A D " 5 7

0 8 $1 %% .)*'3*4 '((94. "! 0 12 %

!% "2 2 27 (*3'B) '((9

4; "! 0 12 :2 %& % + % 2 2 2 2 2 52 2; '.43/* '((9

4/ @ H 5 & !% % "2 2 32

')*34; '(4*49 , !% > %%

F %% "2 2 36 ')434. '(*'4) @! ! 6 , , 6 %%

+ 2 2 2 2 2 32 ;.(3/4 '(*944 @ % 6 &

;> 2 2 2 2 2 3; ;4399 '((B

4* % %% # & 2 2 2#2 29 '3/9 '(('

4( 5 @ @, #% 5 5

" , - + , '((/*B " N ;>

% % & 2 2 2 2 2

57 .BB93;( '((/*' H & FF 5 H 5& &

& % 2 2 2 2 2 57'44(3*( '((/

*. " : !%& D + & 2 55 ''()3.B/ '((9

*; 5 : ? 0 6 6% % &

% , 2 2 -2 3, /434B '((9*/ $1 : H 6% .> 2 2 2

2 2 6, '(94349 '((4

*9 @, #% $ 78 . ' 5 5 !5! '(((

*) 1 #@5 = + > KA + % "2 2 2 2 2 28 );3*' '(4*

*4 "! 0 12 H& F %& D % > 7%8 D , , 7 @# " 8 F .%% .9399 ! '(49

** #@5 5: # @, : 6 + %&D 2 1 2 #2 , , ""- : %% '3) '(4)

*( "! 0 12 H& 6 % %% %& %D 2 # 2 2, '*B3; '(49

(B "! 0 12 12 # % %%

& %& # - 82 '9434( '(*.(' @# " 5 1 D , , 7 5

H @# " "! 0 128 F / % '9 %% ;B93'* ! '(*.

(. "! 0 12 @ F # 12 > = %%= 6 =% % , % "2 2 2 2 2 82 ;3.( '(*9

(-'/ ' 3

Page 153: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(; "! 0 12 ?! : H! %& 2 2 2 2 2 3: .'('3.B. '(*(

(/ , " + %& D 2 2 2 2 ,2 ;/43)/ '(*'

(9 , , %& D ,

, 7 5 H H, ! @# " "! 0 128F ) % 4 %% '4'3** ! '(*9

() 5: H $ ! >

% %& 2 2 2 2 , 6 .93/. '(*.

(4 5# , , >> D " 2 2: '');3( '(4.

(* 5# , , > D" 2 2: ).*3;; '(4.

(( $ 61 !! ! $ 6%% +

% D %& 2 2 "2 2 6: .4)3*/ '(4B'BB H! ! + 5 @ # % % D

L % & 2 # 2 322

9)434; '(4;'B' ! : & % %&

= 2 # 2 2 2 ;8 *)934; '(4;

'B. @# " 5 $ H ? #@ ! 6 %% + %& % >% 2 2 -2 36 /.B '(4;

'B; "! 0 12 " J @! ,* , %% 'B43.B

6 , & '(4*'B/ "! 0 12 " J @! 6 %

D + 2 2 2 2 2 27 '/(439'/ '(*'

'B9 5& & 6 % % A # A 6%% 2 2 2 #2 33 )((34B9'(*B 33 4B43'* '(*B

'B) 5 H #% , %> D & 2 2 2 2 2 23 /4394 ;*.3; '(4*

'B4 ? 21 H #% >>% D % & 2 2 2 2 2 27 (43''. '(*'

'B* "! 0 12 ! @ " J , = A % 2 2 # #2 26 '93;* '(4*

'B( 12 @,# "! 0 12 D

% , , 7 5 H 8 F /% '; %% .9'3*; ! '(*.

''B 12 @,# "! 0 12 6 % +

% > D % & % % D 2 #2 +$ ,*43'B % '(*.

''' 5 1 5 # $ ! # %& - D + 2 , 2 98 '*(3.B) '(4/

''. 5 # 5 1 5 $ , %& > D %&

"2 2 2 2 2 9 '9934/ '(49''; @ 6= @ , 8>

-+ "2 %% .)434/ '(44

!'

Page 154: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

''/ " H : 6# 6 6%% + % 2 "2 , %% '/)39;

'(*.''9 @,# "! 0 12 5 @ 6= 78

, ! '(*/

'') "! 0 12 , %& , 7 @,# 8 % ' %% '3// ! '(*/

''4 & #% %& & + , 7 @,# 8% . %% /934B ! '(*/

''* @: ! , $ : , , %

2 2 2 2 2 5, ')/(34/ '((B''( 6 $- # - H : F%

= & , 2 2 2 & 2 # 8: )//39B '(('

'.B 5- @: ! : , , 2 2 2 #2 5 .;/3;* '(()

'.' @: ! 5 & +

% 2 2 2 2 56 (3'* '((.'.. @ $ $ 5 # D +

;> %% % 2 2 2 2

68 ./;3/* '((/'.; 5 @ $ 6 %>% 2

2 2 2 9, /939; '(()'./ @: ! ? ! % % ,

% 2 2 2 2 9, ''3'* '(()'.9 @ 5-1 " J 1 6%% =% ,

&1 % 2 2 2 2 :,=2 ).B34 '((*

'.) @ $ 5 % D % 2 "2 28 ;/9394 '((*

'.4 @ 5-1 "! 0 12 " J 1 6 , =%

% 2 " 8=== 8: " " "8: 0 2 @ : : 6 '((( & !

'.* @>: ! 5 "! 0 12 78 , D,<+ =1 F& , '/3'( % '((. 66 $1> 5

'.( @ R 1 ,# $- 78 # A D,<+ => ..3.9 @ '((*66 $1 5

';B @ $ 2 F >5 : '(4;

';' H! % +

% '(*(';. H! ?! : "! 0 12 %

% + = % , 7 @: ! " J 8 %% 493*;

6 '(**';; "! 0 12 ?! : H! 6 % +

= %& 2 2 22 2 38 .;3/. '(**

(-'/ ' 3

Page 155: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

';/ "! 0 12 ?! : @0 0 # , % 3 2 1 2 "2

, D,<+ >: 7 6 5 "! 0 128 66 $1 5 '(*)

';9 # $1 , @ ,

D "2 2 2 2 2 55))(3** '(*.

';) @ H @ = 6 & : 3 +

D> "2 2 2 2 2 78'(93.'/ '(*(

';4 @H , F% 6 $1 6 : + > %

>% % 2 "2 , %% /('39BB '(*;

';* @ 6& : 3 + "

7 # $1 #@5 8 % 'B%% /4/39') 6 '(*;

';( @ : @ 1 #> % +

% "2 2 2 2 2 86 '/93)B '(*)'/B " J "! 0 12 6

2 2 2 #2 38 ;B93;9 '(*;

'/' $ $ 1 6 % & + 2 # 2 2 68 4; '(4)

'/. 6 + 6 % % & 1 % % 2 2 2 #2 2: .;3;' '(4)

'/; @ $ 5 "! 0 12 # %% %% , 7 @: ! " J 8 %% '4(3*) 6 '(**

'// $ @: ! # & %% , 7 @: ! " J 8 6 '(**

'/9 5 @ $ 6 % %% % + D,<+ >= 2%% *93(/ $1 '(*(

'/) @ $ 5 "! 0 12 , %%

2 "2 #( # , 7 ! 8 # 6 '(**

'/4 " J !6 & , %&

& & 2 2 2 2 2 5, '9443(;'((B

'/* 1 " J !6 & !%

% & =% 2 2 2 2 56 'B(3') '((.

'/( @ $ 5 D % + %% % 2 2 2 2 63 '/43)9 '((/

'9B 1 & 6 D 1 2 2 2 2 9, /)(34/ '(()

'9' @ $ $ 5 , %% > 1 D 2 2 2 2 2 6,

;.B93.* '((4'9. 1 # 1 6 1 >%

% & =% , 2 2 2 2 :, 9/39( '((*

!'

Page 156: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

'9; H 2 @ : 6 = & & L % 2 2 2 & 2 #

99 '9;3)/ '((('9/ @ ! 5 , D

2 ! * , 2 2, ;;(39) '(*.

'99 @ ! 65 # ! * ,*5 A F ' 6 '(*/

'9) 5 @ ! D D

&% 2 ! * , 2 26 .4(3(( '(*/'94 % @ @ ! ,

D % 2 ! * , 2 27 '943*; '(*9'9* @ @ ! 6 = +

D 2 ! * , 2 39 443''/ '(*4'9( @ ! F : # % 3H1

D 2 ! * , 63 .*;3(( '((.

')B 5 # - , & # 6 #3H1 + > D 2 2 2 2 2 56 4/'394'((.

')' "6 ! # , & 6 #3H1 > D 2 ! * , 2 8, .9;3*4 '((;

'). # , & , -

% 2 2 2 2 . , ,* 7 49'3)) '((4'); # , & 5 >%

D 2 ! * , 2 78 ';(3)) '((*')/ H: H @" K 5 % : >

"2 2 2 2 2 55 4.9394 '(*.')9 @" K H: H @ $ 3%

% "2 2 2 2 2 82 'B43;4 '(*9

')) "! 0 12 @ 5-1 5: # # =% 2 2 2 2 2 65 9)93*; '((*

')4 @ $ 6@ $ 6 % % >

%& %& =% %% "2 2 22 26 /;43/( '((*

(-'/ ' 3

Page 157: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

' ' / '/ -'/ 3

<. ('

% % %& D %& =% > D % % % % %& D %% # % % + % & %& & L & % L % # % % % & # & & & % %& 5 % %& D !% ) + % %& D & % # + % % 9. %&

D #%=% & & & & % & " %& 1 % !% 4 D & %> %+ & %& % L % D % % # % % " + K % D % % + &D =% % % % %& & 9; 1 %& & %

7 8 D L

Page 158: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& & %& & %> + =% % K %& & %

<0 ' ' 3

#

%& % % D7K8 % 1 %& , 9' % %& P D D

Water levelSluice gate

Free surface

Floor

WaterWater

Overflow

Free surface

Dam

(a) (b)

Sea

Ship

(c)

Free surface waves

Sea floor

(d)

(e)

Free surface

Sea floor

SeaHydrofoil

Free surface

Core

Metal inlet Die

Mould cavity

Free surface

Feeder

(f)

# <. 0* !

' ' / '/ -'/ 3

Page 159: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% % + 6 D %& L &% & # L % %& % % % 1 & % " 7'8 % 7

%%= 8 2 %+ 7.8 % D & "& & > %& &

% % & # %& & 2 %& % & %%& L %%

/ % ! $! $

, 9. % %& % &

u0

x2

x1

Ship

Datum

Free surface

η

Ω

# <0 *

' ' 3

Page 160: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

31 K L % % %%= $ % & % % & 1 & & + ! L % & %

L & > & % % ''' + + % % D K '. 6 % %% % L > N % % % & = % & L K K & # % /' % % !$% & & N % & 1 7 28 # N & % D: + % &

% 1 7, 9.8 # & 2 & & % & % ;

' . ; ; 9' % % &

'

'.

.;

; 9.

K 79'8 +

;

'

' .

.

# 9;

' .#

'

.

#9/

& & % K 7 !% .8 & ' . ; ; 6 1 K & 1 % & % L % > & . !% . % & + & K % 3H1 % & %% L

' ' / '/ -'/ 3

Page 161: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% & %

; '

' .

.99

# %& &

0 !

6 % %&

# + % 6 1 2 % % 2 D %& & %% !$ 1 + & ' ' 6 K % %- ' .6 & % %

& % & %

"& % % & = % & 6 % & & - % &

( 9) $ K & & % = " %%= & %%= & K %% % % & D %&

& & & & % - % %

6 & & % K =% % %& & K & & % - =% # 1

:Q " J ';'* # =

' ' 3

Page 162: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% % & %& & & % % - & %> '( = + .B..

(!

>'# 2 1 '" " > %& , 9; 6!6BB'. %+ & > & % # %& > 1 D 9 , & B9)4. # , & +

) -(

94

, 9/ % & % % %+ =% .; '/ , 9; 9/ & K

# < " * 1 " + 4! 1 >

' ' / '/ -'/ 3

Page 163: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, 99 %& - , %+ >% & - 7, 997&88 >% %1 7, 9/7&88 , 9) %

% L 5 & 6 =% 1 7, 9)7388 6 5 & 79BBB &8 & & & = % , 9)78 9)78 ,9)78 % %+ L 5 &

>'# 3 ' , 94 % & 656 & , & B.9 # > & & & '9BB % % % # %%= ;.' BBB

(a) Surface Pressure Contour

(b) Comparison of Wave Profiles

0.15

0.10

0.05

0

–0.05

–0.10

–0.15

Z/L

–2 –1 0 1 2 3 4 5X/L

Idelsohn et al.18

Hino et al.14

Duncan23

# <8 " * 1 " + 4! #$ #$ !

' ' 3

Page 164: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

>'# 5 # =% % & & .9 / 31 K 3@11 % N 1 K %& , 9*78

1 && 6 'B/ 944 % , 9*7&8 %+ % % 'B 1

–4 –2 0 2 4 6 8Distance

0.2

0.15

0.10

0.05

–0.05

–0.10

–0.15

–0.20

Wav

e el

evat

ion

ExperimentIdelsohn et al.18

(a) Surface pressure contour

(b) Comparison of wave profiles

# << " * A* @ + 4! #$ ! #$ ! /

' ' / '/ -'/ 3

Page 165: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Re = 500Re = 1000Re = 5000

Re = 10000

0.04

0.02

0

–0.02

–0.04

–0.06

Wav

e el

evat

ion

–4 –2 0 2 4 6 8Distance

(e)

# <= " * A* @ :- 4! #$#$ 1" * B* #$ 7 B*

' ' 3

Page 166: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(a)

(b)

# <> -" 3B #$ - #$ 7

' ' / '/ -'/ 3

Page 167: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

< ') 3

#

%& %& D % K K 1 % % & 1 & % &

(a)

# <5 " #$ - #$ 7

') 3

Page 168: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & %& & & & & % & & L & % K 7/.8

( 9*

%%& & # % N =% D %& & + = N =%

'

9(

& % # & K & %%=

'

9'B

5% & K & &

( 9''

, %

9'.

& & K 7 & % 8 K 79(8

'

9';

# > & & D HL & 7 > 2 % ./ .98

) ( ;

9'/

&

)

9'9

1 L % +

9')

' ' / '/ -'/ 3

Page 169: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%+ % & D > & 5 & 7-8 % ) ) % & & D K

= D &> > & 5 & % # & &1 %& .);(

, & D & + # + D &> 753$ 8 !$ & %% %& D % &%&, 9( & K

./ $ 2 & &6 & % 2 7 % 8 # %& , /; %% 5 & 6 & D %

!$ # K % = & & 1 #& 9'./

, 9'B L 5 & 'B);'

# % L 5 & , 9''6 %& &

, 9'..9 C:< % % % & 6 %% 2 % % =

82 K !% & ./

5 K &1

- = =

S/BT S/'T !$ S/BT S/'T !$ S/BT S/'T !$

'B; ''') '''* '''4 ''4/ ''49 '')4 ;)() ;)(4 ;)(.'B/ ../; ../9 ../; 9B*' 9B4/ 9B49 '()/ '(); '();'B9 /9'4 /9.. /9.' ('.' ()'( ('9; )*)* )*)/ )**9'B) *4(4 **.9 **B) ')/' ')*' ')/( ..'; ..B) ..')'B4 3 ')9. ')/B 3 ;B'4 ;B;; 3 )((; 4B.;/ 'B4 3 .;4* .;)/ 3 3 /;'. 3 3 '/'4

') 3

Page 170: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(a)

(b)

(c)

# <? : ( - B*"

' ' / '/ -'/ 3

Page 171: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& ! %

% %& + = & %1 D2 & & D D L >% D D

% % %% += % =&1 % D &/./; % %&

θ =

0.5

θ =

–0.5

θ =

0.5

θ =

–0.5

θ =

0.5

θ =

–0.5

θ =

0.5

θ =

–0.5

θ =

0.5

θ =

–0.5

θ =

0.5

θ =

–0.5

α = 60°

g

α = 60°

g

α = 0°g α = 0°g

α = 0°

g

α = 0°

g

IsothermsStreamlines

# <.@ : ( - "* ?

') 3

Page 172: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(a) (b)

# <.. : ( #$ 8 #$ ?

0 00

11

1 000

000

WR = 0.2 WR = 0.3 WR = 0.4

WR = 0.2 WR = 0.3 WR = 0.4

(b)

ψmax = 7.2, ψmin = –13.9,vmax = 237.3

ψmax = 16.16, ψmin = –20.12,vmax = 248.29

ψmax = 16.11, ψmin = –26.8,vmax = 211.3

(a)

g

# <.0 : %6& #$ - #$ ?

' ' / '/ -'/ 3

Page 173: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

D % , %& &1 & 0 12 //

K & & % /9/) # K &2 & % /)

B 9'4

'' '

& '

'

'

;.

( 9'*

9'(

% % %& =% < /4 7 > > % , &P /*8 % %

' # 9.B & K &% # % D %# %& & % % 2 1

;*.

'9B' . 9.'

* % 2 L D D & K & 6 & K >

% D K %% !$ &/(99 =% >% & N % % % & 7 & & K 8 % K>% /4/( & 6 !$ & &2 & 5 & 75 &8 % D

') 3

Page 174: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

50

(a) Da = 10–6, Ra = 108, ε = 0.8

50

(b) Da = 10–4, Ra = 106, ε = 0.8

10

(c) Da = 10–2, Ra = 104, ε = 0.8

# <. : ( ! 4 * B*" 3*

' ' / '/ -'/ 3

Page 175: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & > % % D 5 & # & + %

&-

.

9..

7D 8, 9'; % &

K L 5 &/) 6 & 7'B)8 7, 9';788 & 7'B.8 % >% D & 2 = L , 9';7&8 & , 9';78 9';7&8 > D # K %% >% D K

' # K & %& & % >%

<8 '/ 3

#

& D %& & > # =% D % , /') % 6 % > % & >1 %, % & &

D %% & K % & %& & & & D 5 & & % & %%= & 9))/ 78)9)) > 7:8)4)* & , % K & % & % % &1 % &

# & D K % % L % K % %+ + %

'/ 3

Page 176: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& & !$ %&)/

' %

# 5 31 K & & D &

9.; & D % K K &

B 9./

'' '

'

'

( 9.9

7K ;48

.;

9.)

5 & +> $ K % & # & & & L K %% !$ $ K

.;

.; 9.4

& 1 & 1 # & K 7 D8 % K + !$ & $ % + & &

K &

'/ '.$! 9.*

' ' / '/ -'/ 3

Page 177: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

K BB( & 1 $! = 7 B/ 8 # = $! &

$!

;&

'/ 9.(

& # & 1 % K

B 9;B

K ,

&

;.

9;'

! K & % K

'

.

.

B 9;.

' & '/9 '99 . '(.3.B K '; & >K

.

9;;

# # L 5 & & % , 19)). 5 & 1 %

" # , >K & 9)

'/ '.$! 9;/

&

;.

9;9

' B')B ' B.);

9;)

, >K N ' . %% >

K & % & % ' .

'/ 3

Page 178: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% ).

' BB')9. ' .B9

9;4

' 'BB9

;9;*

. ' . 9;( . # & B B6 1 > # L

+ & K L %)(

# K 3L K !% . !$ & 6 & ). D % &1 % 5 & ;B.9 , 9'/78 %+ % =% 4B 6 & & # > , 9'/7&8

3.02.52.01.51.00.5

0

Y

0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0U/Uo

1 unit of U/Uo = 1 unit of X/h

(a) Velocity profiles downward of the step

k-ε model (CBS)Exp.

(b) Streamline pattern

# <.8 0 4! ! " * /8

' ' / '/ -'/ 3

Page 179: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

!'

' @F # % 2 2 2 '(4B. ! 6 % % % %& 2

1 2 "2 2 # . 6 '(44; @ $ @ ! 2 - #+-" 7' # 7

+ " $ 6 '(4(

/ , & @ ! 2 - #+-" 7' #7 + " $ 6 '(*;

9 H @ % % , /

, 38 '(*() ? # : > % 2 8> #2 .!

6 '((B4 1 " % % 2 ,

2 328 .9)3** '((B* 5 6 % > % 1 2 8= #2 # . '((.

