Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr....

88
Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai [email protected] 012-7116604 Feb 2012 1

Transcript of Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr....

Page 1: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Finite Element MethodMSM 1333

Chapter 3.2

spring & truss

Prepared by:

Dr. Yeak Su Hoe

C22-432, U.T.M. Skudai

[email protected]

012-7116604

Feb 20121

Page 2: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Problem

Analyze the behavior of the system composed of the two springs loaded

k1 k2

F1x F2x F3xx

Spring theory

Analyze the behavior of the system composed of the two springs loaded

by external forces as shown above

Given

F1x , F2x ,F3x are external loads. Positive directions of the forces are

along the positive x-axis

k1 and k2 are the stiffnesses of the two springs

2

Page 3: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Solution

Step 1: In order to analyze the system we break it up into smaller parts,

i.e., “elements” connected to each other through “nodes”

k1 k2

F1x F2x F3xx

k k2F1x F2x F3x

Spring theory

k1k2F1x F2x F3x

x

1 2 3

Element 1 Element 2

Node 1d1x d2x

d3x

Unknowns: nodal displacements d1x, d2x, d3x,

3

Page 4: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Solution

Step 2: Analyze the behavior of a single element (spring)

k1k2F1x F2x F3x

x

1 2 3

Element 1 Element 2

Node 1d1x d2x

d3x

Spring theory

© 2002 Brooks/Cole Publishing / Thomson Learning™

Two nodes: 1, 2

Nodal displacements:

Nodal forces:

Spring constant: k

1xd 2xd

1xf2xf

4

Page 5: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Spring theory

© 2002 Brooks/Cole Publishing / Thomson Learning™

Local ( , , ) and global (x,y,z) coordinate systemsx y z

5

Page 6: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

F

d

F

x

k

k

k

1

Behavior of a linear spring (recap)

Spring theory

d kd

Hooke’s Law

F = kd

F = Force in the spring

d = deflection of the spring

k = “stiffness” of the spring

6

Page 7: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

© 2002 Brooks/Cole Publishing / Thomson Learning™

1xf2xf

Hooke’s law for our spring element

)dd(k f 1x2x2x −= Eq (1)

Force equilibrium for our spring element (recap free body diagrams)

Spring theory

Force equilibrium for our spring element (recap free body diagrams)

0ff 2x1x =+

)dd(k ff 1x2x2x1x −−=−=⇒ Eq (2)

Collect Eq (1) and (2) in matrix form

dkf =

32143421321d

2x

1x

kf

2x

1x

d

d

kk-

k-k

f

f

=

Element force

vector

Element nodal

displacement

vector

Element

stiffness

matrix 7

Page 8: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Note

1. The element stiffness matrix is “symmetric”, i.e.

2. The element stiffness matrix is singular, i.e.,

The consequence is that the matrix is NOT invertible. It is not

possible to invert it to obtain the displacements. Why?

0)k(det 22 =−= kk

kk =T

Spring theory

possible to invert it to obtain the displacements. Why?

The spring is not constrained in space and hence it can attain multiple

positions in space for the same nodal forces e.g.,

=

=

=

=

2

2-

4

3

22-

2-2

f

f

2

2-

2

1

22-

2-2

f

f

2x

1x

2x

1x

8

Page 9: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Solution

Step 3: Now that we have been able to describe the behavior of each

spring element, lets try to obtain the behavior of the original structure

by assembly

Split the original structure into component elements

Element 1k11 2

Element 2

k22 3

Spring theory

32143421321)1()1()1(

d

(1)

2x

(1)

1x

k

11

11

f

(1)

2x

(1)

1x

d

d

kk-

k-k

f

f

=

32143421321)2()2()2(

d

(2)

2x

(2)

1x

k

22

22

f

(2)

2x

(2)

1x

d

d

kk-

k-k

f

f

=

Eq (3) Eq (4)

k11 2

(1)

1xd(1)

1xf (1)

2xf(1)

2xd

k22 3

(2)

1xd(2)

1xf(2)

2xf(2)

2xd

9

Page 10: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

To assemble these two results into a single description of the response of

the entire structure we need to link between the local and global variables.

Question 1: How do we relate the local (element) displacements back to

the global (structure) displacements?

k1k2F1x F2x F3x

x

1 2 3

Spring theory

1 2 3

Element 1 Element 2

Node 1d1x d2x

d3x

3x

(2)

2x

2x

(2)

1x

(1)

2x

1x

(1)

1x

dd

ddd

dd

=

==

=Eq (5)

10

Page 11: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Hence, equations (3) and (4) may be rewritten as

=

2x

1x

11

11

(1)

2x

(1)

1x

d

d

kk-

k-k

f

f

=

3x

2x

22

22

(2)

2x

(2)

1x

d

d

kk-

k-k

f

f

Or, we may expand the matrices and vectors to obtain

1x11(1)

1x

d

d0kk

ˆf

=

1x

(2)d

d

kk0

000

f

0

−=

Spring theory

Eq (6) Eq (7)

32144 344 21321d

3x

2x

1x

k

11

f

(1)

2x

1x

d

d

000

0kk-

0

f

)1()1(

=

ee

32144 344 21321d

x3

2x

k

22

22

f

(2)

2x

(2)

1x

d

d

kk-0

kk0

f

f

)2()2(

−=

ee

Expanded element stiffness matrix of element 1 (local)

Expanded nodal force vector for element 1 (local)

Nodal load vector for the entire structure (global)

e)1(

ke)1(

f

d

11

Page 12: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Question 2: How do we relate the local (element) nodal forces back to

the global (structure) forces? Draw 5 FBDs

k1k2F1x F2x F3x

x

1 2 3

d1x d2xd3x

A B C D

2 3

0f-F:3nodeAt

0ff-F:2nodeAt

0f-F:1nodeAt

(2)

2x3x

(2)

1x

(1)

2x2x

(1)

1x1x

=

=−

=

© 2002 Brooks/Cole Publishing / Thomson Learning™

(1)

1xf (1)

2xf(2)

1xf (2)

2xf2xF1xF 3xF

12

Page 13: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

In vector form, the nodal force vector (global)

+=

=(2)

2x

(2)

1x

(1)

2x

(1)

1x

3x

2x

1x

f

ff

f

F

F

F

F

Recall that the expanded element force vectors were

(1) 0f

Spring theory

=

=(2)

2x

(2)

1x

)2((1)

2x

(1)

1x)1(

f

f

0

f and

0

f

f

fee

Hence, the global force vector is simply the sum of the expand element

nodal force vectors

ee )2()1(

3x

2x

1x

ff

F

F

F

F +=

=

13

Page 14: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

dkf anddkf(2)e)2((1)e)1(

==ee

But we know the expressions for the expanded local force vectors from

Eqs (6) and (7)

dkkdkdkffF(2)e(1)e(2)e(1)e)2()1(

+=+=+=

ee

Hence

Spring theory

dKF =

matricesstiffnesselementexpandedofsum

matrixstiffnessGlobalK

vectorntdisplacemenodalGlobald

vectorforcenodalGlobalF

=

=

=

=

14

Page 15: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

For our original structure with two springs, the global stiffness matrix is

−+

=

k

22

22

k

11

11

kk-0

kk0

000

000

0kk-

0kk

K

)2()1(

44 344 2144 344 21ee

Spring theory

−+

=

22

2211

11

kk

kk-0

kkkk-

0kk

NOTE

1. The global stiffness matrix is symmetric

2. The global stiffness matrix is singular15

Page 16: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

The system equations imply

3x

2x

1x

22

2211

11

3x

2x

1x

dkdkF

d

d

d

kk-0

kkkk-

0kk

F

F

F

−=

−+

=

dKF =

Spring theory

3x22x23x

3x22x211x12x

2x11x11x

dkd-kF

dkd)kk(d-kF

dkdkF

+=

−++=

−=

These are the 3 equilibrium equations at the 3 nodes.

16

Page 17: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

k1k2F1x F2x F3x

x

1 2 3

d1x d2xd3x

A B C D

© 2002 Brooks/Cole Publishing / Thomson Learning™

(1)

1xf (1)

2xf(2)

1xf (2)

2xf2xF1xF 3xF

2 3

Spring theory

0f-F:3nodeAt

0ff-F:2nodeAt

0f-F:1nodeAt

(2)

2x3x

(2)

1x

(1)

2x2x

(1)

1x1x

=

=−

=( ) (1)

1x2x1x11x fddkF =−=

( ) ( )(2)

1x

(1)

2x

3x2x22x1x1

3x22x211x12x

ff

ddkddk

dkd)kk(d-kF

+=

−+−−=

−++=

( ) (2)

2x3x2x23x fdd-kF =−=

17

Page 18: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Notice that the sum of the forces equal zero, i.e., the structure is in static

equilibrium.