( 5, $1 ? ! # : , > % 2 2 : #2 2 # . ! 6 '((;

'B 6 % 2 18 #2 . # > '(()

'' ! @ : : 6 %2 %

% 2 18 #2 . # '(()'. !! ! 6 & 2 D

2 2 2 2 2 2, ''9;349 '(4)'; # !% D % & 31

K 2 4 2 "2 2 # . 'B;3'4 @% '(*(

'/ # : 6 @ 6 +

D 2 : 2 "2 2 # . 6'4;3(/ '((;

'9 # 6 %& D

!=B!?>:1 '((4') 5 :Q ! ? " J 5 6 & %

=B!8>? '((4'4 5 :Q ! ? " J ,

3 ""<# ",- "2 6 % 43'' '((*'* 5 " J ! , %

%& 2 2 2 2 2 68 9B;3.* '(((

'( ! $ F D 7F",8 & 2 "2 2 5; .'B3.9 '(*'

.B 5 ! Q " J + + 2 2

2 2 . , ,* 6 .('3;'B '((/.' 5 5 : , + L

+ , - 52 ((3'') '((*

.. 5 : 5 , 2 2 22 2 67 7 %% .BBB8

.; @ # &1 >&1 > 2 , 2 239 9B43') '(*;

!'

Page 180: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

./ "! 0 12 !>&>% 7!$8 %& D %& 2 2 2 2

, : ()(3(B '((*.9 # - ,

>% 2 2 2 2 . , ,* :

'((3..B '((*.) , % , . ;

?1 '((B

.4 6 $- . ?1 '((;

.* ? @ " . % >F ?1 '(*B

.( "! 0 12 5 H > %& D #% D ,

, @ F !% .B %% .;93)46 : '(4)

;B @! 5 "! 0 12 %

0 ,* ! # !6 $&& %% /;93/4 '(4*

;' @! 5

& . 8 *'3(. '(*.;. @! !! ? , & D

% 2 "2 2 2

2 2 9; '3.4 '(**;; $ 5 , D"2

, 29 ;/(3** '(**;/ $ 5 #! @ @ 61 >% =% +

% D %& 2 2 2 2 2 56 )493() '((.;9 $F 66 , L

2 2 22 . , ,*

5 ;B93'* '((;;) ! , =

2 . !

3; ;';3;B '(();4 ! : ! ! , & = >

2 2 2 2 , 35 /43)/ '(();* ! : !? ! ! ! , &

D = > . 52 9.(39B '((4

;( ?# H 66 , =

> & & 2 2 . 62 ')';3'( '((*/B H F K A 6 & 1

2 2 2 2 , 5 ./(3)/ '(*;

/' : U #6 5K !% > !& % 2 "2 2 87 .'B3.* '(*9

/. 6 6 $- " % >F ?1

'((./; . % >F ?1

'(('// "! 0 12 6 ! ! $6 D # "

5 * # + (' ! '(((/9 F !: # $ L D %

2 2 . 36 '(93.B; '(*'

' ' / '/ -'/ 3

Page 181: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

/) # - + D & % 2 2 .

6, ;(993)4 '((4/4 , D %1 "2 2 2 6: *(3(/ '(9./* H : F > L %

2 2 . 53 .';93/* '(*(/( # - &>L

+ D % 3 >

%% . 5, /';3.) '(()9B # - L % >

D % 2 2 . , ,* 2; 9)3* '((*9' 5 6 >% %% %

& D D % "2 2 2 22 298 '/439/ '((*

9. # - % &

D D > % 2 2 . 63 '.B93'9 '(((

9; , % 1

& D % 2 "2 3;.43;( '(((

9/ - # - $ D

> D % &- D= 3 "2 2 2 2 28 4)934) '(((

99 "! 0 12 , % % D 7 & %&8

9) % & % - # 2 2 ;3('93.. '(4B

94 $ : $ % 6

? '(4.9* ! # 31 K = % @# "

78 , ,* 6 6: %%

'.'3;. '(4/9( #H ! # 6 = >

K & + 2 2 2;(93( '(44

)B ! # #H , K & D 2 "2 2 3; ');34. '(4*

)' 6@ $1 , & D 2 2 "2 2 2

0 ,* '(4*). !H : $ 6 + %

& 2 , 2 2,5 /9)3)B '(*'

); 5 1 6 6 , D # & 2 2 2;4*93*') '((/

)/ "! 0 12 $F 5 ! % & >% O& %& D 2 2 2 2 ,35 '3.; '(()

)9 @ @R 2 6 L 5 5 #

% & 2 , 2 388 )93(B '((;)) A 6 & 2

+2 , 2 5, 9;(34* '((*

!'

Page 182: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

)4 5 5 & D 2 +2 , 229 ((3';4 '(*/

)* : " R & 2 +2, 2 3: /93*. '(()

)( # 2 " #& D %

; , - 5, ;9;3); '((*4B $ 6 1 6

& D 2 2 A #2 2 : )*'3*; '(49

' ' / '/ -'/ 3

Page 183: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

-'/ #;- # 3

=. ('

& % & >% D & % % 6%%> / )* D )* % & 6 % =% %& % =% % + L + '(*B % L & + 2 + =% %" + %%=

%& + %= % + K % %%= & % %%& > 2 & % %&7'B93'B4 ", K %8, %& & %&

& % & % & & & + L %% & % N % %& 2 & & & + % % 7 + 8 !% ' ; & K D

%& %& D !% / %& %% %+ %& D >% D & = B9 D 1 , > =% !% . ; % 1 + < :Q

& 1 ';* 1 % %

Page 184: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

+ + 1K + % %% #3H1 % .'B

!% . > & = > !$ !% ; % &%%= %& & % &7 8

=0 #)'# 2

# 31 K %& D !% ' % %+ K 7'./8 7'.98 ' . ;

*

+ B )'

# ' . ; ).# ' ' .' . ; ; ).&

*# B'.;

).

+# B ' . ; ). &

.

;

).

# & K & C< & % S K 7'')8 7''48T , D ;( N

);

%+

' )/

% %+ #

'

'

)9

-'/ #;- # 3

Page 185: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

'

'

.))

'

.))&

# & 1 K 7).8

& & K 7)'8 & %& & &

* ,

( %& % &

D N %% % &% & 7 )'.8 % % %& L %% % > % D & & & %& 2 C+ < 2 & & %% > && D % =% 31 % %> < ;(

'/9;.

''B 'B) )4

, & & & 5 < % K % 9/ !% 9 & =%

= ' 9 / -' 3

# K & & %& 31 K %& D & & & 12 /B D = K 31 %& % K & !%

; %%= & % % & % %&

' 9 / -' 3

Page 186: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

,

+> & & 31 %&, * % &

%+ 72 8 , 1 D= & 2 7 8 %+ & & & /

# = D , )' 7 ;)!% ;8 .'B; & %

2 5 & % %% K , 2 K %% % &

'

.

;

)*

% %& 7% 8 &

()(

6 & %% K7)*8 % D &

+

' )'B

%&A

78 )*

D = & % & %+P

Γs

Γu

Γu

Γs Γs

External flow Internal flow

# =. . ! *) *

-'/ #;- # 3

Page 187: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

7&8 )*

& % %&

, & & %= & %+ % 5 & K % N &1 % & %%& % + & 7 !% ; ;)8

,

% & K, * % %&

% % %& D D # & %

B, & & % D= & , / # % D 1

K D & %%=> & % 2 1 2 & ;) !% ;

=8 %' --': " #'

F + %%= & %& D %& # + #3H1 % >% >% & !% . .'B %%& !$ % !% ; & % N K & %>& % %& %& D % D %& % #3H1 =% !% ; % K & 7, ;/8 !$ %% % & =% >% >%

!$ $ %& &

%' --': " #'

Page 188: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& >% % =% >% 6 1 > %&

2 % % % & # % % % ;;/ !% ; & =% % ;;/

%% % & = %& 1 L % % # %& %& D

1 &- =

=< " -'

! + %%= & >% B = % 1 %& + % 1 % # & % & >+ 1 & %%= % K , + % % & 1 % %& % + 1 1 %

& 1 =% + 1 # % % N & & > %& & = , ' $ /'/.

# % L % 1 + & 5/; '(9B # &2 & & & + % & 1 + % :%// /9 !1 $ /) @ /4 6 + & % & % & ') /* + % # + % % &>K %& D 5 % 1 % /( & L # % + L % 1 +

% + %%= K

-'/ #;- # 3

Page 189: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& =% >% K & # % % K ' & &

'# ' -

)''

- %%% + L N % - & 1 %& , % * & K % % K - % & $ K %&

# N - & K % & % & % & % /)

- ;

.

)'.

> N % % &% & K % & & & % & !% / /96 % & %%=

& 7 8 /*

..

. %% )';

% % % % # & =% & > + L %%= # = %& & - %%= & % 7K )'.8

-

%%# )'/

- K %%= - A

- . )'9 . % .

" -'

Page 190: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

/*

.

)')

& + . ' % = . B % - 7 8 # >%+ N & BB .B# & & H1 +

%%= 7 K )'' )'; )'98

'# ' %'

.

%% )'4

K 7)'98 % & & & K # & N # >L 2 L L K % 6 &% &> + % 7 K )'' )'.8

'# ' %'

;

..

&#

&

)'*

# %& 6 &

" # - K + '(*) & 9B & 9'9/

6 & ! /( >% 1 % % + N -& & L & 3H1 1 & % 1 % & # & N &

-

)'(

% & & & L> 1 % L %% %&999)

== " -'' :- ' ' 2

# % % & %% > %& % % =%

-'/ #;- # 3

Page 191: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

,, 9 $ !

# > %& % L & & & % B , ). % L % # %& = % & 94 '

,, 0$ % $$ 22

K % & - - >

1.000

0.425

t = 0

ρ

0

u Lumped mass

Consistentmass

2.5

2.0

e

t = 18.5

# =0 0 B 8E 0 " E # 8$ 6 6

" -'' :- ' ' 2

Page 192: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

' 9*

- 'B .9.'.9

B 9 ).B

# % D D D % , ); %&

2.0

1.5

1.0

0.5

00 1.0 2.0 3.0 4.0

x

ρ

(a) Subsonic inflow and outflow

2.0

1.5

1.0

0.5

00 1.0 2.0 3.0 4.0

x

u

2.0

1.5

1.0

0.5

00 1.0 2.0 3.0 4.0

x

ρ

(b) Supersonic inflow and outflow

2.0

1.5

1.0

0.5

00 1.0 2.0 3.0 4.0

x

u

2.0

1.5

1.0

0.5

00 1.0 2.0 3.0 4.0

x

ρ

(c) Supersonic inflow–subbsonic outflow with shock

2.0

1.5

1.0

0.5

00 1.0 2.0 3.0 4.0

x

u

ExactCL = 2.0CL = 1.0

0.75 0.50.0 5.0

a/2u' u2

C1C1

# = 9 4! " ,, 2* ( ,

-'/ #;- # 3

Page 193: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

9BB % , % D & D 1 :%>% + L , );78 C < N :%

(a) Structured uniform mesh

3.00.6

1.0

Inflow

2016 elements1089 nodes

y

x

t = 0.5

t = 1.5

t = 2.5

t = 4.0

(b) Solution – contours of pressure at various times

# =8 0 4! ! = # 7! 8>$ 94!1 / 4!

" -'' :- ' ' 2

Page 194: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

,, -%5 ! % !

# + =% % D % # %& + & !9( / % %& , )/

N % :% :% .B & % 1

=> 1 -) '4 -' '-'/

,3 #

# =% % 1 & > %& >% D ! K + C - < & + % & & & %& %& D % 1 + > 1 , % + & & C% < 1 % % + % % & = 31 K + K & % % % /9 !% /

,3 -$ 5. ! $ $

" %%= & & 2 7 8 & > , %% & % # % /9!% /# % & # &

% = & C< + , )978 & & & N %% # &

-'/ #;- # 3

Page 195: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

+ 6 % % , )97&8 & % + & ( & %% % & %& % &1 % L 2 7 % 8

1 , )) , )) % 1

-% % # & C& < 1 , )) + & 1 % & =% %

K %& % % + % +

N + % %&)B + %& & + % + & &% E # + % %% & %%

K + & % & %% )'

(a) Triangle subdivision

(b) Restoration of connectivity

# =< 1 #$ 0" #$ B *

1 -) '4 -' ' -'/

Page 196: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

,3 5. $ %5 !

N & & & $ & &- %% + &- /9 !% / # %& 2 & & %% & ''') N > %& 7 & % 8 %&

=% = % % , )4 % =%'' 1 D

% C>< %%%

20°CL

Initial configuration Density after 100 steps

20°CL

After 101 steps Density after 200 steps

20°CL

After 201 steps Density after 250 steps

Exactsolution

Q

# == - 1 / 4! !" + * - *

-'/ #;- # 3

Page 197: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(a)

(d)

(b)

(e)

(c)

(f)

Anal

ysis

dom

ain

Wal

l

#=>

B4

!

!+

(

(

#$

'

E>

'=

E<#$

'?

8

'=

E>#$

'<

8

'8

<

"

#$

#$

1 -) '4 -' ' -'/

Page 198: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% # # , )* %= =% )* &

> & A

(c) The corresponding pressure contours

(b) The corresponding density

(a) Sequence of meshes employed

Analysisdomain

22° Flowvelocity

# =5 A* 4! * 1 8 " 9 ' 8=E ' >E<) ' /</ ' ?>?) ' < ' 8E=

-'/ #;- # 3

Page 199: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(c) (d)

(a) (b)

10

5

1

M = 3r = 1

u1 = 1u2 = 0

# =? - 4! *8? / #$ "* * #$ ' ?8 ' = >E> #$ 1 " #$1 "

1 -) '4 -' ' -'/

Page 200: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0

–0.20–3.00 –2.00 –1.00 0 1.00 2.00 3.00

X

Gp

(a)

4.00

3.00

2.00

1.00

0–3.00 –2.00 –1.00 0 1.00 2.00 3.00

X

Mac

h nu

mbe

r

(b)

MUSCLCBS: Anisotropic Shock CaptureCBS: Second Derivative Shock Capture

# =.@ - 4! *8? / #$ #$ 1 " " *

-'/ #;- # 3

Page 201: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

' 6 1 &. 6 N 1 % D C+ < & = 2 %%

; , 2 & + %

, % %& % & 5 ).3)/ % K % >% D , )( )'B % ; D %

9) # 7, )(7&88 % 1 1 # & + % , )(78 )(78 & !$ & 1 %

Analysis domain

# =.. 9 "" ! !E

1 -) '4 -' ' -'/

Page 202: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& 1 % % , )'B N % & & > % & !:). % 1 % 6 % = % % 7>&8 , )'' % =% % 1

& 1 6 = + & % =% '4 % %

=5 '; ) :-

#> %& D > %& & % %%=> %& > !% ; = > %& %% + , & % > %& =% & > & & % 6 % & & 1 % %& & 1 % L % % %

% = %% %

& & & % % & .) & % 2 6%% = !

% & % & % K + 6 & + % + + &K + %%= + % +

-'/ #;- # 3

Page 203: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% % &K # % & % % 6%% = K )9)( % & & & C <

+ # & %% % L

$ # % %2 % % % % %& &-;);*

> %% =% %& )'B > 31K

,: $ % ! !

%% % D + L % & # & % : % %& + % >'(*B + 7 + + & @ 4B8 # + % & # %& & = 14' F % % & ') '(*4, )'. ') % +

% . # % % 7 8 + 2 1 '.9 BBB %%= 4B BBB

;9B BBB & # % & & % D % &6 % % &1

& D

'; ) :-

Page 204: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% %% L + & .) =% & 1 K ' )') BBB + & %

# =.0 4! " #1 $? : ' E ' 8

-'/ #;- # 3

Page 205: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

,: -496- $ ! 3:3

6 %& % & & & # % % & &

# =. - 0AB;-0 --E #$ #$ #9" #$ * -- " 6 " F* B 3*$

'; ) :-

Page 206: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% # % '9 "& '((4 1 %& & % & % 7 & 8 %& >= # % D % & % 6 K & % = 49B , %&# % &

% % & >% % &

(a)

(b)

# =.8 - 0AB;-0 --E #$ " #$

-'/ #;- # 3

Page 207: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1 % %& 1 K + % & & # &- % & & % > % & & & # % %

% =% % + & 1 # & 1 %- 'A.9 1 '; % 1 , )';78 %%.4

% , )';7&8 % > % 7 A ;( 9.* A 4( B)BP A ';/ .4. A **4 );/8 % > > %& % , )'/ % .4 &

&1 , )'9 % !, .4 =%

# 1& =% # % %% % % & & 1 K D 7 8 %% % % % %%

6

4

2

–2

–4

–6

–6 –4 –2 2 4 6 8P.S.L

Pendine tests

CFDresults

KeyM = 0.71M = 1.08M = 0.96M = 1.05

Computerresults

Pendinetest results

# =.< - 0AB;-0 --E

'; ) :-

Page 208: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# % % % %+% & B4' B() 'B9 'B*

,: <$ (!

# > =% & K& > 1') .# , )')

(a) Mesh on analysis surface

(b) Mesh on analysis surface (c) Pressure contours

# =.= 0 * " ? 1 #= $

-'/ #;- # 3

Page 209: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

=? ' '; -'/

% %& %% % > & & L %& &

# =.> ! "E/ - " * ! 9 8<

' '; -'/

Page 210: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% =% #+ =% % 4; > , )'4 % & > % % 1 6 % , )'*

> %&4; " > % &

NE = 7870NP = 4130

NE = 7377NP = 3867

NE = 6847NP = 3580

NE = 8459NP = 4379

# =.5 ! "E/ 1 1 " = =/

-'/ #;- # 3

Page 211: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

+ , )'( > %%=> .( # % + %> 1

=.@ -'/

! % % & 31 K & L 6 %& % % & 7 1 !% /8 % + & + =% & + & & + & % = # % + !% / # & & =% )'B. )'B; K + + & H + % & & 1

(a) (b)

# =.? - " > #$ 9 ) #$

-'/

Page 212: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# % % %& > )'' %% & + & # % + & , ).B

%& K & 7 > %&8 > K % & & 4/4)

,7 ' ! (!

# =% & 1 & % >% D D %44 # %& = & !4* + L % %>% & % + 6 += + & &

, ).' & !$ , ).. % !<4* %

l

d

d

Unstructured, adaptively refinedtriangles

10–15 ‘body’ layers of quadrilateralelements with length l, correspondingadaptive layer thickness d and number of layers decided by user

(a) A two-dimensional sublayer of structured quadrilaterals

‘Body’ layer subdivision in three dimensions joining a tetrahedral mesh

(b) A three-dimensional sublayer of prismatic elements

# =0@ B * *

-'/ #;- # 3

Page 213: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(a)

(b)

(c)

# =0. G 4! 4 # $EE 1 / #$ ' ?E8 ' / E #$ #$ 1

-'/

Page 214: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& !$ %% &

,7 ' ! . $ $

% % % !% / % % + 2 % 6 =% %% , ).; %&

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

X/L

P/P

inf

0.80

0.60

0.40

0.20

00 0.25 0.50 0.75 1.00 1.25 1.50

U/Uinf

Y/L

MUSCLCBSCarter

MUSCLCBSCarter

(a)

(b)

# =00 G 4! 4 # $EE 1 / #$ " #$ *

-'/ #;- # 3

Page 215: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Anal

ysis

dom

ain

Wal

l

(a) I

nitia

l and

fina

l (se

cond

) ada

pted

mes

h

(b) I

nitia

l and

fina

l (se

cond

) pre

ssur

e co

ntou

rs

(c) I

nitia

l and

fina

l (se

cond

) Mac

h nu

mbe

r con

tour

s

#=0

-

**

E>2

'=

><

-'/

Page 216: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& & D % = % 1 % 4( %& %% !% / # %+ # %& & %% !$ >% D # D 6!6BB'. # %& = & *B*' , )./ + # % & & & 1*.