F1x + F2x+ F3x =0

Given the nodal forces, can we solve for the displacements?

Spring theory

To obtain unique values of the displacements, at least one of the nodal

displacements must be specified.

18

Page 19: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Direct assembly of the global stiffness matrix

k1k2F1x F2x F3x

x

1 2 3

Element 2

Global

Spring theory

Element 1 Element 2d1x d2x

d3x

Element 1k11 2

(1)

1xd(1)

1xf (1)

2xf(1)

2xd

Element 2

k22 3

(2)

1xd(2)

1xf(2)

2xf(2)

2xd

Local

19

Page 20: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Node element connectivity chart : Specifies the global node number

corresponding to the local (element) node numbers

ELEMENT Node 1 Node 2

1 1 2 Global node number

Local node number

Spring theory

2 2 3

20

Page 21: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

=

11

11)1(

kk-

k-kk

Stiffness matrix of element 1

d1x

d2x

d2xd1x

Stiffness matrix of element 2

=

22

22)2(

kk-

k-kk

d2x

d3x

d3xd2x

Global stiffness matrix

Spring theory

Global stiffness matrix

+=

22

2211

11

kk-0

k-kkk-

0k-k

K d2x

d3x

d3xd2x

d1x

d1x

Examples: Problems 2.1 and 2.3 of Logan

21

Page 22: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Trusses: Engineering structures that are composed only of

two-force members. e.g., bridges, roof supports

Actual trusses: Airy structures composed of slender members

(I-beams, channels, angles, bars etc) joined together at their

ends by welding, riveted connections or large bolts and pins

Gusset plate

A typical truss structure

22

Page 23: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Ideal trusses:

Assumptions

• Ideal truss members are connected only at their ends.

• Ideal truss members are connected by frictionless pins (no

moments)

• The truss structure is loaded only at the pins• The truss structure is loaded only at the pins

• Weights of the members are neglected

A typical truss structure

Frictionless pin 23

Page 24: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

These assumptions allow us to idealize each truss member

as a two-force member (members loaded only at their

extremities by equal opposite and collinear forces)

member in

compression

Trusses

member in

tension

Connecting pin

24

Page 25: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

FEM analysis scheme

Step 1: Divide the truss into bar/truss elements connected to each

other through special points (“nodes”)

Step 2: Describe the behavior of each bar element (i.e. derive its

stiffness matrix and load vector in local AND global coordinate

system)system)

Step 3: Describe the behavior of the entire truss by putting together the

behavior of each of the bar elements (by assembling their stiffness

matrices and load vectors)

Step 4: Apply appropriate boundary conditions and solve

25

Page 26: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

L: Length of bar

Stiffness matrix of bar element

© 2002 Brooks/Cole Publishing / Thomson Learning™

E, A

Trusses

L: Length of bar

A: Cross sectional area of bar

E: Elastic (Young’s) modulus of bar

:displacement of bar as a function of local coordinate bar

The strain in the bar at x

xd

ud)xε( =

x)x(u

The stress in the bar (Hooke’s law)

)xε( E)x( =σ26

Page 27: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

EAε)xT( =

Tension in the bar

2x1x dL

xd

L

x1)x(u +

−=

x

Assume that the displacement is varying linearly along the bar)x(u

2xd

1xd 2x1x dL

xd

L

x1)x(u +

−=

x

L

Trusses

2x1xLL

Then, strain is constant along the bar: L

dd

xd

udε

1x2x −==

Stress is also constant along the bar: ( )1x2x ddL

EEε −==σ

Tension is constant along the bar: {

( )1x2x

k

ddL

EAEAεT −==

The bar is acting like a spring with stiffnessL

EAk =

27

Page 28: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Springs theory

© 2002 Brooks/Cole Publishing / Thomson Learning™

E, A

Two nodes: 1, 2

Nodal displacements: 1xd 2xd

=dElement /local nodal

displacement vector

Trusses

Nodal displacements:

Nodal forces:

Spring constant:

1xd 2xd

1xf2xf

L

EAk =

dkf =

32143421321d

2x

1x

kf

2x

1x

d

d

kk-

k-k

f

f

=

Element force

vector

Element nodal

displacement

vector

Element

stiffness

matrix

Element stiffness matrix in local coordinates

28

Page 29: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

2 bars cases

E1, A1

E2, A2

L1L2

This is equivalent to the following system of springs

Trusses

1

111

L

AEk =

x

1 2 3Element 1 Element 2

d1x d2xd3x

2

222

L

AEk =

PROBLEM

29

Page 30: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Problem 1: Find the stresses in the two-bar assembly loaded as shown

belowE, 2A

E, A

LL

2EAk =

EAk =

Solution: This is equivalent to the following system of springs

12 3

P

1

2EAk

L=

x

1 2 3Element 1 Element 2

d1x d2xd3x

2

EAk

L=

We will first compute the displacement at node 2 and then the stresses

within each element

30

Page 31: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

The global set of equations can be generated using the technique

developed in the springs theory

1 1 1x 1x

1 1 2 2 2 2

2 2 3 3

0 d F

0

x x

x x

k k

k k k k d F

k k d F

− + − = −

here1 3 20

x x xd d and F P= = =

Trusses

here1 3 20

x x xd d and F P= = =

Hence, the above set of equations may be explicitly written as

1 2 1

1 2 2

2 2 3

(1)

( ) (2)

(3)

x x

x

x x

k d F

k k d P

k d F

− =

+ =

− =

From equation (2) 2

1 2 3x

P PLd

k k EA= =

+

31

Page 32: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

To calculate the stresses:

For element #1 first compute the element strain

(1) 2 1 2

3

x x xd d d P

L L EAε

−= = =

and then the stress as

(1) (1)

3

PE

Aσ ε= = (element in tension)

Trusses

Similarly, in element # 2

3A

(2) 3 2 2

3

x x xd d d P

L L EAε

−= = − = −

(2) (2)

3

PE

Aσ ε= = − (element in compression)

32

Page 33: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

© 2002 Brooks/Cole Publishing / Thomson Learning™

Trusses

© 2002 Brooks/Cole Publishing / Thomson Learning™

Inter-element continuity of a two-bar structure

33

Page 34: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Bars in a truss have various orientations

member in

compression

Trusses

member in

tension

Connecting pin

34

Page 35: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

x

y

θ

1x1x f,d

2x2x f,d

1x1x f,d

1y1y f,d

2y2y f,d

2x2x f,d

x

y

At node 1: At node 2:

1y 1yˆ ˆd , f 0=

2y 2yˆ ˆd , f 0=

Trusses

At node 1: At node 2:

1xd

1yd1xdθ

1yd

2xd

2yd2xd

θ

2yd

1xf

1yf1xf

θ

1yf 0=

2xf

2yf2xf

θ

2yf 0=

35

Page 36: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

In the global coordinate system, the vector of nodal displacements

and loads

=

=

2y

2x

1y

1x

2y

2x

1y

1x

f

f

f

f

f;

d

d

d

d

d=d

Global nodal

displacement

vector

=dElement /local nodal

displacement vector

Trusses

Our objective is to obtain a relation of the form

144414

dkf×××

=

Where k is the 4x4 element stiffness matrix in global coordinate system

36

Page 37: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

The key is to look at the local coordinates

=

2x

1x

2x

1x

d

d

kk-

k-k

f

f

L

EAk =

x

y

θ

1x1x f,d

2x2x f,d

x

y

1y 1yˆ ˆd , f 0=

2y 2yˆ ˆd , f 0=

Trusses

L

Rewrite as

=

2y

2x

1y

1x

2y

2x

1y

1x

d

d

d

d

0000

0k0k-

0000

0k-0k

f

f

f

f

dkf =

37

Page 38: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

NOTES

1. Assume that there is no stiffness in the local y direction.

2. If you consider the displacement at a point along the local x direction as

a vector, then the components of that vector along the global x and y

^

Trusses

directions are the global x and y displacements.

3. The expanded stiffness matrix in the local coordinates is symmetric and

singular.

38

Page 39: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

NOTES

5. In local coordinates we have

But or goal is to obtain the following relationship

Hence, need a relationship between and

144414

dkf×××

=

144414

dkf×××

=

d d

f f

Trusses

and between and

df f

=

=

2y

2x

1y

1x

2y

2x

1y

1x

d

d

d

d

d

d

d

d

d

d

Need to understand how

the components of a

vector change with

coordinate

transformation

1xd

1yd1xdθ

1yd

2xd

2yd2xd

θ

2yd

39

Page 40: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Transformation of a vector in two dimensions

θ

xy

yv

x

y

v

xvxv

yv

θ

yv cos θ

xv sin θ

Angle θ is measured

positive in the

counter clockwise

direction from the +x

axis)

Trusses

xv cos θx

yv sin θ

x x y

y x y

v v cos θ v sin θ

v v sin θ v cos θ

= +

= − +

The vector v has components (vx, vy) in the global coordinate system and

(vx, vy) in the local coordinate system. From geometry^ ^

40

Page 41: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

x x

y y

v vcos θ sin θ

v vsin θ cos θ

=

In matrix form

Or

x x

y y

v v

v v

l m

m l

=

− where

θ

θ

sin

cos

=

=

m

l

Direction cosines

Trusses

y y θsin=m

Transformation matrix for a single vector in 2D

−=

lm

ml*T

*v T v=

x x

y y

v vv and v

v v

= =

relates

where are components of the same

vector in local and global

coordinates, respectively.

41

Page 42: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

d dRelationship between and for the truss element

=

1y

1x*

1y

1x

d

dT

d

dAt node 1

At node 2

=

2y

2x*

2y

2x

d

dT

d

d

Putting these together

1xd

1yd1xdθ

1yd

d

2yd2xd

θ

2yd

Putting these together

321444 3444 21321

d

2y

2x

1y

1x

Td

2y

2x

1y

1x

d

d

d

d

00

00

00

00

d

d

d

d

−=

lm

ml

lm

ml

dTd =

=

×*

*

44 T0

0TT

2xd

42

Page 43: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Relationship between and for the truss elementf f

=

1y

1x*

1y

1x

f

fT

f

fAt node 1

At node 2

=

2y

2x*

2y

2x

f

fT

f

f

Putting these together

1xf

1yf1xf

θ

1yf

2yf2xf

θ

2yf

Putting these together

321444 3444 21321

f

2y

2x

1y

1x

Tf

2y

2x

1y

1x

f

f

f

f

00

00

00

00

f

f

f

f

−=

lm

ml

lm

ml

fTf =

=

×*

*

44 T0

0TT

2xf

43

transformation matrix T

is orthogonal,

TTT

1=

Use the property that l2+m2=1

Page 44: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Putting all the pieces together

ˆ

dkf =

x

y

θ

f,d

2x2x f,d

y

1y1y f,d

2y2y f,d

fTf =

dTd =

Trusses

( )dTkTf

dTkfT

k

1

43421−

=⇒

=⇒1x1x f,d

x

The desired relationship is144414

dkf×××

=

Where 44444444

TkTk××××

=T is the element stiffness matrix in the

global coordinate system

44

Page 45: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

−=

lm

ml

lm

ml

00

00

00

00

T

=

0000

0k0k-

0000

0k-0k

k

Trusses

−−

−−

−−

−−

==

22

22

22

22

L

EATkTk

mlmmlm

lmllml

mlmmlm

lmllml

T

45

Page 46: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Computation of the direction cosines

L

1

2

θ

(x1,y1)

(x2,y2)

L

yym

L

xxl

12

12

sin

cos

−==

−==

θ

θ

Trusses

What happens if I reverse the node numbers?

L

2

1

θ

(x1,y1)

(x2,y2)

mL

yym

lL

xxl

−=−

==

−=−

==

21

21

sin'

cos'

θ

θ

Question: Does the stiffness matrix change?46

Page 47: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

© 2002 Brooks/Cole Publishing / Thomson Learning™

Example Bar element for stiffness matrix evaluation

o30

60

2

1030

2

6

=

=

=

×=

θ

inL

inA

psiE

130sin

2

330cos

==

==

m

l

Trusses

2

130sin ==m

( )( )in

lb

−−

−−

−−

−−

×=

4

1

4

3

4

1

4

34

3

4

3

4

3

4

3

4

1

4

3

4

1

4

34

3

4

3

4

3

4

3

60

21030k

6

47

Page 48: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

© 2002 Brooks/Cole Publishing / Thomson Learning™

Computation of element strains

[ ]

d

d

d

d

0101L

1

L

ddε

2y

2x

1y

1x

1x2x

−=−

=

Recall that the element strain is

Trusses

[ ]