%& & % + & 1 + =% =

++ ++

+

–0.50 –0.10 0.30 0.70 1.10 1.50

1.50

1.30

1.10

0.90

0.70

0.50

+ + + + ++

++

++ +

+

+ + +

++

First mesh

Third mesh

Experiment

Surface pressure

X/Xshk

+ + + + + + +

+ ++

++++

++

++

+++ ++

+ First mesh

Second mesh

Experiment

Skin friction

0.30

0.20

0.10

–0.00

–0.10

–0.20

–0.50 –0.10 0.30 0.70 1.10 1.50

×10–2

X/Xshk

CF

+ +

++

(d) Surface pressure and skin friction

# =0

-'/ #;- # 3

Page 217: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

(a)

Density contours(b)

Wake region, density contours(c)

# =08 0 4! : < 1 >8 #$ ' ? /<< ' / 8 #$ * #$ * !

-'/

Page 218: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Initial mesh, 1804 points, 3487 elements Mach number

(a)

Mach number

Mach number

adaptive mesh, 916 points, 1830 elements

(b)

1162 points, 2258 elements(c)

# =0< A* 4! : < 1 1 #$ #$ #$ #$ " # ! $

-'/ #;- # 3

Page 219: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Initi

al m

esh

adap

tive

mes

hSe

cond

refin

emen

t

(d)

#=0<

-'/

Page 220: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

,7 ! ! . $

6 %% N % - & & , & > & %& 1 + & & , ).B K" & 1 %& & K> # %& & )'' %% 6 % % & %+ % % & % += & & = %& & # + %& & =% + & 1 & #

# =0= - " * * ! / " *

-'/ #;- # 3

Page 221: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% & %& & 0 12 *B & & % K & 1 # & & = & & 1 % & % ;B;; % % 1 # & & %% % % + % % , ).9 % D 6!6BB'.

1 *B # , ).) >%

=.. '; ) -'/

# % & % & U 5 & &

(a)

# =0> A* 4! 1 <8 / #$ 9 '8 >> ' /><<

'; ) -'/

Page 222: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, ).4 D 5 & & & % ;' =% & > # =% % &

% = & D "56) & 7, ).*8;/

(b)

(c) (d)

# =0> #$ #$ ' E> / ' == E? #$ #$ 1

-'/ #;- # 3

Page 223: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

=% & 6 & !% 9 % K, ).*78 % N % =% *;

=.0 ' '9) ' -#

1 >% D = & D % % & L + #D & % %& & %%= & % %& & !% & %%=> 1 & % % # & % &

(a)

# =05 0 4! 5:+B 1? !"/= #$ - '=< 8?

' '9) ' -#

Page 224: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% & 1 % 1 % 1 ! & %& & L K & % & 31 K

K %2 & % & % 1 6 K &

%% & K & C % < D*/ C> < *9 & D & %%, = % & & *)(B

% % %> 3 % ('(; 6 3

(b)

# =05 #$ #$

-'/ #;- # 3

Page 225: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% %%& %& & % & % D(/() 3 % K 6%% =

1.5

1.0

0.5

0

–0.5

–1.0

–Cp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0X/C

1.5

1.0

0.5

0

–0.5

–1.0

–Cp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0X/C

1.5

1.0

0.5

0

–0.5

–1.0

–Cp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0X/C

1.5

1.0

0.5

0

–0.5

–1.0

–Cp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0X/C

1.5

1.0

0.5

0

–0.5

–1.0

–Cp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0X/C

1.5

1.0

0.5

0

–0.5

–1.0

–Cp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0X/C

(c)

# =05 #$ #$ H ==H ?8H <H >H >8H !" /= </

' '9) ' -#

Page 226: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

=. # ''

# % & % > %& + %% >% # K & =% % %& = %& K K & L # % 1 % N & % %& > & L N % >%D & & %%= & C < & %& # 1 K & =% & & % & %% , &- % & % # %& = & 31 K % & > = & % &% & % = %% & % 6 % % %& " % & 2 > & %> & L % % D % % & & % %& %

!'

' 5 :Q "! 0 12 # > %&

K & + 2 2 2 2 , 6 'B/;3);'(*/

. 5 :Q "! 0 12 % =% %&

"2 2 2 2 2 68 ;';3.( '(*/; "! 0 12 5 :Q @ % %& D %& D , , 7

5 H H, ! @# " "! 0 128 F ) % . %% /'3** ! '(*9

/ 5 :Q "! 0 12 6 % + % %& % D "2 2 2 2 2 82 //'3)9 '(*9

-'/ #;- # 3

Page 227: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

9 5 :Q @ "! 0 12 : , %& D ",- "2 , - 7

@ $ 8 F %% .439; ! "= '(*)) 5 :Q @ F , D= %7,3,!#8 31 K 2 2 2 2 2 7

'B(;3'B( '(*44 5 :Q "! 0 12 6% + %& 31 K 2 2 "2

+$ , " :& '(*/* 5 :Q @ "! 0 12 , % D >4!848!" '(*9

( "! 0 12 @ F 5 :Q ,

%& D B 2 "2 " # F & '(*9

'B 5 :Q "! 0 12 6% +

%& 31 K +$ , " 7 $&1 "! 0 12 @ H 5 6"8 % '9 %% .*'3(* ! '(*)

'' @ F "! 0 12 6% >%& D % 2 "2 2 73 //(3)) '(*4

'. @ @ "! 0 12 6 % +

% D 14 # 5 666%% *4>B99* '(*4

'; "! 0 12 @0 0 ?! : @ %A % %& D ,

7,0 >B8 7 @5 8 %% /*;39'. 6 : '(**

'/ : , @ % +

2 2 23 '493*' '(**'9 "! 0 12 @ @ : , ,

D !%& D K % #

"2 + - , - 6 (9 6 > & '(**

') @ @ : , "! 0 12 , % ;> 2 2 2 2 2 39 .';939( '(*( 7

A 1: # 5 666 %% *4>BB;.'(**8

'4 @5 55 #- 65 6%% +

K 1 5 666 %% **>B;)* '(**

'* 55 #- @5 " @ 6 % % >

31 K 2 2 2 2 , ;/B93.9 '(*(

'( 5 :Q 6% %& &

, - " " 666 %% **>;4;) '(**

.B 5 :Q # N D & + 14 #2 5 666 %% *4>B999 '(*4

.' 5 :Q 6% %& "2 2 2 2 2 78

'(93.'/ '(*(.. @ 6 + D >

'(*)

!'

Page 228: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

.; " @ 6 %3=% %& % D "2 2 2 2 2 79 ./939* '(*(

./ 6 # > @ @ " 6 >% % 2 "229 (';3;; '(((

.9 5 : 6 % % & %& D % A '> +> 2 "2 22 7 '(399 .BBB

.) @ + D +2 2 2 92 9)(3);* '((*

.4 5 6 " # % D # % - <2 2 2 2 F 2

2 4(3(( '(((.* " < % DE

58 ''B3'/ 6 '(((

.( " :$ $ 6 % D & ""<# C=> ?1

;B " @ & @ #

D !=3!13: @ .B3.;! % 6

;' " @ & @ %

%& % D 2 2 22 2 5: ''.;3/* '((9;. " @ & @ >

D 2 2 2 2 2 5; 9/(3)4 '(();; " @ & %

%& D & %> 2 2 2 2 , 37 /'399 '((*

;/ # 2 " #& D %

; , - 5, ;9;3); '((*;9 @ & " 6 % +

%& D & 2 2 2 2 2 53 49'3

)9 '((';) " @ $1 5 @ @ 6 %

1 % % 2 2 2 2 , 52 '9(34; '(((

;4 @ $1 " % %& "2 22 2 2 283 '9434/ '((*

;* 5 6 F & % "2 2 2 2 2 277 'B(3.9 '(((

;( ! " / ,* F !>

'(**/B : 12 @# " 52 6 +

%& 31 K & % % >%

% "2 2 2 2 2 :6 .493;.) '((B/' @ F1 @ L 65 $% , %

1 + $ 2: '/(939B. '(*B/. , 6 + 1 +

K 2 "2 2 :, ')*3.B; '(*(/; @ 5 5 6 >

1 2 2 2 32 .;.34 '(9B

-'/ #;- # 3

Page 229: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

// 6 :% 6 1 & + L 2 "22 3 '9/344 '()4

/9 @: % + L D & 2 29 )4(3*) '(4*

/) 5 !1 $ $ 6 31

K %% 1 & B4!8 '(49/4 6 @ %

D "2 2 2 2 2 82 /)43(; '(*9

/* @ @ "! 0 12 6% %% 1 %& 78" , - ! "= '((B%% ;.43//

/( 5 ! 6 % % + > L K "2 2 2 2 2 22, ;.93/.'((;

9B #@5 6 + D FA 6 % % 3L %&"2 2 2 2 2 8: ;.(3;) '(*)

9' ! @ 6 2% " + %& 2 "2 6; /.43// '(*4

9. 6! HJ H ! 6 %%= % 3

H1 %& "2 2 2 2 2 9:*;3(9 '(**

9; & ! @ 6% L %& D & "2 2 2 2 2 :7 .)43*B '(('

9/ , 1& #@5 0 @ 6 + %> D G # %& 31 K "22 2 2 2 :; '/'3.'( '(('

99 "! 0 12 $F 5 ! FR 2K21 % 8? 2 "2 , , 2 @! ;9B3) @ 93* '((* # 62

69) "! 0 12 $F 5 ! FR 2K2

1 % D 2 2 2 2, 3: ';.939; '((*

94 H 6 + L > %& 2 "2 2 37 '3;' '(4*

9* # #2 #@5 % + K

+ %& % % K %% '(*;

9( ! # D

1 2 "2 2 86 ''934; '(*/)B "! 0 12 @0 0 6 % % % %>

2 2 2 2 2 36 ;;4394 '(*4

)' @# " : 12 6 % % A % % D # # ", 7 6 @# " 8 6 > '(**

). # 2 5: @ 6 ,O!: %& K 2 2 "2 , ,A * '((; %% ;4(3**

!'

Page 230: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

); 5 : @ @ #F >%& K 2 2 22 , 2; *.43/4 '((/

)/ 5 : # 2 " @ % & %& D % 2 2 22 -2 3 '(43.'' '((9

)9 56 " + @5 78 , ,0 8=B> 6 : '(4( %% /9(3))

)) 1& # & 78 : > ()B % >F $ '(*.

)4 5 :Q 6 % %& 2 2 2 2 2 36 'B'3'9 '(*4

)* ! 5 : + % + 2 "2 2 2 59 4(3*( '(('

)( :%2 5 ! 6 % % + >

2 2 2 2 2 6, ('(3;) '((44B 6 @ #@ $1 ! D

% 13 #2 5 666 %% *)>

B'B; '(*)4' F $ @ = $ W . ; % +

0 2 237, )/3*' '(*4

4. 5 & 6 H # ! : .+D# # : '((*

4; @ & , D > '(*)

4/ ? ;> %= > 2 52 '*9B3) '((;

49 ? 6% & % 2 2 2 2 , 3,

'B.;3;4 '((94) 6@ ! ? 6% & 7%>8 %>

& D 2 2 2 2 , 39 'B*93'B9 '((*

44 "! 0 12 5 ! FR 2K2 "2 # !>$>% %A 6 N D %& 2 2 22 , 52 ;9(3(. '(((

4* @ ! 31 K % >

D > % # +!+!>4 '(4.4( " , % % %& D

'((B

*B "! 0 12 @ 6 + % >%& D 2 2 2 2 2 57 .'*(3.'B '((/

*' @ !>2 $1 : H , $ 6 >

% % A %% "A , -C=: & 2 ""<# "2 @>6 R R ! %% '*'3*)

*. "! 0 12 6% D %&>

2 2 2 2 2 67 7 %% .BBB8*; F , !% & "56 )

& 5+- + +!8> '(4(*/ @ : " % 1 2 , 2 6 ;*; '(9*

*9 @ H @ 1 @, $ & & 1 %& D & > + "+2 +2 2 B=8 '(4;

-'/ #;- # 3

Page 231: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

*) $ # & & & D 2 , 2 59 '443(' '()(

*4 @ H # % & & % %& D2 , 2 52 49;34* '()(

** $ K 6 ? # %+

+ " +2 8>> '(;4*( 5 1 55 ! 5 # D

5 & BB!:>? @ '(44

(B @! : $ ! % % R K= K R + < % 0 + 3@ '(*'

(' @ 2 6 F D > %% 0 34 % % >

F $ 7'((/8(. @ 2 F % K &1 "#

"#!=:!82B24 '(()

(; @ 2 6 % ==!?44? @ '((((/ @! : $ F3 % %& D

5+-;,- . 0 5+-!"484

$ L ! "& '((.(9 @! : $ ! > % D

3 4 2 #2

,* : $ !6 768 @ '((.() @! : $ H=>: ! & 3

%>& .# 48 , - , #G 6 '((9

!'

Page 232: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

";' -'/

>. ('

# D & % % # % > % % K % # % D + D 2 %

% %& & & %%= + K 2 & > K % %A

*

+ , ' . 4'

K & 1 %& D 3 % % %& D 78 A

' # % % % %%&. # % % 7 1 8 %>& D

& % L % #&- % & K %%= K & =%# %%= D > &

& D < &- % % # + &1 = &- ' .

Page 233: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

6 % 2 >K % % & % = % %% ;

>0 / ;' 2

% % 31 K % %& % & %& K A

B 4.

A

'

'

( B 4.&

& ' . ; D , 4'

; ; % > & # K &

H

A

A

h

U1

u1

us1

Average velocity

η

x3

x2

x1

τs13 , wind drag

Hh

A

A

τh13 , bed ‘friction’

Free surfacep = pa

(atmosphere)

Mean waterlevel

(datum)

(a) Coordinates

(b) Velocity distribution

η

# >. 0 !! :

/ ;' 2

Page 234: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

'

; ( B 4;

(; ( 6

( ; - 4/ ; % % 7 -8 7 & & D 8" ; &

7 9; !% 98

; &

'

' .

.49

&

&; &

&'

' &.

.49&

% , D %

&' &. B 4) &

&; B %%= & K &

% ; ! ( K 74.8 ;

;;

;

''

;

..

; B 44

6 ' . 1 , 4'7&8 +

; 4*

' . :& 2 ) #

-

#) # )

#

-

) # ) # #

- # -#

4(

& K 7448 K 74)8 &

;

4'B

";' -'/

Page 235: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

' . # + K 7448 & %

;;

; ; 4''

7498 &

;;

;

4'.

6 K 74'B8 74'.8 %> +

B 4';

% % K 2

'

'

(

; B 4'/

' . & + & % >

%> K &

'

.(. . '

;

' ; &; ( (

-

B 4'9

& & %& = # & K =% & & !R 2 =%

&; (-

.4')

-

' .

!R 2 N K 74'98 ( ! % >

%& +

(' (. (. (' 4'4 ( ! %# K + N

& 1

.;

4'*

/ ;' 2

Page 236: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

6%%= K 74'98 &

'

; '

.;

4'(

K 74';8 74'98 > %& K 74'8 %%% + &# ' .

-

'

.

4.B

' ''. (. .

. .'. (. .

4.B&

* B

' .

4.B

74'(8

+

B

(. ( '

-'

' ;'

('-.

(' ( .

-.

' ;.

(.-.

4.B

# & > K + % / 9 %%& > K = %%= % >%%

& K % > %% > & & & % & %% % =% D % & # % > %% & & 2 K 74';8 74'98

> & %%= K

B 4.'

(

B 4.'&

";' -'/

Page 237: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& &

B 4..

(

B 4..&

.

.

(

B 4.;

2 K , % = %# > K %>

D % % % & %& & % %& > & & # = & & D

L # + 2K % > %%= 6 L & & L C < & & 0 12 ) 2 & % % =

> %' --':

$ + L + % & > K # %%= & %% 4 * %% % % % 2 & & >%% %(')

+ %% + &1 '(4. % '4 %% & /9'*/'

6 & =% %& D K & %> > K & & A

% % '

. (. .

%' --':

Page 238: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# >&>% % % % %& D & >K /./;

# = L + >% D > %& & #3H1 /9 >% !$ % % % D - 7 % 8A

- 4./

2 %

(

A

- 4.9

% =% #3H1 %%= /9;. % > %% , & %&% % & &

% % .B 7=%8 % L % D & =% & = /;//

=% %& & !$% #3H1

>8 :- --

3 - 5 ! !

% % =% % %%& # + , 4. % /9

& # K /)/4 %% & & %# =% , 4; > C &1< %&

% % # %& 1 & %& D & K + L# + =% , 4/ 2

C&< % % % & %

";' -'/

Page 239: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

D % C&< 7 (

8 % % >

1 %

3 -%5 !

# = % % % & %& 6

40 elements

80 elements

160 elements

(b) Solution for 40, 80 and 160 elements(b) at various times

(a) Problem statement

Wavepropagation

Hl

a = 0.1

10 1040

η = a sech2 1/2 (3a)1/2 (x–α–1)

u = –(l + 1/2a) η/(αx + η), a = 0.1, g = 1.0, α = 1/30

Initialconditions

# >0 -" !

:- --

Page 240: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% ' . # L > % > %& 1 % N % & = & + + % , % 3 + N + & % N # + =% , 49 % %&

2 = 1 %% /* % # % % & & % + % & 6 %& > & K 1& =% %% /9/.///(

C &< % & $ ! 1 , 4) %&# &- =

7 %& % &K D & & & 8 $

h = 2

H = 1

t = 0

t = 2.5t = 5.0t = 7.5

h = H = 1L

0

40 elements in L

η

t = 0

t = 2.5t = 5.0t = 7.5

0

u

# > " ! 6 = *

8

";' -'/

Page 241: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

= & & & & " & %# >%& & &

% D # L & % > % & 71 % % 8 , % & & %% =% & ;9 ;)# , 44

# % % = & L & & % + # 2 . 9 1 2 + &>

# % %%= 9B & &% % % # $ ! % & %

% & =% >=% /; # % & & " % 7"8 +.

/( % %

1.0

0.5

0

–0.5

u

2

0

40 elements

Hho uo = 1 A

Prescribedwater levelhistory

η

# >8 %& ! ! #$ 6 / / #/ $ 6 8 8

:- --

Page 242: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

10

5

0

Surfa

ce e

leva

tion

η (c

m)

x = L

Analyticaly = 0, ±2 ∆yy = 0, ± ∆y

Computed ∆t = T/40

10

5

0

–5

Velo

city

u (c

m/s

)

x = L

Analyticaly = 0, ±2 ∆yy = 0, ± ∆y

Computed ∆t = T/40

t = T/2

t = 3T/4

∆x

L = 22∆x

∆y

y x

Inlet

h (x)

# >< -* " " 6 /

";' -'/

Page 243: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

7=%8 % 79B 8 / 7.BB 8 * 7/BB 8 % 6 N 7 8 BB;* % ! # % !L % % #& 4' % %> & & % % % L % % % 7, 4)8 L % & & # = % & '/Z % /BB % % 9B & % 7';8 9B 7''8 # & 1& >=% , 4* & L 7=% 8 % 5 %

7 , 4) 4(788 C&< % && 6 %% % & %+ = % % %%= & % H 7H8 7449 1 6 8 && % L & % $ 7 8 % , 4(78 % 6 $ D 6 %% & & & % D

StockpoleQuay

Tenby Swansea

WormsHead

Port Talbot

Porthcawl

Barry

Cardiff

NewportBeachley

Avonmouth

East

ern

limit

Clevedon

Weston-Super-Mare

Hinkley PtWatchet

MineheadLynmouth

Ilfracombe

Port Isaac

Wes

tern

lim

it 1 W

este

rn li

mit

2

0 50 km

# >= 6 . - + *

:- --

Page 244: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

25

6

CL:

164

nod

es, 2

51 e

lem

ents

810

9

74

3

1

FL: 5

78 n

odes

, 100

4 el

emen

ts2

5

68

10

9

74

3

1

FR: 3

82 n

odes

, 664

ele

men

ts

5

68

10

9

74

3

CR

: 111

nod

es, 1

61 e

lem

ents

5

68

10

9

74

3

Stat

ion

Loca

tion

1 2 3 4 5 6 7 8 9 10

Har

tland

Poi

ntTe

nby

Ilfra

com

bePo

rtloc

kSw

anse

aPo

rthca

wl

Wat

chet

Barry

Wes

ton-

Supe

r-Mar

eAv

onm

outh

#>>

2

.