[ ] dT0101L

1

d0101L

1

d 2y

−=

−=

L

dd

xd

udε

1x2x −==

( )1x2x ddL

EEε −==σ

{( )1x2x

k

ddL

EAEAεT −==

L

EAk =

48

Page 49: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

[ ]

[ ]−−=

−−=

d1

d

00

00

00

00

0101L

mlml

lm

ml

lm

ml

Trusses

[ ]

[ ]

−−=

−−=

2y

2x

1y

1x

d

d

d

d

L

1

dL

1

mlml

mlml

49

Page 50: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Computation of element stresses stress and tension

( ) [ ]dL

Edd

L

EEε 1x2x mlml −−=−==σ

Recall that the element stress is

Recall that the element tension is

Trusses

[ ]EA

T EAε dL

l m l m= = − −

Recall that the element tension is

L

dd

xd

udε

1x2x −==

( )1x2x ddL

EEε −==σ

{( )1x2x

k

ddL

EAEAεT −==

L

EAk =

50

Page 51: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Steps in solving a problem

Step 1: Write down the node-element connectivity table linking

local and global nodes; also form the table of direction cosines

(l, m)

Step 2: Write down the stiffness matrix of each element in

global coordinate system with global numbering

Step 3: Assemble the element stiffness matrices to form the

Trusses

Step 3: Assemble the element stiffness matrices to form the

global stiffness matrix for the entire structure using the

node element connectivity table

Step 4: Incorporate appropriate boundary conditions

Step 5: Solve resulting set of reduced equations for the unknown

displacements

Step 6: Compute the unknown nodal forces51

Page 52: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Node element connectivity table

ELEMENT Node 1 Node 2

1 1 2

2 2 3

3 3 1

Trusses

1

2 3

El 1

El 2

El 3

L

1

2

θ

(x1,y1)

(x2,y2)

60 60

60

52

Page 53: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

=)1(

k

Stiffness matrix of element 1

d1x

d2x

d2xd1x d1y d2y

d1y

d2y

Stiffness matrix of element 2

=)2(

k

d2x

d3x

d3xd2y d3y

d2y

d3y

d2x

Stiffness matrix of element 3

=)3(

k

d3x

d1x

d1xd3y d1y

d3y

d1y

d3x

There are 4 degrees of

freedom (dof) per element

(2 per node)

53

Page 54: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Global stiffness matrix

K

=d2x

d3xd2x

d1x

d1x

d2y

d1y

d1y d2yd3y

)2(k

)1(k

66×

d3x

d3y

How do you incorporate boundary conditions?

)3(k

54

Page 55: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Example 2

y

The length of bars 12 and 23 are equal (L)

E: Young’s modulus

A: Cross sectional area of each bar

Solve for

(1) d2x and d2y

(2) Stresses in each bar

Solution

P1

P2

1

2

3

x

El#1

El#2

45o

Trusses

Solution

Step 1: Node element connectivity table

ELEMENT Node 1 Node 2

1 1 2

2 2 3

1x

55

Page 56: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Table of nodal coordinates

Node x y

1 0 0

2 Lcos45 Lsin45

3 0 2Lsin45

P1

P2

1

2

3

x

El#1

El#2

45o

ELEMENT Node 1 Node 2

Trusses

Table of direction cosines

ELEMENT Length

1 L cos45 sin45

2 L -cos45 sin45

2 1x xl

length

−= 2 1y y

mlength

−=

1 1 2

2 2 3

56

Page 57: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Step 2: Stiffness matrix of each element in global coordinates with

global numbering

2 2

2 2(1)

2 2

2 2

EAk

L

l lm l lm

lm m lm m

l lm l lm

lm m lm m

− −

− − = − − − −

Stiffness matrix of element 1 L

dd

xd

udε

1x2x −==

( )1x2x ddL

EEε −==σ

{( )1x2x

k

ddL

EAEAεT −==

L

EAk =

Trusses

lm m lm m− −

d1x

d2x

d2xd1x d1y d2y

d1y

d2y

1 1 1 1

1 1 1 1EA

1 1 1 12L

1 1 1 1

− −

− − = − − − −

L

57

Page 58: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Stiffness matrix of element 2

d2x

d3x

d3x d3y

d2y

d3y

d2x d2y

(2)