-

+ *

";' -'/

Page 245: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

&& 7# D = .9 8

3 - %

6 %& & K1 2 > # & <

Time = 0 Time = 3 hours

Time = 6 hours Time = 12 hours

1 m/s

# >5 G* #26 $

72 $ ! 3 & , % 7,: 8 >% 7 'B.8

: "& ,

# & .). .)B 7'Z8 ;'9 ;B9 7;Z8!L /B( /'' 7 BZ8 ;'4 ;.4 7;Z8$ ;*. ;(/ 7;Z8 #& ;') ;') 7'Z8% /'; /.B 7.Z8& ;B* .** 7)Z8 ;9* ;). 7'Z8

:- --

Page 246: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& = # % N % %> % % & # % %& - 7 %& 1 + 8

P1P2

P3

Finite element mesh including river

(a)A

BE

E

A

B

B

G

(b)

(c)

# >? -

";' -'/

Page 247: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& & ) % 7,:8 # % , 4'B # %>% 3 " % % & #

& & 5 >% % & & % 1 # & % %% & # , 4'B +

L %

15

10

5

0

–5

–100 5 10 15 20 25 30

t (h)

Elev

atio

n (m

)

MWL

8

6

4

2

0

–2

12 14 16 18 20 22 24 26t (h)

Elev

atio

n (m

)

MWL

ComputedMeasured

10

9

8

7

6

512 14 16 18 20 22 24 26

t (h)

Elev

atio

n (m

)

ComputedMeasured

Point B Point EComputed and measured elevations

ABE

Water elevations for points A, B, E

Severn Bore

(d)

# >?

:- --

Page 248: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Time = 0 Time = 5 min

Time = 10 min Time = 20 min

Time = 30 min Time = 40 min

# >.@ - " " 7 " # "$

";' -'/

Page 249: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

3 5

" > & & % D & =%% % L % %& D & % # + >

, 4'' % =% & &1 % > );B9B "& % % & % % & # C< &1 % # + L &

1 %& & & C%< + & 9B

6 % > 7 8 %& %> D 1 % >% %& D # D %& > & % D , %> D & & C%< -% C < %%% # %+ %%= & & & D % # '9 + )(4( # % D D, & .9 & A > %& D 7 & , 4'.8 % & 7%% & , 4'.8 & D & 7 , 4'.8 # =% % % , 4'.% C<> C < " & C< &

# >.. 7 * 4! /

:- --

Page 250: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

>< '# '

6 % %& % & > # & > % $ ! 3 & & =% & ' 1 , '. 1 ! & L % %& & , 4'; % L & + 2 & % K & > & &&

& % % %

# >.0 - 4! ! * ! 94! 2 8 ' 8

";' -'/

Page 251: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

>= ";' '-'

> K K % % #% % % % # > % K %=9' & % % K %& ! ( & % 6 % K & 3 %

% K 3

B ' . 4.)

% + % K %%% L N 6 K>% !$ & & L

% 2 7 L % K 8 % % # K>% %> K % % # %% !$ % K >

& & % # % # % % & % ; B ; '# %% 3H1 % +

= 7 8A

% ;! % .

./

! 4.4

P P' ∆η

n

A

A

P

P

Boundary at time tn

Boundary at time tn + ∆tn

# >. @ *

";' '-'

Page 252: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

A

% &#&

&#

&

/

&#

&

!

&#

&

&#&

&

6 % % % %%

Time = 9 hours Time = 18 hours

Time = 36 hours Time = 54 hours

# >.8 A 0 " 4

";' -'/

Page 253: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# %%= 99 1 L /B ' # % 7 > % 8 ;( # B' L =% # % ; B9 # % L & % B' ;( = L ;.Z ;( %% 1 %% /B % # % %%> & % K & % >% %& & )B % K +. L , 4'/ & =% %

& L %

!'

' $ 6&& " .A , # ,* : '(4(

. H@ 5# - ?1 '(*B

; "! 0 12 5 : H 78 <%

! '(4*/ @ 6 + D > '(*)

9 @ "! 0 12 %&A =%

2 2 2 2 2 33 9/434/ '(*)) "! 0 12 @! 6 + 31 K , % %%

"2 2 2 2 2 27?2: )4;3*( '(4(4 " + > > > D

" 7 @# " 8 %% .)'3*4 >

6 '(*B* 6 + K

" < .4;34* $1 5 '(**

( @@ ! !6 $&& ,! ( , ,* >$> : $ '(4)

'B @@ "<$ & 6 % 2 2<2 3 '/3.) '(4.

'' !% ! 52 ! L % 2 2 <2 26 ;)93*. '(*/

'. HH , 6 >% >

2 > K 2 "2 2 82 /9/3*; '(*;'; 5 H 5 : , > > K

& 2 1 "2 ,! 7 + 7 !6

$&& 8 %% ..;3./. '(4*

!'

Page 254: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

'/ # @# >% + > %% > K 2 52 +2 :9 /B.(3/B '(*'

'9 H@ ,= , > > %& # 2 2 2 3;;4'3*4 '(49

') ! # @ # > %% + > %%

" , 5 '.93/* '(49'4 @ ! 6 % + %& 2 2 2

2 22 '93;' '(4;

'* % @ @ % > % K H1 %%= & 2 7' +2 2,, 4;*3/) '(4.

'( , > > K

2 2 5 ;;43/* '(4(.B @ ! # + D

F . % 9 %% ;;B3* "OH65 & '4 >

" H 2 '(4(.' @ ! ! , + >

92 2 +2 2 #2 2,3 94'3(. '(4(

.. 5# 5 H1 + > %% K & ,! ,*! 7 # 8 #1 #1 '(*.

.; 6 3H1 K %% + > >K % 2 "2 2 83 ;';3;( '(*;

./ 5 F H#6, K> 6 ,"5#56 F

% > K : " 52 23 '9'34; '(*)

.9 6 6 %% + >

D ,! ,*! 7 # 8 %% *;93/. #1 #1 '(*.

.) 6 # %% + >

3 2 2 2 2 , 6 '>.. '(*/.4 5# "! 0 12 % + >

K 2 2 2 2 , 2 ('34 '(*'.* HH , 6 > %

> K 2 "2 2 89 .*43;.; '(*/.( ,GA > > + > ,"5#56 %

> K " 52 25 ..93*9 '(*4

;B $ !6 , @! "! 0 12 6 6 % 2 & 8: " "2 & H "& '(4*

;' #1 # ? # % =% + %% 2 2 2 2 2 23 ;;'39' '(4*

;. @ : @ "! 0 12 # H1

%& 3 "2 2 2 2 2 92;9(3)( '(*4

;; 5 : H 6 K + % " , 7 .B43.* '(4(

;/ " & @ 6 @ % %& & D 2 2 2 2 2 37 ;3.B'(*(

";' -'/

Page 255: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

;9 H :& $ := 5 R K >F % R <R R + G , 5% O/' '(*.

;) # # 1 , K % & 2 2 2 2 , 25 (;(39; '(('

;4 $ H ! 6 % & %%

K 2 2 2 2 , 35 .(3/) '(();* $ # #2 #>% =% + %>

D % % 2 2 2 2 ,

32 **93(BB '((9;( !%% ! 2 , , %%=

K ! " + D2 / '((9

/B !%% ! 2 , , %%= K " + D2 / '(()

/' "! 0 12 @ @ 6 >% =% K 2 2 #2 "2 2 ;'3/( '((;

/. "! 0 12 "2 6 %> & +

K 2 2 2 2 , 3, 'B)'3*B '((9/; "! 0 12 "2 # & %

> D 1 2 # .

'((*// "2 "! 0 12 # & %% & D

, ,2 = 2 " '((9/9 5 :Q "! 0 12 # > %& K>

& + 2 2 2 2 , 6 'B/;3); '(*//) 12 "! 0 12 ! 6

=% + %%= K 2

2 "2 , ,* $ L F . %% '34 '(*B/4 #& 1 % +

D 2 2 2 2 , 3 *(3''. '(*.

/* 5 : H H 6 % D 2#" 2 .2 -2 2,67'B8 '/B(3.* '(4*

/( 5 % + H=>4 '(*'9B 6 $ : & 2

2 2 2 , 3 .);34) '(*.9' ! 0 :1 # % +

2 52 7 #2 22 '.;3;. '(**

!'

Page 256: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

*)&'

5. (' 2

# % % 2 & & K K 74.;8 % K & # % % %& % K

=% *' K & %= K 74.;8 &

# .

( B

.

( B *.

%

. . B .

. B *;

& (

# % K 7*;8

2 K 7 !% 4 L K 74.;88 %& # K = '/

, %& & 1 & % & & %% # 2 K 7*;8 & % # & & K % # &

D &1 $ & %% &% # + %% + & H9 # '()( &

% !

Page 257: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

K & 0 12 ) + & !4 6 % % & 6* %& =< K &

.

..

. /

.1

..1

. /@

*/

@ 1 % % @ 2 K % K 7*/8 2 K & ,&(

, . % % '.'B'' # K &

#( .

( B

(

.

( B *9

% ( ' . ..

. ( *) 1 K % &

50 *) 9 4

% , & & & > & % % & > % F ' # % & =% % &

& *4= K 7*.8 % & %

&

&

&#

.

(&

B **

# 1 % # & B

& % 2 D & % % D K 7**8 &

*) 9 4

Page 258: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

/ .%

, *(

% &#'

(& /

#! *'B

! B

B

%& !% '4 F ' # / % L # K & ! % + + & # 2'. , '49 F ' # & % %'; # + F ' !% .B K CL < C< % %& K & # & & & & %& %& & 2 K 2K N + 6 C &< & &'B % # & % %& > %& 2 K & ';'/ %& N + 2 # & 2 & # % A

# % & % % &

# &

# % % % %& % %& # L & % & % 2 K & 2 + $&V 1 2';'/ + L>

% 2 & # % % & & K & & . 'B % & B) $ 1% N # % ;. $&V 1 2 %% % !% '/ F '

*)

Page 259: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

5 4 # ' )

# % > & & A

' & # K & &1

. 1 & # & &; 1 % > 6 > '

)

# &

% L & & % # D % # L & %%=

% & = K !% '4 F '

58 ' '

# !R 2 & > 1 K N # % L % & && % && !R 2 # 2 & K 7*.8

# .

( + B

.

( + B *''

+ 2 & N & + *=;. !R 2 = = & % & %= & + % % 1 = , + % % CL < C< K 7*''8 % %= = # = > = % # > L >&& %& &1 & & % L % # =% '9 =% D % L

5< ';) -'/

> L %& %& %& % # & % %& & K

';) -'/

Page 260: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

'B & % 1 + %& + # 1 =% ' % 'B % % K>

: - !

# % + + %& & = #%% 2')'4 %& & = # = K

B

. B

.

*'.

. + % #K & =%

-

;'

, -

.

*';

D= % #

' B ; . B ; . #

. ; B ' ; B ' #

; . ' B . ' B #*'/

# 3H1 7 :=3 L8 & !% . %% %&> & 2 % ! N K> & & % & % % & $ % %& & % % & # %& & , *'78 ,*'7&8 7 % F '8 > 75!8 & & .B & &

& & %

: / ! % $!

6 %% % 1 # + % + $ 0 12'''* # + % $ 6'(.B

% %= - *';

*)

Page 261: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, 6< % K !1 $ :.'

% % % + 1 % 6 %% & 1 $&V 1...; %% & % % % % - $ 0 12 +

0 45 90 135 180 225 270 315 360Degrees

RC

S

(b)

# 5. -" !" * * " " < #$ ! " #$ B- 1"E

';) -'/

Page 262: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

6 % 1 $&V 1 # 2 % + 7 !% ') F '8 1 $&V 1 % 1 % %% K K + &K $ : %% %& - ./.9

# % H1 2 K

# .

# B *'9

# %%= 1

'

!$'

$'$ *')

% %

$ $ $ *'4 & ! & > # % % L % % L % % % % + # > % & & & % # %

'! $

'! $

$

$

! "

$ *'*

# & & -& = # L

)# )## +)#

)# *'(

) # ' . ! >

/$ ''

''

$ $ *.B

# & % $ H3: % #% & 'B % % : $ L %& % L & # , *. 6 &

*)

Page 263: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Cylinder radius: a = 1 m, radius of the meshed region R/a = 7

# 50 - ! * * " 6" . =

';) -'/

Page 264: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%& - * B.9- - ' = ) 4- , + K 'B % /./ ')B $ ;) % .9. (B4. # & & % # &

= & K + %& =

5= *) / 6:'' ' )-'/7

& L += D % L % - % & &1 %& % & %& + % + = & *. & & % % & % % = + # N %& & # !% '( F ' K 7'('*8 > % 1 & $ 2.).4 % & + % # % % + & & % # K & % & % %& & 6 & #& *'

:, & % !

# % % = & %& = # %& # = % = %& 1 &- + + # 1 %& % & & % $ & & % & > % & =% % % > D & & % %

*)

Page 265: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

:, =

%& L & &- #%& &- L , *; & '0 &# & ' & &

L 0 & & % 7 + &8 & % & & + & & 6 & & F ' !% ; 6

%& # % / / # / & 1 , %& = &

0

'

.(# .(

.

*.'

:2 5 = %&

' . ;

H &

#

'

B 0! B! 0! B!

0! )! '

)

. ;.

)

0!

)! '

)

. '

)

'

B

) )

)

B

) )

)

B

0! B! 0! B!

0! )! '

) . ;.

)

0!

)! '

) . '

)

&

#

) '

B

)

.) '

B

)

) '

B

6= %

) B

)'

.)

B

)'

)

B

6= %

*) / 6:'' ' ) -'/7

Page 266: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1 % % > K 7*.8 & B 2 & # H < % 7F '6%% = H8 %% = 0 $ & & & & & =% $.* 6 % + =

'

.(# .(

.

(

'.

*

(. *..

# D C < & 0 , %% = %& 1 & + C% < K 7*..8% & & +

:, 0 %>

%& 1 K % &/ -B =%) 1 % >= ) % -B % " & 0 % & = ! + & K &

ΩA

ΩB

ΩC

ΓDΓCΓB

ΓA

ΓA

ΓA

Objects in water

Boundary of objects

# 5 !

*)

Page 267: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

K 7*..8 # & % & & & C> < C < .*

5> $/ -'/

# = %& + & %%& + L # + % 'B & # % & H.( = + % & # &1 & H;B #6 % %>> +# A

& % & % 7 >D & > 8P

1 = & & 7 > %% 8P

+

55 ' -'

# & % %% & !) & 6 !% '( F ' % %% % % & # + D %&& 0 12 ) % % %%& $ 2.).4 & = % & # % % #& *' , ;' , > & %% & )

'

..

.

#

. # *.;

# &

;/). .. ;).) . '

.) . *./

, % % B , % B '.) # % =% > L > & & & =% & % & $ 2;' , */ L & %&

' -'

Page 268: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1 # > % & % % % = % K - %% % %&;. & % 1 $ 2 L #L & % + & L $ 2

:: <$ !5 !!$

6 %% & % % # % &1 & H.( & H;B % # %% H & $1 H 1 1 & 6 % % 7:8 C% < & && & & = & &

1

CylinderIncidentwaves

10

8

6

4

2

0

–2

–4

–6

–8

–10–16

–34–35

Rel

ativ

e er

rors

(%)

2 3 4 5 6 7Outer radiusof finite elementdomain

Plane damperCylindrical damperSecond-order damper

# 58 3 ! * * B

*)

Page 269: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

&& % % %% & 1 ! ;B

5? +# :''

6 1 + = %%& 0 12 2;;;/ % F ' % !% '; # = 1 D 78 = 7&8 =& %& # $1L'B;9 % & ! ;);4

% = 6 %% KL % ;; $ K 7*.;8 = K & &

'.

*.9

& '9;;;/ % = % % K &

/ /#

/ /

,

,

,

*.)

'.

*.4

& % & + % & = % / % + = # %% & & & & = 6 & & %

:; *

$1L'B;9 % % =% % & & + # K % & % %= # & 2 K = = K

1

*.*

+# :''

Page 270: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

7# & & 8 # & = =% %

&

%

*.(

& % K & % &

'.

%#& *;B

& & + & # & 7*.*8 & + +

'.#'1#

%#& *;'

F % & 2

'.

'1%#& '1

%#&

# / *;.

/ CL < = = & & 1 = # & 5 & %& & %& , *9

:; *

! ;);4 1 = 1 =% =% = % / / % % & + # = 1 2K A

!B

) *;;

# & &

/#

.

. B

' '

. B

' . ' .

. B

. ; . ;

. B

' '

*;// ) .B

B ''

'' ##

## * + *;9

*)

Page 271: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

#5<

B

'

(

!

"

*8

Page 272: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

! & 1 ) & & K &

1 " 1 =% &

% %& 1 % % > & = / # & & 0 1 > / & ! ;)

%% %& & L + L & F ' !% '4 , '4)# 2 & ;* %% &

%& : $ & , *)

3000 3000 60000Scale

feetNote: Number of node points = 1701

Number of elements = 2853

(a) Finite element grid, grid 3

# 5= 2 ! " " 6" . A A /<

*)

Page 273: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

:; ? !!

# %% & & & > & 78 %% % & 6;( 6 %% & K & H.(

5.@ (4

+ & &1 & $/B >> % & 6/' H/. # & F ' !% ( &% % L # + & $ 0 12 > C < % L'''* !%> ! ;);4 + %&

6 224

10 26 2 2

2 225

4

2226

266 2

22

218

9

6 6

22

42

662 2

104

22

22 2

25

2

6 12

2

2

(b) Contours of wave height amplification, grid 3. 232-s wave period

# 5=

(4

Page 274: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, '4) F ' : C%%< + % %& =% & &

5.. -- -' 4

# % F ' !% ( + &% .* ;( /;3/4 , % >

B ' .. & B

') .

). *;)

& < - % 2 + B B = %& %

1 ') 7 > 8 %% & % = % %%= '

)

L

6 & & = 7*;)8

: 0 $ % !

> = 2 K && & & 1 % 2 K & B) , ) 2> 1 1 ) ) > )'. 6 ') '). & %% %& )'. % % =%) & )'. # %

+ )'. =%) *;4 ) '' # % K 7*;48 & %& +

+ .

'

'. '

'

'.=%

'

.

=%

'

'

*;*

% .* ' ' % >% & # %% + %& %% + &% = % # & + & 6 2/4 # & & + % % /) %% % + % & %= - : 6 /* ! , !/(9B 2

*)

Page 275: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%% % + > % = % 6 1 $ $.* 2 %% + , *4 L & % >

5.0 - - 4 ' D'

$ 9'9; %% % + = %& # % & % % $ + > %& =% + & 1 = % & % %

)

)

B

)

*;(

# % 2 ) %% & % & % % # & +

# 5> B ! * . <

- - 4 ' D'

Page 276: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

A

# % % & % # %

# + & + +

# % & # % & L + ;

# % % # % 1

)!'

) */B

# N %&& - + # L L & & %% %% + & $ 2/9/) # L + & ) % $ 9'9; % + # =% # & & D3 %& & N & & $ + + 4 1 %- % & & ;BBB + % Y# $ & % > % - 'BB

% L %& , **

5. *) )- 4

6 % + %= - % '(.B # %+ =%) & % &=%) % & K 1 H3: 7 F ' !%(8 # % 7 = 8 & + , *( =% % %& H & % 6< %

) ))) ) */'

*)

Page 277: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% #

) ))) ) */.

$9/ > >% K + % = # = 7 %=8 K 7# %& %+ %= K 8 %& 1 & $ % : 1 %% % % %& & % %= - %

2

1

0

–1

–2

Rea

l pre

ssur

e

0 30 60 90 120 150 180Polar angle, θ

ka = 100

Shell quadraticthrough thickness

2

1

0

–1

–2

Imag

inar

y pr

essu

re

0 30 60 90 120 150 180Polar angle, θ

ka = 100

Shell quadraticthrough thickness

# 55 7 * .8

*) )- 4

Page 278: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& + # & $/B # & & 7 8 % K 6 + %% & 6 2/* C < 1

) ))

& ';) ) */;

& % + & % & ! ! ,/(9B # % %% 0 12 2%% + ! , %%

5.8 1' 4

# %= - % + K 7*..8 & L # & = # & $/B & & &K &- H 12999) % &K + 94 1

5

4

3

2

1

00 2 4 6 8

z/a

r/a

Incident mode number = 1Reduced frequency ka == 11Spiral mode number mφ = 8

Conventional FEMWave envelope FEM

Plane wavelength

# 5? * E < ! *

% % + - + 6 % % + - +

*)

Page 279: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% " & $&V 19*9( %= # + & + & + $ % + & + # & > & 6/' H/.

5.< ' -'/

5 6)B); = % + %> & % % & $ 9'9; % %& 6 + L / % % % + & + ( # 1 %& %% & %& , *'B % % %% + %&

& !% $)/ $ + # %% & N % & %& & % & & %& % & + & H.( H;B " & % & #% 1)9

1.5

1.0

0.5

0

–0.5

–1.0

–1.50 0.5 1.0 1.5 2.0 2.5 3.0

Dimensionless time T (= tD/c)

Dim

ensi

onle

ss a

cous

tic p

ress

ure

P(A)

P(C)P(B)

# 5.@ 0 *?/

' -'/

Page 280: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

5.= '; ' )

6 & & % % > K , % $1L< %%& 6 %& %% # D & % & %& D :%< K # 2 % " $ < K 1 &=% %

.

. (

.#

'. ## B *//

# %% % 1 K 7*//8& % %&

.

. (

B

.

( */9

1 "& % F ' !% '( K 7'(';8 #> + & %& # > % & % % & F' !% 4 # & B %% .( !3 7 K7'(';8 F '8 #> + & 1 > + &- % % % D # & % D3 6 K F ' !% '( D3> % & 0 12 $)) D K & D & 7 =8 # D L % K % , *'' & & 2)4

6F % D &1 # & > & + *(

:, *5! % %

# % % %& F % 1 L

*)

Page 281: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1.0

0.5

00 1 2 3 4 5 6 7 8 9 10

Wave period T (s)

Wav

e tra

nsm

issi

on c

oeffi

cien

t CT

Eigenfunction method

Present method (two-dimensional model)

0.1 0.5 1.0 2.0 3.0 4.0 5.0 6.0 6.0 7.0 8.0Wavelength λ/B

Incidentwave

Infiniteelements Special three-

dimensionalfinite elements Three-dimensional

finite elementsBed

8 m

Freesurface

20m

3m

10 mFloatingbreakwater

Unit: m

Floatingbreakwater

Incidentwave

1.41.2

1.0

0.80.6

0.40.6 0.8

1.0

1.0

0.8

0.6

0.4

0.2

1.2

1.41.6

1.8

2.0

2.2λ = 34.9 m

η1 = 1 m

# 5.. + ! ! 4" ! A?E

'; ' )

Page 282: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% %& !% 9

:, 1 %

# K !% 4 >% # % % + , '3/ # + !% 4 & %% %& K & > % K & L " K 3 F K % &

(

' ;

.

.

)

(

;

; B */)

# K & & & + + & &)*

:, %

% L % =% & % =% % & + % =% & & #K & 1 & 1 >% % % # = L L % & > L %& + K # +> L %& & *( > %& +>%

"A

'

.

(' B */4

" "A

.

.

(.

.& */*

*)

Page 283: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

.&

.&/

.&& .

(*/(

.&/

.('&

.'/

.

'/

.(

'/

.'&

.

'&

.(

'/

'& *9B

.&&

.('&

.'&

.

'&

.

(

'& . *9'

# > & & +>%& & %+ % %% % & +> %& %%& # % % > % C1< % +> C< 1 +> & K %%% & & % , !1 2)( , *'. > & & !1 2 6 & & % & &

Incidentwave

–1.5

–1.00.0

1.00.5 0 0.5 0.0 0.5

0.0–0.5

–0.50.0

–0.51.0

0.0

–1.0

0.0

0.5

0.0

0.00.5

0.00.5

0.5

–1.0

–1.0

–1.0 –0.5–0.5

0.0

0.01.5

1.0

1.52.0 2.0

2.0

1.0

1.0

1.01.0

–1.5

–1.5

–0.5

–0.5

–1.0

0.5

2.5

Real ηD/(H2/4a)(2)

Imaginary ηD/(H2/4a)(2)

# 5.0 - ! * "* 2?>

'; ' )

Page 284: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& % & : 24B 6 + + # > & + % 7 =%8 # +> %& + +> % > K 7*9B8 7*9'8 # & % % & = & % N> % % % & &/

!'

' :& . !& = '(;.. H$ 0 7 @ ?1 '(4/; !! - < # 7 ?1 '(*;

/ @ : 7 , !& '(4*9 H: H 6 % > &

# 6 '4.3*) '()9) "! 0 12 5 !% & &

%& D 2 # , ( %% ;)B34* '3'9 '()(

4 6 ! # % % % %

+ # 28 9B(3.* '(4'* 5@ 6 , # #A # 2 !

=> ! 0 F ' %% ;3'4 ')3'* & '((*

( ,& F ' . H> ?1 '(9;

'B @! $1L : %% %& + , , ' 5 H 2 ! %% .9'3*B

'(49'' "! 0 12 $ + D

%& 2 1 2 #2 "2 2 #2 '(49

%& 0 F 9* @ 2 % >F$ '(4)

'. ! # $ "! 0 12 & A

% 2 2 "2 2 65 '/'39) '()('; $&V 1 , & # & H -

+ 2< K A K

2 2 2 2 2 6,7'*8 ;//;3). '((4'/ $&V 1 , & # & H -

+ 2< K A % 2 2 2 2 2 6,7.'8 ;**;3(BB '((4

'9 "! 0 12 $ # + D A > > !% / <% "! 0 12 5 :

H @ '(4*') " @ 6 %%

% "2

2 2 2 283 '9434/ '(()

*)

Page 285: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

'4 @ $1 " % %& "2

2 2 2 283 '9434/ '((*'* $ "! 0 12 L +

+ 2 2 2 2 2 22 '.4'3(B '(44

'( 5@ 6 6 % %% + # 79 9(93)B' '(*'

.B 5@ 6 % + 2 2 2

2 , 5 9B43.) '(*;.' !1 $ " : L

%% % + + 2 2 2 2 2 68;;939/ '(((

.. @ 1 $&V 1 # % + $ %% "2 2 2 2 2 25; .*(3;'/ '(()

.; @ 1 $&V 1 # % + 2 2 2

2 2 6, 4.439* '((4./ " : $ % + 3

% %% % 8? "

, C== %% .BBB.9 " : $ % + 3

" " %

" %% .BBB.) 6 $ #1 5 & >1 K "#

+ 2 B=!1: '(4(.4 6 $ H 2& #1 $

% K = "# + 2 >?&8 '(*B.* @6 $ $ 6 %% + L>

%& % L %& "2 2 2

2 2 296 '43/* '((*.( H $ - 6 '((.;B #: H " D - 6 &>

'((*;' $ $ ! # L %

= L & % 2 2 2 2 , 6 9((3)'4 '(*/

;. $ K 6 - 5 & 2 "2 52 ).(39. '(44

;; "! 0 12 $ # % +

& % 2 2 2 2 2 227'8 ;99349 '(44;/ "! 0 12 $ \ 3 & &

7+ & 8 !% 9 ,

'(4*;9 @! $1L !% & 3L 2 8 2 "2

" F @ 'B3'/ '(4.

;) ! !! " L & 0 + 8=? '(4/

;4 ! !! " > & % 2 8?2 #2 . <@ + %% 94;3(/ '(4/

;* @5 : $ &A & D# 7* / # ' #2 + 8 2 .!B:!1? '(4)

!'

Page 286: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

;( 5@ 6 , = 2 %& % ,> %% "2 2 2 2 23 .943)4 '(()

/B $ $ '((./' 5@ 6 + %&A

2 2 2 2 2 %% '(((

/. H + %& 2 "2 : /;3)..BBB

/; "! 0 12 ! $ 6 & + 2 2 2

2 2 2; ;(;3/B/ '(*;// "! 0 12 $ #! ! !

& + %& + # - 69''93/* ?1 '(*'

/9 $ ! #! ! 6 %% + = %& !% '4 " # 5 : $ @ ! '(*/

/) "! 0 12 $ $ ! #! ! %% + = %& 2 2 2 2 2 32 '..(39' '(*9

/4 5@ 6 $ @ !1 : 5 '.* 2 2 2

2 2 537'8 .B43( '(('/* 5@ 6 H@ @ ! %% %

2 # 27,7'8 (43''* '((/

/( : ! 5 , @ ! 6 & + % 2 # 2727/8 /*;39B* '((/

9B : ! 5 , " & + % 2 2 #2 2 ;77/8 .B.*3/B '((9

9' $ 6 > + & % %% =% 2 2 #2 2 ;8798 .4(*3*') '((/

9. $ 5: & % +

"2 2 2 2 2 28: ''43/' '((*9; $ 5: 6 % + "2 2 2

2 2 296 /(34) '((*

9/ $ 6 % % =% "2 2 2 5 443*B '(*4

99 H : 12 ; :% 2 K = & % >+ > + "2 2 2 2

2 257 .;(34; '(()9) : 12 H ! + >

2 K %& ' 7; ''3/. '((*

94 : 12 H # - - + 2 K = "2 2 2 2 2283 '.93/9 '((*

9* @@ = 2 %& + + # '((9

9( @@ $&V 1 6 % %%= &

+ = 2 %& "2 2 2 22 296 '.'3;( '((*

)B 5@ 6 # % %& 2 # 2;37'8 ./93)' '(()

)' 5@ 6 H@ @ ! : ! # > >% & ' , K 2 2 #2 2 2,57'8 /(3); '((*

*)

Page 287: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

). 5@ 6 H@ @ ! : ! # > >% & . ,

2 2 #2 2 2,57'8 )/34. '((*); 5@ 6 %% % > % & %&

2 2 2 2 2 62 '.;939/ '((*

)/ @: !% @ $ + %% % =% 2 2 2 2 2 65798 **(3(B* '((*

)9 :: #% 1 6 %> + =

%&A # % & % 2 2 2 2 2 5; ');9394 '(()

)) "! 0 12 $ ,3 6 > 2 2 2 2 2 25 '3') '(4*

)4 6 # # ? L % L # "2 >&?B "& '(*;

)* 65 & , !% ') " # 5 : $ @ ! %% /)93** '(*/

)( @ !1 $ @ H L L + 2 2 2 2 , 23;/;3)4 '(('

4B : : 0 # & & >% + " 2 2 "2 " 5 & & 6 ?1 %% ;;'3;4 '(*4

!'

Page 288: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

-' - " #'

& %'

?. ('

% % % % !$ + " & > % # % % %& & %&<& %AOO&O% O # % & L

D %&A

' !%& D %&. %& D; %& D / D9 > %&

% + %& & D+ & # %% & % % !% .B F ' &1 % % & &1 !% .B F ' ,"5#56'. + % F ';

% %!$D & !$ !% ; % 1% %& %& D % =% % % & % % > % & %& % % % % & =% % % 6 % & & % & % &

5 , % !

Page 289: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# !% .B F ' 7'8 % %% 7.8 7;8 % 1 2 % !% .B F ' % !$D 31 7 318 K %& =% >% K>% % !% ; > + K % % % & %& %& D >

K # %%% % 7!% ; / 98 L > % (. & % %

& %& + (; =% % !$ % &D 1 % & 1% %% L % K (/ % & % %% % 7 (98 %& = !$D %& & D

?0 -

# % % % % %% %%% % + % 1 !% .B F ' % !$D % % $ & % % % % !% / 9 & % %# % & !% .BF '

; $

" + & %%% 7 %> & !% .B F '8 & !% .B F ' # , + %%% ' ' . . + & & /, $ & $ & & &

-

Page 290: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& % & D & >& %% 6 % - & %%% D # >%

; &

% !% .B F ' & %& & !$D & K & 7 % %+ 8 % & %%

; <$

& % % D , =% %& D% > % & 5 & & > K % ;' !% ; !% 9 # % L %& #& (' % D & 1 % &

% , % D % %&< & %

; " $

6 % & & %& 7 8

;2 > %

> & & , %

! D & &- D & + !%& D & ) !%& %&

% D D5 & - D5 & !%& %&

% DF D

-' - " #'

Page 291: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

!

" !

" #

$

" !

" !

" #

$

$

" #

" !

" ! $ %&'()*+, -.)/-0

1

1 2 *3- &( 45/ 6* 7&.(4-

1

080 $ 2 *3 2&+ -& .) 6* -0

"

"

080#

" 9 !

"

"

"

"

$

$

1

" !

"

"

! "

-

Page 292: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

= % & & % # & , (' " % & & 2 & 2

? "

, (. D !$D 6 % % % &% % !$ & >% %& D % % &

; - !

# % !$ & % 1 % 6 > D & =% K & % ' & , L % (;/ !%; % !$

! "

" #0###

00#

! " ! 9

! " ! 9

" 9

" 8!! 9 !!

! " !:

! " !:

! " !

" !

00;#0

! " #0###

" #0###

!< .- 4+*. .(3 /)3/< $ /030 */+&2&. 0

$

# ?. - " !

-' - " #'

Page 293: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

Inputs

Preliminaryroutines

Datacheck

Step 1Intermediatemomentum

Step 2Density/pressure

Step 3Momentumcorrection

Energycoupling

Boundaryconditions

Steadystate

Output

End

Make changes

Failed

Passed

Energy/temperaturecalculation

Yes

No

Timeloop

Yes

No

# ?0 2! " .-4!

"

Page 294: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

; - !

L & % %& %& % > C %% < 7 ;;/ !% ;8 % % % 1 %& > C

%< % % 6 K % C+=< >%&

% K & =% D %&# % & &> %

% & % % & %& & % >%+ += % % , (; & % %& D 6 /;; !% / L %

& &2 %/ 78 = 78 %% % & , (;

; $ !

# !$ &2 & %& >%D N %% 1 + & 7 )9!% )8 L + & % % 6 %& %1 % & K % &% K >% D %& + % % 7 K

7)')8 !% )8 % , (/ % =% & , 7, (/788

.' /' . ; / 9

' . ' ; ' / ' 9('

& 7, (/7&88

.' 9' .. ; ./

.' . ' ; .' /(.

-' - " #'

Page 295: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

=

1 1* 1' *4/- 45/ 1+.4.1* &1* 4.>/ -4/7- *4 (&)/-0

1 1* 1' *4/- .(4/+(* *() /?4/+(* 4.>/ -4/7-0

1

"@###

!

#

1

!AA!AAA!AAAA

1

B

=

1

A A $ &1* *++*,-

080;!

1

1 ->&&45.(3 45/ C*+.*% /-

1

" !

A " #0##9##

" #0##9##

" #0##9##

" =:=!

A " =:=!

A " 89A

" !

! "

A " A 9 A !

" 9 !

" 9 =!!

$

# ? -

"

Page 296: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

A " A :

" :

" :

" 8 :

$

" !

" !0#)#D

" 8 :=! $ -7//) &2 -&'()

$

1

1 &&7 2&+ 1* 1' *4.&( &2 &1* 4.>/ -4/7-

1

" !

! " !

" $ 1&((/14.C.4,

"

! " =!:=!! $ '! C/ &1.4,

A! " =!:=!! $ ' C/ &1.4,

" =:=!

A " =:=!

" =:=!

A " =:=!

A! " 8! 9 !

A " 8 9

A " 8 9

A " A! A A

" !

A " A 9

1

" ! $ -5*7/ 2'(14.&( )/+.C*4.C/-

"

" !0#:8 9 $ / />/(4 /(345 *4 (&)/ !

" :A

" :A

! " ! $ /?4/+(* 4.>/ -4/7

! " ! $ .(4/+(* 4.>/ -4/7

1

"

" E

" !0#:8 9

" :A

" :A

"

! " !

# ?

-' - " #'

Page 297: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# K =% & K 7)'48 !% ) , (9 % = % & %

% 7 /9' !% /8& " %%= % &

1

"

" D

" !0#:8 9

" :A

" :A

"

! " !

$

" !

" $ ; -*2/4, 2*14&+

$

080#

" !0#)9#D

" !

"

$

# ?

54

43

3

2

2

1

1

(a) (b)

# ?8 0* #$ #$ *

"

Page 298: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

/9' !% / # % %%= %

; 1& $ !

F % !$ & !% ;# % !$ 7, (.8 , & % O% + # % O% + & & %& & % & % =% K & + % & -4/7 %>%

& < 7 !% )8 # L K % K # L &2> & %%% 5 # , 5 & % & & % =% O% &

K 7;9;8 7 K 7;9/88 # & -4/7 %% % L ' . & =% . K 2 ' & B9 'B , %& D% >% . 2 =% , >% %& D %& %, %& D %& >%

' & & B9 ' . % K -4/7 - N = & # % &

% % =% 6 % & > %% %& % = .); !% . =

; &

6 =% & & & 6 .-.)/. F D

-' - " #'

Page 299: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

=

1

1 45.- -'%+&'4.(/ 1* 1' *4/- 45/ 7+/--'+/ -6.415 *4 /*15 (&)/

1 >*?.>'> C* '/ ! *() >.(.>'> C* '/ #

1

!

= !! !

1

" !

! " !

"

"

! " !

"

"

" !99

!! " 0#)##! ;

" 0#)## ;

" 0#)## ;

! " ! 9 !!

" 9

" 9

! " ! 9 ! ; 9 ! ;

" 9 ! ; 9 ;

" 9 ; 9 ! ;

$

" !

! " !

"

! " !

"

" ! 9

" ! ;

! " ! 9

" ;

! " ! 9

" 9

"

Page 300: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% & ' .% & & ; % & / D % & 7 % & %&< & %8 & & 6 % %& , ()

;, 5!

# K & >% !$ # % % # + & L , >& % # % - # & & # % K & !% .B F '

;3 ?

%& D % K % 1 # %& D K & & %& D % K & % & % & %& D K 7;)'8 K 7/)8 >%& D %&

;: -$ ! %

6 % D %& D % = %& 6%%% D

$

" !

00#0! "

$

" !

" =:

$

# ?< ! "

-' - " #'

Page 301: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

> % & % , D !% 9

;; 1

# 7L & % % %8 K 1 >%& & > K 7 8 % % # %& & # % = & # += K %% , (4

=

A

1

1 -,>>/4+.1 %&'()*+, 1&().4.&(- 2&+1/)0 &(/ 1&>7&(/(4 &2 C/ &1.4,

1 2&+1/) 4& G/+&

1

A

=

1

" !

080 $ -,>>/4+, 2 *3

"

"

" !

"

" ;= 9 =

= " ;

= "

$

$

# ?= - **

"

Page 302: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1

=

1

1 7'+7&-/ H 1* 1' *4.&(- &2 +/-.)'* -0

1

1

!

! !!

=

! " #0###)##

" #0###)##

" #0###)##

" #0###)##

" !

! " =! ; ! $ )/(-.4, &+ 7+/--'+/

" = ; $ '! C/ &1.4, &+ >*-- 2 '?

" = ; $ ' C/ &1.4, &+ >*-- 2 '?

" = ; $ /(/+3, &+ 4/>7/+*4'+/

! " !

"

"

"

!00 !

! " !

! "

00

"

"

00

"

"

00

"

"

$

# ?> - "

-' - " #'

Page 303: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

?8 -

% + % % + # % K %>% % % &! 7H8 % %% 9 # H > > 2

;

# K A

.

.' .

..

.

'(;

# K + % + & K

?< &/ : "3

6 %& = 6 %& % K & % % & C < & )

6 &- & % C < !% 9 K & 4

# % %& %%% K *'.

# K & K & %+ # & % %&# & D K K

K =% !% 9 , 3 ';# % !$D & +

, + % % C < 1 N %

!'

' F HN , # ! '((*

. 5 R #$ , ! '((9

; "! 0 12 5: # , 2 8 9 6 : .BBB

/ "! 0 12 " &2 !$

= % 2 2 2 2 2 6: *493*B .BBB

!'

Page 304: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

9 H ! R ! J B*B;/ $ %

) # - &>L + D % 3 >%% . 5, /';3.) '(()

4 5 " J ! , % %& 2 2 2 2 2 68 9B;3.* '(((

* 6 2 "2 2

2 2 2 3: .493*/ '(*'( 6 5 : , % 2 2 2 2 , 26 'B'(3;) '((.

'B # - F H 6 & %% >

+ % % %% 2 2 . 58.*)9344 '((.

'' 5 : 5 # ,

. ! '(()'. 6 % + % + %& .

7 %% .BBB8

'; "! 0 12 $F 5 ! % & >% O& %& D 2 2 2 2 ,35 '3.; '(()

-' - " #'

Page 305: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%;')) ' %)'9" 2

# 31 K >

! A

B 6'

! A

B 6.

! A

B 6;

5 K L

B 6/

& K 7K 6'8 & K K

'

'

B 69

& K 7K 6;8 & L

B 6)

Page 306: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

6 & K & K K

'

'

'

64

K 76'8 7698 7648 %& D %& > K % # % >% %& D %& 1 # > K & %& D %&

1-- : 1

Page 307: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

,'

)9 2

F ' &1 C H1 < = %& % % !% '; F '

& %%% %%= % 1 & : % % % H1 %% D = D %%

H1 A

% D= %%= P

%& > % & %&P

%% %% % & %% & D=P & & % !% .

# % > &% %&

B $'

L 7 8 N 7 & %8 & K 7$'8P =%

B B

( $.

@# " % '(((

Page 308: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

6 B % 7 8 ' ' . ! % %1 K 7$'8 7$.8 + &

!'

'

!'

,

-

,

-

B

!'

'

B( B $;

& 7D=8

.$/

-% $9

& B # % 1 K 7$;8 + 1

& A

' = K 7$'8 7$.8 7 8 K 7$;8P K 7$'8 7$.8 % %& & K 7$;8

. # K 7$'8 7$.8 + K 7$;8 & D= A

B

,

- B $)

; # & 7 D 8 1 > %% & % &

/ # . & L K K 7$;8 K 7$'8 7$.8& % & & H1 7H8

9 D= & 7$)8 : % > K 7$;8 1

!'

$4

% 6 % % & + D= -%A

,

- $*

1-- :

Page 309: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

K 7$*8 K 7$48 K 7$;8 % %%= + %%= K 7$'8 K 7$.8 & & 7 !% '; F '8

%%= K 7$'8 7$.8 & H 5 K 7$;8 % %%= P

B

- $(

- 7%

8 K 7$(8 7$;8 =% % % >

!'

B

'

,

-

-

,

-

-

,

-

,

-

BB B

-

'

'

(

B B B

' . ' . ! $'B# H %%= K 7$;8 %% K 7$'B8 A

' # % & & P

1 & % 7% >

=% % % % % 8 # 1 N - %

. L % P K 7$'B8% > + %%=

; %% B # % K 7$'8 K 7$'B8 L = % -% & = % + & & % %%

/ K 7$'B8 7 8 H1 %%= K 7$'8 7$.8 % % % 2 %%= & % & H

1-- :

Page 310: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

9 % % & '' '

'

% % 2 % =%> & .

) # H + %%=> % %

'

B $''

# %% & > %%=

# H & & % H1 %%= %% 3L %& 3L %&

% # 1 %& A

.

.

. B '

' . ' B = &

.

'

.

, $' $. & %& 'B'B ''B & H1 % = !% .

2.5

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

–2.0

–2.5–1.0 –0.6 –0.2 0 0.2 0.6 1.0

Exactp = 2p = 3p = 4p = 5

x

u

# .

1-- :

Page 311: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

2.5

2.0

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

–2.0

–2.5–1.0 –0.6 –0.2 0 0.2 0.6 1.0

Exactp = 2p = 3p = 4p = 5

x

u

# 0 3

1-- :

Page 312: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

#;/ 4 '

# >& & + > D %& 6 )* !% ) # =% K & > + , !' , K 7'./8 K

B !'

& >& & K &2 1 &

#

!.

=% % > &% % = 7 !% ;8 5 & K / 7, !'788 & % %% H <

/

'

/

/

'

;

/

/ 1

!;

' / 1 7 8 # %& %%= K #3H1 7 !% .8 & 5 & 7, !'788

'';

/

/ ' .

'.;

/

/ . ;

';;

/

/ ; ' !/

'' '. '; ' . ; % , > & 5

0 /

0

/ 0

0 /

0

)./

1

0

!9

Page 313: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& # & K & / , !'7&8

0'

)./

; ' 0.

)./

' . !)

0' 0. %%% # & K 7!;8 7!98 & >&

% K 7!;8 & 7 /8

/

/

!#

.'

//#

'

;

/

/

/#

!4

!# & /

. //# = //#

# & K K K 7!/8 / , !'78 # & K 7!98 7!)8

1

1

2

2

3

3

I

I

3

2

1

21

(a) (b)

# . 0* " ' #$ ) #$ *

1-- :

Page 314: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

#'

& K + + L %& % + # % % & K & # % % %& !% * + % # % % - &

+ %& = & + & % & & + # %% + & 1 + % K % K # & % %&

' 2 % & & " 2

/ . & K % & # + 2

/ ; & & % %> + % & #

' /

Page 315: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

&

& % & & K & % + % "& & + % # " % & & % + & % &

/ 9

K & % % & - >K 6 = + > +

+

) + #

+

4 # & % & && % >1

/'

*

6 ' %

% > # > & K & & % % & & & %

+ & & & # % % & %% !% )

1-- :

Page 316: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

' '9) 3 -#

6 % & 3 D % !% ) %% = &D =% % % D% % # % % & % D % , ' $ & + 2 %

# 2 K & % & # & % &

# 3 & %% % % & % % # % & 7, '8 & C# %&< & % & C> < &

# 5 # % & % 6 , ' > %

Semi-inverse

Semi-inverse

Semi-inverse

Semi-inverse

Dire

ct

Direct

Turbulent

TurbulentLaminar Transition

Stagnation

stream

Turbulent wake

# . 2! 0* * * 4! "

Page 317: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& L # > % &2 & % , . D % & 3 %

, # %& > % & )'. !% ) 7: $ 18

Unstructured gridsor multiblock Euler

inviscid method

Direct calculation

Lag-entrainmentboundary layerviscous method

Direct calculation

Cp,s

ρVN

VN δ*

(a)

Unstructured gridsor multiblock Euler

inviscid method

Direct calculation

Lag-entrainmentboundary layerviscous method

Direct calculationδ, θ, Cf, H

Cp,s

(b)

ρVNm + 1 = ρVN

m + K*θ

uv

duv

ds– θ

uv

du i

ds

m

dds

ρVN = (ρv uv δ*)

# 0 " ( ' #$ ) #$

1-- :

Page 318: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

, . N %P # P & 1 P 1 P 1 N P %+ % %P P % >% P % & P &% 1 & P % 1 P %% %% ! , & K A

B

'

.

'+.

'

K & & >

#

'

. '

#

.

%' '

#

. .+.

#

;

B'

#

.*

' B9U B9

#

U

#

' BB49+. ' B.+.

' B'+.

/

BB. .

B*

;

BB'

9

& K ' %+ % % +

'

B

'

'

)

N P % & P+ &P N P % P &% U U % K& K& & D &

1-- :

Page 319: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

" & K % % , . & % # % % % &

1-- :

Page 320: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor
Page 321: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1' :

& " %

6&& $ .'* 35;

6 56 ;) ;* 92

6 'B. 'B; 257

61 @ )4 44 ::P '99 299

6= @ '.B 25; 26,

6 6# '.B 26,

6 @ (/ 256

6 .)) .)4 375

6 5@ ./; ./) .9( .)B .). .)/ .)9

37, 372 373 375

6 6 )4 ::P ')' 297

61 $ '.B 25;

61 @ .; 9,

6 ..; .;9 36,

6 5 ')( '(' '(. '(; 326

$- ,# '.B 26,

$& 6F5 'B. 'B( ''B 257

$&1 .) 9,P .// ./4 .)9 37, 372 373

$ @ '/) 298

$1 6@ ')' 297

$1 #@ '*( 329

$- 6 '.B 26,

$ $ '4/ '49 328

$ .9; .)B .). 372 373

$ @5 'B. 258

$ '4 8;

$ ! / 23

$ @ 'B. 259

$ ! .) ;/ 9, 92

$ , '.B 26,

$ 6 .9B .9; 372

$ :$ ')( '(; 326

$1 5, '/) 298

$ ..; 362

$- 6 '99 '94 299

$ ';B 262

$1 # ./ 9,P '.* 262

$ K @ ;* 93

$ @ ';. 263

$ ''* 25;

$ ;* 93

$ @ 'B. 258

$1L @! ./; .99 37, 372

$ ')' '); ')/ 297

$2 6 ;* 93

$ @6 () 256 .9. .9; .)B .)' 372

$ () 256P '9( ..; .;9 36,P ./; ./9

./) ./4 ./* ./( .9. .9; .99 .)B .)'

.). .); .)/ .)) .)( 37, 372 373 375

$ 5 '.B './ 25;

$ '.B ';B 26, 262

$ 5 '.B 25;

$ F 'B. 258 '*( 329

$% 65 '4/ 326

$ H ;/ 92 )4 ::

$ @ )4 ::

$ @ '.B ';B ';; 26, 262 263

$ @ 9B 95

$1 'B. 'B( ''B 257 25:P .B. 329

$ : 9/ 95

$ ? 'B. 257

$ ..; 362

$ .'' 327

$1 6 '.* 262

$&& !6 ;9 ;) 92P ..; 35;

$22 , *' ;,

$ ')/ 29:

$1 : 9B 95

$1 @ 94 95P ')( '*( 326P ./) ./4 372

$1 6 ') .B .4 .* 8; 9, 92

$ @, .'B 329

$ 1 $ ';B 262

$ .)' .). .); .)9 373 375

$ 6@ ';; 263

$ @ .)9 375

Page 322: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

! ? '/) 298

! !! '.B 25;

! @6 ;/ 92

! "6 ';. 263

! H, .; ;/ 9, 92P 'B. 258P ..; 362

! @ '(* 329

! 5 '*( 329

!>2 @ 'B. 'B( ''B 257P .B. 329

! $ '.B 25;

! @! 'B( 25:

! .) 9,

!1 ./4 372

! 6 ! '9( 299

! # )4 :7 ::

!% , .B( .'' 329

! ..; 35;

! ? '.B 26,

! 65 )4 ::

! 6@ '(* 329

! ! '99 299

! '/) 298P .9) .9* .9( 372

! !? '99 299

! @: '.B ';B 26, 262

! #! .)B .4. 373

!%% ..; 362

! 6@ )4 :7

! 55 .'' 327

! '* '( 9,P ../ 362

! 6 )4 ::

! #@ '.B './ 25;

!% @: .)9 375

!1 @ .)B .)( 373 375

! 5 .) .* ;/ /B /' 9, 92 93P )4 49

44 *' :: :; ;,P (4 (* (( 256 258P '/*

')' '). 298 297P '4/ '4) '*9 '*) '*4

'(* '(( .BB 328 329P .*( 3;,

! '4( '*B 328

! H )4 :7

! @@ ..; 35;

! + H! '.B 25;

! 5 '4 8;

! @ .)B .)/ .)9 373 375

! 6 ./; 37,

! : .)B .)/ .)9 373 375

!% ..; 35;

! @ ';. 263

! @ ..; 36,

! H / 23

..; ..4 362

@, 'B. 258

& " ..; 36,

65 ';. 263

@ ..; 36,

! '/) 298P ..; 362

5 '.B 25;

% 6$ .( ;/ 92P 'B. 259

F 5 ..; 36,

H )4 :7P '99 299

12 : 'B. 'B; 259P '4' '*' 326 328P

.)/ 373

')/ 29:

= 6 'B. 258

& !6 ';B 262

'B. 258

'99 299

';. 263

'B. 258

% @ 'B. 257

@ ./ /4 9. 9, 95P )4 :7P '.* 262

@ 7@ 8 ;* 93P ..; 36,

@ .)( 375

@ '/* '9B 298

% ..; 36,

% ';. 263

@ ;* 93

! H '4) 328

5 'B( 25:

*. ;,

! .9; .)B .). 372 373

''* 25;

K $ .9/ 372

'9( 297

';B 263

6 'B. 259

./) .). 372

5 ;* 93

, 5# '.B 25;

,& ./; 37,

, 6 'B( 25:

,= H@ ..; 36,

, '.* 262

, !6 ..; .;9 36,

, HH ..; 35; 36,

, : 94 95P 'B. 258 259P ')( '4/

'*. '*( '(/ 325

, 'B. ''* 257 25;

, ''* 25;

, : '.B 26,

, : ./ 9,

, @ 'B. 'B( 257

, 'B( 25:

, 5 .)B .)/ 373

H 6! '4) 328

H 5 '* 8;P '99 299

H - .// 37,

H F .*( 3;,

H #: .9; .9/ .99 .)9 372

H : 'B. 'B* 'B( ''B 257 25:P .B. 329

1' :

Page 323: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

H .9( .)/ .)9 373

H (4 (* ''. 256

H (4 (* ''. 256

H !

.*( 3;,

H=>: .'. 327

H )4 :7P '.* 262

H .9; .9/ .9( .)9 372

H H: ./. 37,

H L 6 'B. 258

H& '') '.B '.) 25: 25;

H H: ';. 263

H& @ ;* 93

H ?# )4 ::P '99 299

H ..; 36,

H H ..) 362

H 5 ..; 35;

H 6 '(' 329

H @ .'B .'' 329 327

H @ 'B( 25:

H @ ;* 93

H )4 :7 ::P ''* 25;

HN , '* '( .4 9,

HN F .4/ 3:;

H 2& .9B .9; 372

H H: .. 9,

& H 'B. 257

1& '*( 329

! ..; 36,

= @ '.* 262

K @" ';. 263

% ..; 36,

H@ .'* 35;

& '4) 328

.)) .)4 375

& ? ;* 93

" 'B. 'B; 259

" 94 95P 'B. 'B* 'B( 259 257 25:P

')/ 29:P ')( '*4 '*( '(' '(. '(; '(4

.B' .B. .B) .B4 .B* .B( 325 326 329P

./) ./4 37, 372

6 ;* 93

@ 'B( 25:

H .)( 375

, ;* 93P 'B. 'B( ''B 257P .B. 329

@! '* .9 .4 ;/ 9, 92P '.B './

25;P '99 299P ..; .;9 35; 36,

:5 .. 9,

@ ..; 36,

@, 'B. ''; 259

6! )4 ::

# '/4 '/* 298

..; 36,

../ 362

H () 256

! / 23P '4' 326

! '/* 298

L @ '4/ 326

5: .)' .). .)9 373 375

'* 8;P '99 ')' 299 297

@5 .9* 372

H! ''* '.; '.9 25; 26,

'B* 25:

6 )4 ::

R 1 @ '.B '.* 26, 262

#H ')' 297

#@5 ') .B .; ./ .4 .* 8; 9, 92P

'') 25:P '4) '4* 328

& H ./ 9,

& ..; 35;

1 '* .4 9,

5 ..) ..4 362

5 '/4 298P .*( 3;,

5 ;/ 92

& , .// 37,

1 ../ 362

% , '99 299

$ '.B 25;

'4 8;

..; 362

@ ! '.B 25;

@ ? '99 299

@ 6 *B ;,P '/4 '/* 298P '4/ '*( 328

329

@ 6 ..; 36,

@ ! '/) 298

@ H '/) 298

@ $ ;/ 92P 'B. 258

@R 2 @ ')' 297

@ 'B. 257

@ 0 ./ .* 9, 92P '4) 328

@ ! .* .( ;/ 92P '4) 328

@ 5 '.B 25;

@ '.' 26,

@ @ ')( '*( 326

@ #! )4 44 ::P '99 299

1 # ';B 262

? '(* 329

H 'B( 25:

.)) .)4 375

..; 362

'94 299

)4 ::P ..; ../ ..4 35; 36,

362

1 # ..; ..4 362

1 ';B 262

'( .4 .* 9,P ../ 362P ./9 .99

37, 372

1' :

Page 324: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

@ '.* 262

5 ';. 263

? '/) '99 298

2 H ';B 263

& ';B 262

& '.B 25; 26,

# ..; ..4 362

: 94 95P ')( 325

F 'B. 'B( ''B 257

H5 )4 ::

@# ..; 36,

:& ! ;* 93

:& H ..; ..4 362

: " ./4 ./* ./( 372

: H '.B 26,

: H '.B 26,

: !H ')' '); ')/ 297

:& / ( 23P ./. ./; .// .)* 37,

: : / 23

:% 6 9B 95P '4/ 328

: : '/) 298

:= $ ..; ..4 362

: : .4B 375

: 'B. 'B( ''B 257

: $ ')' 297

: H '9( 297

: )4 :7

:= /; /* 93

: $ @! .'' .'. 327

: ! '.B 25;

: @ 'B. 258

: @ ..; ./B 36,

: @ ';B 263

: 5: )4 :7

: ! '99 299

: # '/) 298

: F 'B. 'B; ';. 257 263

: $ '( 9,

: ')' 29:

: ;* 93

: @, '') 25:

: 5 'B( 25:P '/* 298P .'( 35; .*(

3;,

:1 .;4 362

:2 / 23

: @ .'B 329P ./. .)* 37,

: G ;* 93

: @ ;* 93

: ?! 94 95P 'B. ''* '.; '.9 258 25;

26, 262P ')( 325

:Q 5 ;* /) /4 94 93 95P 'B. 258 259

257P '/4 298P ')( '44 '4* '4( '*( 323

325 328 329P ../ 362

:%2 '*( 329

: # '/) '99 298

: 5 ..; ..) 35; 36, 362

: 5 ;/ 92P )4 :;P 'B. 259P ')( '*4

'** 326 328 329

H@ .)B .)/ .)9 373 375

! @ '/) 298

!1 5 '4/ '49 328

')' 297

- 6 .9/ 372

- ;/ 92P )4 ::

1 6 ';B 262

*. ;,

'4) 328

1 '') 25:

# ..; 36,

2 # )4 :;P ')/ 29:P ')( '*4 '**

.B* .B( .'' 326 328

@ ';. 263

@ 'B. 'B* 'B( 259 257P ')( .B)

326

: 'B( 25:

21 H (/ 256

5 '99 299

: '/4 '/* 298

2 ..; 362

)4 :;P '9/ '99 '9( 299 297

';B 262

';. 263

% @ *B ;,

= ;* 93

5 .'' 327

!! '/) 298P ./. .// .9) .9* .9( .)*

37, 372

1 @ ./4 372

$ '.' 26,

1 5 .'' 327

R " ')' 29:

)4 ::

'B* 25:

65 '* '( .4 9,P .)* 375

$ 'B. 'B( ''B 257P .B. 329

')' 297 29:

.* ;/ ;* /) /4 94 92 93 95P )4

49 *' :;P (( 'B. 'B9 'B* 'B( 258 259

257P ')' '). ')/ 297 29:P ')( '4/ '49

'4) '44 '4* '4( '*. '*; '*/ '*9 '*)

'*4 '** '*( '(' '(. '(; '(/ '(4 .B)

.B4 .B* .B( .'' 323 325 326 328 329P

... ..; ../ 35; 362P ./) ./4 37, 372P

.*( 3;,

./; 37,

;) ;* 92P '4/ 326

1 # )4 ::

12 '( .) .4 .* ;* 9, 93P '') '.B

'./ 25: 25;P ../ 362

1' :

Page 325: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1 '/) 298

66 )4 ::P 'B. 'B( ''B 257P '99

299

Q F .( ;/ 92

..; 35; 36,

5 ./; .9; 37,

;/ 92

$ '/* 298

1 5 '.B 25;

56 '*( 329

6 '94 299

.* ;/ /' 92 93P )4 44 4* ::

:; ;,P (4 (( 'B. ''B 256 258 257P '9/

'99 '9( ')' 299 297P '4) '*9 '*) '*4

'(* '(( .BB .B. .B; 328 329P .*B .*(

3:; 3;,

& 5 '(' 329

& , '/) 298

! '99 299

"<$ @@ ..; 35;

"<! @ () 256

" @# .) 9,P 'B. 'B; '') '.B './ 258

259 257 25: 25;P '4' '*' 326 328

" '.B 26,

" )4 ::

" @ 'B. 258

" J .9 ;B ;/ 9, 92P '.B './ '.( ';B

25; 26, 262P '/4 '/* 298P .*( 3;,

"2 )4 :;P (4 256P '(* '(( .BB 329P ../

..) ..4 362

6 .'' 327

, '4/ 326

'.B 25;

$ 'B. 259

'B. 258

% #! *. ;,

)4 :;P 'B* ';. 257 25: 263P '9(

299

$ .// 37,

1 $F )4 ::

1 6 ')/ 29:

@ 94 95P 'B. 258 259P ')( '4/ '49 '*.

'*( '(/ 325 328 329

'B. ''; 259

@ ;* /) 94 92 93 95P )4 *. ;,P 'B.

'B9 'B* 258 259 257P ')( '4/ '49 '*.

'*; '*/ '*4 '** '*( '(B '(/ .B4 .B*

323 325 326 328 329P ... ..; ../ ..)

35; 36, 362P ./) 37,

= @ 'B. 258P '*( 329

'*( 329

" ;* 93

1Q @ .( ;/ 92P *' ;,

@, .) 9,

@,# '.B './ 25; 26,

;* 93

1 '.B 26,

F '9( 297

@ '.B 25;

& @ 'B. 'B* 259 257P ')( '(9 '()

.B) .B4 .B* 326 329

'B. 257

U% : 9. 95P )4 :7

52 'B. 'B; 259 257P '4' 326

5& H )4 :7

5- '.B 26,

5 $ )4 44 ::P '99 299

5 5 )4 ::

5 FF 'B( 25:

5 '/) 298

5 '/* '9( 298 297

5 1 )4 ::P ')' 297

5& '.B 25;

5 '4 8;

5 : ;* 93

5 H )4 ::

5 @ ;/ 92

5 @H )4 ::

52 ! ..; 35;

5 5 '4/ 326

5 ! '*( 329

5 @ / 23

5 5 ')' 297 29:

5-1 @ )4 :;P '.B ';. 26, 263

5& ! 'B* 25:

5 6 '4 8;

5 #, ;* 93

! '/4 298P .*( 3;,

L ')' 297

$F .* ;/ 92P )4 49 *' :: :;P ((

258P '99 ')' '). 299 297P '4) '*9 '*)

'*4 328P .*( 3;,

5 ')( '*( 326

1& , .* ./ 9, 92P '4) 328

'B. 'B( ''B 257

5: ''* 25;

%1 # () 256

F ;* 93

'/) 298

Q '/* 298

/ 23

'4/ 328

F .B( .'' 329

H )4 :7

%1 5@ )4 ::

& .)* 375

D $6 '9( 299

1' :

Page 326: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

@H '.* 262

@ 'B( 25:

F .. 9,

)4 44 ::P 'B. 'B( ''B 257P

'9/ '99 '9( ')' 299 297P .*( 3;,

F 9. 95

% 'B( 25:

21 ? '.B 25;

)4 ::

!# (4 (* ''. 256

# '9( 299

@@ .)9 373

& 5 'B( 25:

.*( 3;,

1 ./ 9,

H '44 328

'/) 298

$ 'B( 25:

1 ';B 262

% $ '4 8;P ')' 297

K $ .'' 327

)4 ::P ')' 297

! : '(' 329

H .'( 35;

6 ..; 36,

@: '4/ 328

@5 ')( '*4 '** 325

6 ;/ 92

W $ '*( 329

'99 299

& # 'B. 258P .// 37,

& H 'B( 25:

# .)) .)4 375

- '9( 297

;* 93

- # )4 44 ::P 'B. 'B( ''B '.B

257 26,P '9/ '99 '9( ')' 299 297P .*(

3;,

.4/ 3:;

2% 6 .* ;/ 92P '4) 328

2 @ )4 *. ;,P 'B. ''; 259P .'' 327

#1 ..; 36,

# 6 'B. 257

# 0 .4B 375

# - 5 ';. 263

# 5 '.B 25;

# ! ')' 297P ..; 36,P .// 37,

# 5: )4 :;P '') ';. 25: 263P .4/ 3:;

# 5 / 23

#2 ## ;* 93P '4* 328P ..; 362

#- 55 'B. 'B* 259P ')( '*4 '** 325

# 5 .*( 3;,

#% H '.B 25;

#% @, 'B( 25:

#% :: .)9 375

# !: '9( 299

# ';. 263

# '') '.) 25: 262

# '(' 329

# & '*( 329

#& ../ 362

#1 .9B .9; 372

# > 6 ')( 326

% ! )4 :7

6 'B( 25:P .*( 3;,

# )4 ::

F1 @ '4/ 326

F '9( 299

F 'B. 'B9 'B* 'B( 258P ')( '*.

'*; '*/ 325

F H 'B. 257

: @ '.* 262

F2K2 ! ;* 93

FR 2K2 .* ;/ /' 92 93P )4 44 *' :; ;,P

(4 (* (( 256 258P '4) '*9 '*) '*4 '(*

'(( .BB 328 329

F% , '.* 262

F 6 ')( '*( 326

F @ 'B* '') 25:

@ '4/ 326

';. 263

..; 36,

';B 262

'(* 329

% 6 ';B 262

, 'B( 25:

;/ 94 92 95P 'B. 'B* 'B(

259 257 25:P ')/ 29:P ')( '*( '(' '(.

'(; '(4 .B) .B* .B( .'' 326 329P ./)

./4 372

& , ';. 263

1 @ .'B 329

@F '/) 298

L $ /; /* 93

#6 'B. 'B; 259

, ..; 362

H$ ./. ./; .)* 37,

65 ')( '*4 '** 325

+ 6 ';B 262

R 5 .4/ 3:;

5# .'* ..; 35; 36,

'4 8;P ')' '); 297

.4B 375

5 '.B ';B 26, 262

5 ';B 262

..; 36,

'4( '*B 328

6 ')' 297

1' :

Page 327: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

@ )4 ;,P 'B. 'B* ''. 257P .B. .B/ .B4

329P ..; 362

@, 'B. 259

'B. 'B; 257

? H '.B './ 25;

? 'B. 257

? ! '/4 298

? !$ )4 ::

? # ..; 36,

? # .)) 375

? 6 .'' 327

? )4 :7

? !! ;/ 92P '99 299

01 # 9B 95

0 ? 'B( 25:

0 @0 94 95P 'B. ''; '.) 258 259 262P

')( '*' 325 328

0 ! .;4 362

0 12 "! '* '( .9 .) .4 .* ;/ ;*

/B /' /) 9/ 94 8; 9, 92 93 95 )4 97P

49 44 4* *' *. :; ;,P (4 (* (( 'B.

'B9 'B* 'B( ''B ''; '') ''* '.B '.;

'./ '.9 '.) '.( ';B ';. 256 258 259

257 25: 25; 26, 262 263P '9/ '99 '9(

')' '). 299 297P ')( '4/ '49 '44 '4*

'*' '*. '*; '*/ '*9 '*) '*4 '(9 '(*

'(( .BB .B. .B; .B/ .B4 323 325 328

329P .'( ... ..; ../ ..) ..4 .;9 35;

36, 362P ./; .// ./9 ./) .9; .99 .9(

.)B .). .)) 37, 372 373 375P .4/ .*B

.*( 3:; 3;,

1' :

Page 328: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor
Page 329: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

"/E :

.//

6 % % 6

6& % 4 (. '9/

6&% ./.

6 A

' )9

6 ! ..'

6 + .)/

6 ; '' .'( ./. ./; ./9 .9B .). .)/

= .)'

6% % '*B

6% .B9

'';

+ 'B.

6% % .B) .49

6% + ';. '*B .BB .B)

6% '.) '(9

6% '*(

6 & .B)

6 K '/*

6 .9

6 (9 .B. ;B.

6!6BB'. */ '/* .B.3.B4

>% .B)

6 '4B

6 '*( '(. .B( .'. ./)

6: 76& : 3 8

'.*

6A

7# % %8

!$ 7! $ %8 */ *9 (.

(; (* ''; ';. '/4 '9) '9( '). '4;

'** '(* .B. ../ .;4 .4/ .4* .*/

H1 /;

.9;

=% 'BB

>=% ..4

>% */

6 + '94

6 '.B

6 K ./. ./;

6 % L .*

6 % 'B(

6 % 1 % '4) '*) .*B

6 % '4/

6+ %& )4 ((

6+ L .. 9B '49 ../

:%>% '4(

6+ % '4/

6+ %& .9(

6+ L & .9*

6+ '4/ .*B

6% % ..B

6 '*.

6= & )(

6 D= .(/

6 % 2 '9(

6 % '49

6 D K ').

6 % '9(

6 ..(

6= - ()

$ % % $

$&M 13$22 7$$8 )) 4* *B ''4

$1 % 'BB 'B9 ''; ')/

$ *

$ ) ./.

$ L .B .. .4

.*

$ .4) .*)

$ ./;

$% ..4

$ ../

$ ..) .;9 ./9

$ ';B

$1L .)9 .))

$ < K (/ '/4 .)9 .))

$ D ''* ''(

$ & '*/

Page 330: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

$ 1 '*'

$A

'9B '9;

$ L .9'

$ * )9 4; (. (/ ()

$ 4/4 '*(

$ ../ ..4

.;. .;;

..(

$ ...

$ ..'

$> '9)

$ A

'./

= '4;

= '4.

+ *'

+ '4;

.;9

% D '4;

$ A

= ..4

+ '4.

+ .)'

.9'

% '.; .;9

'4. '4;

% D '4.

$ + .9'

$ (/

.;;

./; .9.

$ *' *. .4( .*/

.(; .(/

;B9

/9

>D .9;

>D .9;

%& *;

//

$ % .9;

$ ('

$ .9. .9) .).

= .99

1 .99

$ ; 'B ') 'B* ''B '4' '*B

'(. '(4 '(* .BB .B. .B) .B( .'B ...

.B'

% .''

;B9

.'.

1 .B4 ;B/

3 D % ;B.

$ .4) .*B .((

$ .B)

$ % .9B

$ '/)

$ *;

$ %& '.B

$ >= 'BB

$ K ').

$ 1 '*4

$1A

D .)93.)4

$1 .9B

%& ./9

$ ! ..)3.;' .;)

$1 9 '' )/ (' (. ./.

$ '/;

$ ')'

$ D '9; '9)

$ ('

$< K 9B 9.

$ .)' .).

!A

'(.

% '('

! & ';B

! .49

!3 .)9 .))

! &> '9)

! %& ''9

! ((

K (4 '9)

> 'BB 'B' 'B; 'B/ '''

./;

!$ 7! $ %8 '/

)/ )4 *;3*9 (. (; (* ''; ';. '/4 '9)

'9( '). '4; '** '(* .BB .B. ../ .;4

.4/ .4/ .49 .4) .4* .4( .*/ .*(

!$ %& D (4

!$ % % .4/

! + L '*

! & './

! A

$ ..)3.;)

..* .;9

.;)

! ;;

! H1 ;/ /;

! & '49

!>& ;9

!>& % % 9(

!>& % 9(

!>& % !$

!3H1 ;) ;* /* )43)( 4/

'/) '4) .;4 ./)

! ;/ ;9 4;

! ./;

! 49

! *

"/E :

Page 331: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

!R 2 ..' ./9

! % )4

! .)(

! '*(

! (4 '9)

! ./;

! +> ').

! .)*

! ..;

! .'*

! .9B

!N A

+ L '49

!R 2 ..'

L '/ .;4

L .(;

;B/

..(

;B/

1 ;B/

..'

!N % ;B/

!N =% '9/

! & .

!%= - ./) .)B .);

!%& . ; )/

+ )4 ((

';.

!%& D 'B /* 9B )) 4; (' 'B*

'4B '4; '4/ .'* ../ .49

!%& 94 ')(

!%& >% D 94 .*B

!%& D %& .4/

!%& '4.

!% % !$

.4/

! .*(

! 49

! A

& (/

& .;;

() .)9 .))

1 .)9 .))

3@11 '9B

(/

& ./; .9.

.9B .)(

5 1 3 9B

& /.

! & ;*

! = .9B

! A

& *' *. .4( .*/

& >= 'BB

& .(; .(/

K& ;B/

& ;B9

%& ))

& /9

'44

>D & .9;

.9'

& //

% (4

% *;

> 4(

! N L .(;

! * .49

! D= *

! )) .4)

')'

! A

% *

)9 )) '9) '9( ')'

! - % 44

! - % .*)

! - %= .)B .);

! - + .)/

! .49

'*'

! A

% D= .(;

4 )9

'./

) .'( ./.

) )9 .'(

! K ;

! * '4' ./) .*)

! ';

! )) (. .('

! )/ )) (' .('

! )) (. .('

! & .(*

! /; '49 '44 .*/ .(*

! A

!R 2 ./9

./;

:% '*B

4 )9 '9/ '4B

! % )/

! % '4B

! %+ '4B

! D 9

! .(/

%& ' .

! '( (( '9( '). ;B/

! %> ..'

! %& .

! A

*) .B;

.B*

% .B* .'B

"/E :

Page 332: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

! './

! % ;4

! / *

& ')'

'// .*)

.;*

= .*)

'99 '9* .*)

'//

% .( /9

53$ '9)

! %& ';

! K % '/)

! .(;

! 3L K / '; .9 .) //

/4 4. (. .(;

! ' )9

! L ;/ ;)

! 99

! '94

! '/ ()

! (4 '** .*43.*( ;BB

! A

.49

'./

% .)' .).

.49

& % .)'

% % .)'

% % .)'

! ..'

! ..(

! % ..'

! > ./9

! A

= .*/

.4(

!% A

.4(

> ;B;

'' '.9

> .'B .''

! & /. (4

! .*(

! D % .;9

! & % % .B

! % ../

!> .;9

!> L .(

! ./;

! A

> ''

.;9

% .;9

.;*

! & + 'B.

! ''B

! 'B4

= % % 'B*

'B(

! A

.)(

'*9

&1 ../ ..)

%A

.9;

%> %% .9/

%A

& .9;

.9;

> .9/

% .9;

.)9

% .9.

% % 4*

& ')B ')' .4)

656 & '/( '9.

'*(

% .49

.49

% .9(

% 5 .;;

% K 9*

% '.. '.(

% .)*

'B(

A

1 9 )9

; 4 (' (. '9/ '4B ;B/

./;

D )

*) .B;

.4*

> ''

3% K 4;

O% + .*/

%A

..B

./. ./;

%> ..'

%> K ..B

%> % K .;4

'B4

'(;

'(.

9 4' 4.

' 9 )9 4' 4. (.

H .(9

= 9* 4.

% -

.*)

"/E :

Page 333: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

A

*B

&2 4*

';B

./;

L .9B .9'

% .).

% .)'

./* .9B

L %& +> .)*

L / .;*

+ ..

& .B .. .4

;/ ;)

> .(

% .*

:%>% + '4(

..

&2 ;(

& .*

L N '/ .;4

+ '49

L N .(;

L .;(

L .9 ;* .;4

L D= K '/

L 9B

4)

LA

+ 9B ../

'9/

& .(; .(/

78 %% .9;

D .;* .;(

9B

% '*'

H1 .) .(;

2 A

= '')

% '')

% 4B

% % .'* ..4

% ./; .)( .4'

% 1 ;B/

% A

+ '4/

*

..*

1 '.;

./9

% .*)

& A

/)

% .''

.9.

& .

.9.

& % .B4 .B*

& ...

A

'/)

..'

A

% '.. '.(

'9B

%& ''9

& ')'

DA

& '9; '9)

'9/

.;)

.9; .9(

%& .).

?6; ';.

=% ';.

K& )

9

)) '9)

&& .;'

')' ./9

;

& ').

.'.

A

'9B

>& + .(*

9* .//

.//

& .

&1 ''

%& ';.

';.

%& ))

% L .).

./9

%& '';

+ ./)

%& ./)

%& 94

/ ./. ./; ./9

./; .9B

7# + 8

A

$ .).

- + .)/

'(4

+ .

+ .9. .9( .)9

.*;

K .B) .B4

% + ./(

"/E :

Page 334: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& 2

+ .)B

.B)

.B)

.B4 .4/

- + .)/

.4)

'B4 'B* 'B(

>& + .(*

+ .4/

2 '*'

'*.

+ .).

% .)9 .))

+ .4/

.()

A

> .)(

.9'

./. ./;

A

..)

.)9 .))

% L .)'

%A

& .B4 .B*

% .)' .).

% % + .)'

'(4

'*B

A

'B43'B(

'9( '4B .*/

& *

)) (. .('

'4B

1 '.'

%+ (. (/

& 1 ').

4 )9 './

K ;

% .4(

% *

K 4/ (' .*) .*(

.99

'';

% ''

O% .4(

1 '(/

% * (/

N ;B/

% )/

K 4 )4

K .49

K A

$ (/ '/4 .)9 .))

$ 9B 9.

((

3L / .) /4 .(;

>% 4;

4/ .*) .*(

;

( '4) '44

% '9;

2 ..; ./. ./; .// ./* .99

3 F .)*

:% () .)9 .))

'9/

31 (

(4

% '/)

3L (.

>- ()

% '/ ');

./.

K A

D ').

3L '; .9 4.

% 9*

%> ..B .;4

('

* 'B (; '9B '4' '4. .'* .(*

;B.

31 .49

= ./; ./)

31 'B .) '/) '9B '4B '*B '(4

.'B .'. .'( .('

> (

>>- '

% D '/)

> ..;

1 *'

;/

% '4'

.)*

K '9;

K& ;B/

K& )

< '9(

'B.

'B.

.//

'B)

A

L .;(

'';

% 'B/ 'B) 'B*

% .//

5 % 'B)

% ..(

'B.

.'*

"/E :

Page 335: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

A

..)3.;)

& ;B9

K *3'B (; '9B '4'3'44 .'* .(*

;B.

D *; '/*

%& '*B

'(.

.B(

% .B(

31 K .49

D .'.

'.'

= D .(;

=% A

# ;( /B

=% % ')(

=% 'BB

=% 3H1 % ;* /B

=% ';.

=% 4) .49 .*/

=% '49

=% ((

=% /;

=% >=% 4)

=% 'B/

=% ''*

= .)'

= & '4;

= & .99

= D ')( '4.

= %& .9. .9;

= .9)

= .99

= .9;

1 .99

= %& .9B

= %& .9'

= & '4. ..4

= '4)

= '.' '..

'.*

, '//

, % .)/

, & *' '4.

, % '*(

, '/; '/9 '/*

, + ;BB

, L .

> '4

, A

H1 '4)

> .(9

& .(9

% ./(

, 7,!8 .9 ;B

, '*(

,> ').

,> L %& .)*

, % '.(

, & .)9 .))

, &1 .)9 .)) .)4

, .;'

,A

%& 'B /* 9B )) 'B* '4B '4/ ../

.49

*; '/*

% ')( '4' '*B

% '*/ .B4

;

%& ''B .49

%& ('

%& 1 4(

'B

%& (;

'4*

; '*4

)

% ; (;

% 1 (*

.'( 9B

> '.B

1 . (' ''*

& *' */ '*(

% .;)

% '*9

.B;

& ')/ .49 .*(

%& '';

, %& .4/

, % & >

;B.

,>% ;

, K A

').

%& ..;

% '/)

, = .(;

, D= (.

, '.B

, .'.

, ;

, % ')'

, % & .;9

, %&A

%& .4/

D ''B

>% .*B

.4/

, % '4' ./9

, 4/

"/E :

Page 336: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

,A

& '9; '9)

%& 4; (' '4; .'* .*B

>% .*B

= ')( '4.

; (' '//

>% 'B '*4

% )9

%& ('

')( '4.

.'B

%& 'B

> ''*

% .4/ .4) .*)

;

'';

% .;9

% *.

.*)

& ')' .'B .4/

& %& '/;

';'

,A

$ ''*

%& .'*

> ('

/

, )

, /

, '

, D %& ''B

,3 .)9 .))

,3 & .).

,2 & %1 '94

,=A

.(/

*

D (.

,= % .(;

,= ';

,= K L '/

, '// .*)

,A

& ('

& ('

99

! ..(

'9/

()

%& '//

%& 99

> .4'

.9B

, &1 .;9

, & '9(

, A

. ; ''* '.B '..

% ''*

'..

%% ';B

';.

, & .;;

, () '/;3'/9 .'( .)9 .)) .4/

, D ; (' '//

, .)(

,K % = .)9

,K A

./. ./;

, A

& ..) .;9 ./9

1 .B.

, N A

..(

1 ;B/

, % ..*

, ..)

, 1 '()

, & '/* '/( ../ .;9 .;)

, .*)

, =% 4) .49

, =% ((

, % .49

, %& %& ((

, A

% ;4

% ')

.).

% (/

, .9'

.99

, A

1 .9) .9* .)B

.9) .)B

> 9.

..;

'(

H1 /;

H1 %%= 9/ 94 4B

7# $& 3H1 3H1 8

H1 + '* '4)

H1 : K 7H:8 ;B

H1 ' ') .;

;/

.(;

H1 .)

H A

4 )9 '9/ '4B

H DA

%& 94 4; .'*

>% 94 ')(

%& ')(

"/E :

Page 337: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

D ;

; 4 '4B

%& ')(

H3: ./* .).

H & /)

H A

'B(

.49

H '94

H .)/

H ';B

H .*(

H ..(

H: /*

H K %> ..B

H & % '';

H & + ''B

H % - 44

H % ('

HL & '9/

H ('

H ()

H < .9. .(*

H ;B;

H '(.

H% ./;

>+ % '*B

>& .4) .*)

1 .9) .9* .)B

&A

+ L .9*

D % .;9

: $ .9*

% .9B

& + .;9

A

'.'

.*(

%+ )/ (. '.' '9) '4B

% '9(

.49

.;*

D= *

;;

% './

*

'94

% K '9;

'9B

..4

2 K ..; ./. ./; .// ./* .99

% ()

1 %& .()

= .);

= ';.

;B'

;BB

& % .9/

5 & ''; .B4

>% D 9.

>% D 'B '4' '*B '*4 .*B

%& .*B

>% D ')(

>% .'.

& '4/

> %%= .9

> % .9/

> % .(;

% L .*

'.B

.;(

+ 'B;

> + .(9

& + .(9

& .B/

& .(;

A

% '/9 '/)

A

& '/* '/(

- '/4

% ;39 ..;

%& .).

%& %& ''B

% D )9 '*/ .B4

4 '4B

D ;

% ''(

> .)9

% A

.49

/. 4)

K> 44

% 9/

.);

.9' .9.

%& ' . ; 9 'B '' )) 4* *'

(4

%& )) '';

%& D (( ''B .49

!$ (4

(;

'B

& '/;

'';

%& D .4/

%& D .'*

%& ')(

%& D ('

%& (.

"/E :

Page 338: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

%& 1 D 4(

%& % '.)

& .9)

+ & '4; .)'

+ .9. .9( .). .)9

$ .)' .).

- .)/

% % .)'

%% % .)B

.)B

- .)/

% .).

+ & .;9

+ /

+ & .9'

D & % '4.

D '4*

D % .;9

& /9

& */

%A

.49

'./

.((

& .4'

'94

1 '(/

A

& .99

& .9)

& .).

A

& .9. .9)

.9.

= & .99

A

& % 4B

.4)

H3: ./* .).

.).

'')

.).

& .B'

D> .)9 .))

1 .B'

-% .(/

D ')( '4.

% .)*

.4( .*/

'4B

*

1 % '.;

% A

% 'B4

% 'B/ 'B) 'B*

% ;9

% ;B'

% A

> .(;

3% ''4

A

''*

5 9*

& '4'

.B(

=% > '**

D 'B .4/

%& D (;

&1 ;B;

(/

%& + .9(

%& D K ..;

'44

D '4*

.'(

% D 9

% 'B(

% *

% ''*

35% ';B

'**

> () '/4

@ = ()

@%A

% .;9

@% .(/

'9B '9;

.)9 .))

)) '9/ ').

'.'

& ').

3 F K .)*

1 9 )9

3@11 '9B

:> .'B ;B; ;B/

: % .(/

: ';.

:R 9

: D .'B ;B.

%& ('

: D .'B

:%>% + L '4( '*B

:%< K () .)9 .))

:% (4

: 7:8 ')'

: ./9

:>% % .)*

:>% .)9 .))

: .*(

"/E :

Page 339: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

:A

';

=% ''*

; '4B

% ';.

< '4'

: : :& ';.

:=3 L ./)

:A

% .9/

:1 (4

:& 2 ..B

:> 'BB 'B' 'B; 'B/ '''

: % D 9

: % ')

: .*;

: 1 & .99

: 1 = .99

: 1 .9)

: = '4)

: >D & .9;

: % % 'B4

: %% 4* .*B .*/

:2 1 '*'

: 'B*

:1 .)(

:1 ';.

: $ & .9*

: > %% ../

: .;9

: & )9 *' */ '4;

: 5 & '9(

: 5 & ');

: *B

:% /. /; 4* '49 '44 .4* .*/

. ..4

) A

"56 .B* .B(

. '*( '(/ .B/

; D '*4

*'9 .B4

.B*

& ''B ')( '4. '** '(( .B/ .4)

;B/

'4/

*/

*' */

'4;

+ ./)

N ..(

%% % + .)B

%% .9(

A

' ) )/ )) (' .'( ./. .('

D ) 4/ (.

% 4*

.//

'49 '44 .*/

% '49 '44 .*/

= .4* .*/

=A

/; .(*

K % .)9

% /;

.4/ .49

% .*(

.49

%& (.

A

.9B

/; '49 '44 .*/ .(*

9* 4.

D= ';

.);

% /; '49 '44 .*/

.//

% + .(9

L .// .9)

= % % 'B*

= K ./; ./)

.'(

DA

% .4/ .4) .*)

% '94

1 $&M 1 ./4

A

% .B9

+ ;BB

& .B/

% 'B(

'B*

'..

')( .B4 .4) .*)

'9.

''.

.*)

% ;)

.49

''; '*B '*'

A

% '';

% 'B(

.49

'B(

+ ''B '';

% 'B.

;BB

& ;B'

% ;9 '/4

. ; ''*

';.

"/E :

Page 340: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

A

'.B

.'* ..;

A

7# % %8

3H1 ;/3;) )* '4)

=% '49

')(

H1 .(;

=% 3H1 /B

H1 .;

& .(;

% ;9

> .'B

;BB

3H1 '* ;;

%> '/*

& '4)

1 % '4/

#3H1 ;/

# %& ;B;

>% %3 99

% ./)

'B(

% .*B

= % '';

= .*)

= 2 '')

= '')

= ');

A

=% ((

.);

% .)/

A

& .).

$ K ').

% .9'

656 & '/( '9.

+> ').

> '); ')/

>K ').

% .'B

& > .B(

& > .B(

& .'.

>K ');

A

&1 9 '' )/ (' (. ./.

9 ''9

'9( '). ;B/

& )

)) (. .('

.4(

& ./.

.*/

) )9 .'(

.4(

K '9/

& .*/

% .9.

.;)

A

'94

K '9;

% '/9

'(.

+ '/;3'/*

'(.

'..

&1 ;B;

%& '9

'** '*( .'. ;BB

% ./4

% % 94

% : .(/

!: '**

.*(

6!6BB'. */ '/* .B. .B; .B/ .B4

& ./; .9.

(/

'// '99 '9* .*)

'9)

31 K * ( 'B '. .) '/) '9B

'4B3'4. '*B '(4 .'B .'. .'( .49 .('

5 6 ').

.'*

% /. 4)

%& D 'B

L ..

.;9

'(;

35% ';B

>% 7& 8 *.

.49

% .*)

K .*;

A

& .4) .*B .((

.((

.9B

> K (

> .('

> ()

> ''*

> /* .)*

7# 1 3 F

K 8

> D . ) (' ''*

>D & .9;

>>- K ' '9

"/E :

Page 341: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

> .*

A

& .B)

.4) .4*

& 7 &8

! /. (4

')B ')' .4)

, '9(

, '/* '/( .;9 .;)

HL '9/

'4/

*/

*' */ '4;

5 '9(

''B ')( '4. '** '(( .B/ .4) ;B/

') '* .)

% '')

)) '9/ .4)

5 '99 '9) .4)

5 )) (4 (* ''9 '/( '9) '); ')/

.B4 .4)

.).

%%= '4;

';.

"& % .)'

" % ..;

" ; .'*

"L & + .9*

"L .9B

" % '*

" >K ').

" > + L '4

"56 ) .B* .B(

"% & .9B

"% & .9B

"% % 4*

"% % % '( .B .9 /.

% 9B

" > 'BB

" .* ''; ')' '4' .*B .(;

" .).

" ''*

" & .9'

"D & % '4;

"D '4*

"% 7% %8 .49

"D '//

1 D2 & '94

& .94

% ./)

2 '*(

A

! ..'

% % .9 /.

.4

% '')

& 49

2 '9(

'B4

% 'B4

''.

& ') '* .) .4

2 '')

'';

& '')

'(;

7:8 .9/

D ./;

% ..)

..9

& ./;

& &1 ./9

& '//

& ;

3H1 A

.4 ;B

% .*

3H1 %%= '43'( .B .;

.9 .) ;B ;; /. /;

.*(

..(

=% ')(

% & .()

% .9;

./* .9.

''* ''( ';.

K (4

% .)'

% .'* ..4

.;4

.//

''* '.B

& % .()

'9( .4)

D '94 .4/ .4) .*)

+ = .(9

-% .;9

'B (;

& ()

./;

./; .)9 .))

.)9 .))

D ; (; '/)

(/

.'B

= ');

& )) '9/ .4)

> >% 99

& & '.B

& 99

"/E :

Page 342: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& & *;

'

' / 4 )9 '4B '49 .)9 .))

.)/

% ..B

'49

N ;B/

'4B

9 ..;

.B.

.B* .'B

& .''

('

;

'4/ .*)

'()

./9

% = 'B*

% 7 8 'B4

%A

..

A

7# %8

% .B) .49

3H1 ;) )4 '/) .;4

- 44

.9(

=% 3H1 ;*

& '';

'/4

'*(

3H1 .B ;B

4B

&2 .*B

#3H1 94 '4;

% >& 9(

A

7# %8

!3H1 )(

H1 '

>+ '*B

%& &2 ))

3H1 /;

#3H1 /4

'.B

% ../

>% .)*

% .)'

% ;BB

% % '4.

% 1 9B

% > ../

> '/*

&< & % .4)

%& '.) '.(

.( /9 '/)

.B(

1 D (*

'B

U ';. .B) .B4

U>% 44 (* 'B; 'B/ .49

+ '';

5 ./)

5 .).

5 .9'

5 // .9B .9' .)(

5 ./.

5 %& .9B

5 .;9

5% (4

5 D 'B

5 1 3 9B

5 % 3 ''*

5 ''*

5 & '99 '9) .4)

'9(

53$ '9)

5> ./9

5 *

5 ';.

5 ..* .;9

5 '')

5+ '(*

% 'B. ';. '*B .BB .B)

& 'B.

& ''B

''B '';

'';

.B9

5+ 'B;

5D % ./;

5D A

1 '*.

5D ..4

5 .9B

5 A

= .9)

.*(

1 '(4

& ;B;

5 & '4;

5 A

% ./; .)( .4'

< '9(

< .*/

5 % 'B

5 A

% '.) '(9

5 & '4)

5 '/ .9' .)/

"/E :

Page 343: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

5 .*4

% ;B'

5 ..)

5 ./;

5% A

% ..)

.9B

5 '*'

5 A

$&M 13$22 7$$8 )) 4* *B

5 ./9

5 % ()

5 31 K ').

5 'B

5 & )) (4 (* ''9 '/( '9) ');

')/ .4)

.B4

.B*

5 '/; ').

5 'B

5 ';.

5 75 8 .*/ .9; .(*

5 '4. .;;

5 9*

5 1 & '44

53% '.B

5% .;9

5 ..(

5 .'*

5 % 'B)

51 '() '(4

5&& ';.

5 '9B '9;

5 3 99 9)

& '9B '9;

% '9B

.;* .;(

3L K (.

K ;/

> .)

%& ./) .9B

A

!$ '/

=% /;

!: '**

5 3 9)

#3H1 *9

>% */

.;;

''*

& '49

% .*B .*;

1 % '*)

'B4

+ .B9

> .)*3.4'

% .'* .;4

>- K ' '/ ()

>- ;'

>=% ..4

>=% .49

>% 4) ../ .*/

> % ;B;

% ./9 ;B;

& .''

D '4' ./9

.9;

= .99

1 .9)

+ & .;9

& ..)

& .;. .;;

..) ..( .;B .;' .;. .;)

.;/

5 ..(

D ; 9B .'(

> K ..;

> %& .'* ... .4/

> .)9 .))

> % .;4

% A

;4

')

% %A

%+ ;B/

% '*'

9 ''9

A

5 ').

N ;B/

..'

9

& ..'

A

;

= ''/

'..

& ../

% ; '//

% '/9 '/)

% '/9

A

%& .94

..9

1 ( .BB .;9

'*.

1 % 9. '4/ '4) '*B '*) .49 .4)

.*B .*)

1 % ;

1 + '4/

1 '()

"/E :

Page 344: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

1 .B'

1 1 & .*

1 %% 9B

1 '(4

1 & ../

5 '44

1 D '*.

1 .;)

& '*4

1 /* 'B* .B) .'* ..) .*) .(.

2 '*'

> %& ./9

'() '(4

& .;9

% .;9

')'

>% *B */

> '9

2A

% '9(

'*'

1 .B. ;B/

: *.

% & '.; .;9

% *;

D '';

% .

'//

'/4

2 '*'

.( 9B '4(

'4)

& '4. '4;

+ '94 .4/

%& ))

../ .)*

A

& .4)

& '/)

& ;B9

!$ .BB

;BB

'(.

= .9;

= .99

% 9/

.B(

> ()

> 'BB

31 '4'

% .B(

K>% (*

K>% 'B;

K>% 'B/

.9;

'9

')(

K .*)

% 4B

% '/4

& .*)

7 8 .9B

A

% ; )/ '4.3'4*

4;

.;4

& ..

*

% 2 4B

% + ./(

%+ (. (/

%+ )/ (. '.' '9) '4B

'4B

%A

'9B

% ; )/ '4. '49 '4*

%A

% 94

%% '4.

/*

.

% L .).

% % .)'

% A

& .)'

% .)'

% .)/

%A

!$ 7! $8 9( *;

! )4

% ;)

% 6 )* 4B 4* 4( *B */

% $ )* )( 49 4* 4( *;

% .9/

% >&1 ';'

% 9B

K '9)

! # 5# '('

.;)

& ;4 ;* *' .9B

& /.

& /. 9/ 4)

& ;*

&2 ;( )) 4B 4* *B *' ''; .*B .*/

& 9/

% .B/

;B.

% 'B

K 4 )4

A

1 .(/

.)/

"/E :

Page 345: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

+ .)B

1 '*.

'9 4( '.B .4(

'.B

% 9B ../

% % ../

%A

&1 'BB 'B9 ''; ')/

../

.*B

94

L = .// .9)

1 K *' ';.

1 D . (' ''*

%& 4(

% (*

1 .)*

''*

''*

; /

9

A

4' 4.

+ /

.*(

A

;B.

& .*

& L .43;B

;(

3H1 .43;B

'4)

;B/

A

)9 4' (.

/

5 ').

N ;B/

D /

A

& ...

' 9 4.

*

.;9

5 '/;

..'

...

'B* 'B( ''B

'*.

+ .4/

.49

A

'B*

')( .B4 .4) .*)

& .B*

.B)

& A

.

& ;B'

& .

& ; '/(

& D3 .).

& A

656 '/( '9.

& '/* '/(

& D )4 *' */ '*(

% 'B4

% D .;9 .;)

% D .;9

%% ';B

% '('

% + '*(

% D )4 *. '*9

% D & '4.

% D & '4;

H 7 % 3H1 8 /*

A

'/;3'/9 .'( .4/

;B/

A

!3 .)9 .))

() .)9 .))

DA

; (' '//

'9.

.4) .4*

%& ;

% .B.

..'

.9'

< '4' .*/

..(

% 94

'49

% '4/ .*)

.;)

&& ';.

= .9B

# =% ;( /B

#3H1 ;/ ;( /4 /* 9) 94 *9 '4B

'4; ../

>% 99

#% ; '/; .*) .*(

& 4 (. '9/

#%>% ''

# ''*

# .B)

#A

H < .9. .(* A

$1L< .)9 .))

& .'.

"/E :

Page 346: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

# & 2

> .)9 .))

# * )9 )) '9) '9( ')'

# % '' '.9

# L '9/

# D .*)

# '94

#1 A

& .B4 ;B/

% ;B/

#> =% '**

#> %& .B4

# 7 $ 8 ''*

# % ()

# 5# ! '('

# %& ;B. ;B;

# & ..(

# % .;)

# .;*

# ..) ..4

# % ..9

# . ..4

# '/;

# % .4*

# %A

../

# %% .49

4* .*B .*/

# %% % .*B

# % ..B

# ''*

# .9'

# 4;

# & *;

# '9B

# A

'94

.4/ .49

# % .

# % .)9

# = '.*

# ';.

# % ;

# %& '.B './ .)9

# % % .)9

# K ;/

# '9

# % .;)

# % /*

# D .B;

# % .'B ;B/ ;B9

# %A

''

.*(

> .;4

.'*

# % K '/ '); '4'

%> .;4

'9;

# % .'*

# ..;

# .B4 .4/

.B)

.*;

# 'B(

# .9) .)B

# .;' .;;

# .;/

#&A

5 1 '44

1 ../

# A

'4( '(.

#& ')(

#& ; 'B '/; ')'

#& L .'.

#& 49 '4' .'.

#& ;B/

#& ..' ;B.

#& ').

#& D '/; ')' ')/ .'B .4/ .49 .*(

#& > .B(

#& 1 ').

#& > .B(

#& ;B;

#>% .B)

#>K ');

#>% %> 99

#>% */

#>% #3H1 % 99

& .9B .9;

& 9/

& 99

- + .)/

D ..4

''.

4 )9 '9/ '4B

& = '/(

& 99

& .

+ .4/

;B;

'B(

.*)

% ;)

% A

;9 '/4

% L %%= '4 '*

% %A

& .B

% '( .B .9 /.

"/E :

Page 347: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

% 3H1 .*

% >& % 9(

% '*

.4)

>%& % .*B

FA

7 $ 8 ''*

F % % 7 8 'B4 'B*

% 'B4

F&A

= )(

'49

''B

.(*

.*/

5 '4;

% .*)

F& ..

F& .;)

F % % ..

F .9'

FA

D 4/

5 .*/

F % ./;

F> 9.

F >% .'.

F %& & '.B

FA

''

.(;

% ./;

;B/

% ;B/ ;B9

F % )9

F ';.

F % .'B

F % ./; .)9 .))

F %+ % % ;B/

F ..;

F3% % ''4

F & .B*

F % .

F D ))

FA

% '()

F .9B

F D ';'

F% ''*

FA

+ '4/

'/;

F . 9 (. (* ''9 '4/

% '4/

)) '9)

9

D>% ;

1 )) '9/ ').

> ''*

5 'B

''*

%>% ''

& ').

9

F N ..'

F % ''*

F ))

F + .*B

F3 % ''*

F & ''B ;B/

F L 4)

F % ./9

F '/)

F L ;

F DA

% .B4

.B;

))

F %& D '';

F %& > .B4

F ...

F> % .'B .''

F 9

F = ''; ')'

F= ''/

F= A

& '/(

F '';

1 .B;

& A

'4. '4;

% D ./;

A

% .)*

% .)*

&- .9.

% ./. ./;

.;(

DA

; .'(

.'(

A

>% .)9 .))

A

& 1 '*4

.)(

1 .)(

% .9.

.9'

../

"/E :

Page 348: Finite Element Method - Fluid Dynamics - Zienkiewicz and Taylor

& 2

% 9B ../

.9'

.;;

../

%& '4.

% .)B

L ./* .9B

% ./4

.9.

./. ./; .)9 .))

> .)(

.9'

% ./) .); .)/

% + .).

K ./. .)*

2 ..;

.9B

> .4'

%+ .9*

./9

& .4'

;;

% (' '9.

%&A

94

= .9'

D 1 '*.

% .9B

% % 94

''

./;

& ./. ./; .). .)(

A

; ./. ./;

.)*

./9

/ ./. ./; ./9

.9' .9.

>% .)9 .)) .)*

.;9

> /*

% ./*

% ./9

./)

.9'

1 .;)

'/4

.)*

1 .)*

.;'

./;

& .9B

% .'*

& % %&< .4)

'/ .9' .)/

.9'

A

%= - .)B

H1 ')

H1 $& '/

> .*

3H1 '( .)

3H1 .4

'(

%= - ./)

& .;)

..'

'4( '(.

A

"56 ) .B* .B(

;B/

> 7& 8 ')/ .B(

> 7& 8 '); .B(

"/E :