1 1 1 1

1 1 1 1EAk

1 1 1 12L

1 1 1 1

− − − − = − −

− −

Trusses

d3y1 1 1 1− − ELEMENT Node 1 Node 2

1 1 2

2 2 3

58

Page 59: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

1 1 1 1 0 0

1 1 1 1 0 0

1 1 2 0 1 1EAK

1 1 0 2 1 12L

0 0 1 1 1 1

0 0 1 1 1 1

− −

− − − − −

= − − − − −

− −

Step 3: Assemble the global stiffness matrix

The final set of equations is

K d F=

)1(k

Trusses

0 0 1 1 1 1− −

66

K

×

=d2x

d3x

d3xd2x

d1x

d1x

d3y

d2y

d1y

d1y d2yd3y

)3(k

)2(k

59

=

=

y

x

y

x

y

x

y

x

y

x

F

F

P

P

F

F

F

d

d

d

d

d

d

d

3

3

2

1

1

1

3

3

2

2

1

1

,

Page 60: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Step 4: Incorporate boundary conditions

2

2

0

0

0

x

y

dd

d

=

P1

P2

1

2

3

x

El#1

El#2

45o

Trusses

=

=

y

x

y

x

y

x

y

x

y

x

F

F

P

P

F

F

F

d

d

d

d

d

d

d

3

3

2

1

1

1

3

3

2

2

1

1

,

0

Hence reduced set of equations to solve for unknown displacements at

node 2

2 1

2 2

2 0

0 22

x

y

d PE A

d PL

=

K d F=

60

yy Fd 33

Page 61: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Step 5: Solve for unknown displacements

1

2

2 2

x

y

P Ld E A

d P L

E A

=

Step 6: Obtain stresses in the elements

L

dd

xd

udε

1x2x −==

( )1x2x ddL

EEε −==σ

{( )1x2x

k

ddL

EAEAεT −==

L

EAk =

( ) [ ]dE

ddE

Eε mlml −−=−==σ

Trusses

For element #1: 1

1(1)

2

2

1 22 2

E 1 1 1 1

L 2 2 2 2

E( )

2L 2

x

y

x

y

x y

d

d

d

d

P Pd d

A

σ

= − −

+= + =

0

0

( ) [ ]dL

Edd

L

EEε 1x2x mlml −−=−==σ

61

Page 62: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

For element #2: 2

2(2)

3

3

1 22 2

E 1 1 1 1

L 2 2 2 2

E( )

2L 2

x

y

x

y

x y

d

d

d

d

P Pd d

A

σ

= − −

−= − =

0

0

Trusses

2L 2A

( ) [ ]dL

Edd

L

EEε 1x2x mlml −−=−==σ

62

Page 63: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Multi-point constraints

=

=

y

x

y

y

x

y

x

y

x

y

x

F

F

F

P

F

F

F

d

d

d

d

d

d

d

3

3

2

1

1

3

3

2

2

1

1

,

© 2002 Brooks/Cole Publishing / Thomson Learning™

Figure 3-19 Plane truss with inclined boundary conditions

at node 3

63

yy Fd 33

Page 64: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Problem 3: For the plane truss

P

2

3

y

El#1

El#2

El#3

P=1000 kN,

L=length of elements 1 and 2 = 1m

E=210 GPa

A = 6×10-4m2 for elements 1 and 2

= 6 ×10-4 m2 for element 32

Determine the unknown displacements and

Trusses

1x

45oDetermine the unknown displacements and

reaction forces.

Solution

Step 1: Node element connectivity table

ELEMENT Node 1 Node 2

1 1 2

2 2 3

3 1 364

Page 65: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Table of nodal coordinates

Node x y

1 0 0

2 0 L

3 L L

P

1

2

3

x

y

El#1

El#2

45o

El#3

Trusses

Table of direction cosines

ELEMENT Length

1 L 0 1

2 L 1 0

3 L

2 1x xl

length

−= 2 1y y

mlength

−=

2 1/ 2 1/ 265

L

yym

L

xxl

12

12

sin

cos

−==

−==

θ

θ

Page 66: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Step 2: Stiffness matrix of each element in global coordinates with

global numbering

2 2

2 2(1)

2 2

2 2

EAk

L

l lm l lm

lm m lm m

l lm l lm

lm m lm m

− −

− − = − − − −

Stiffness matrix of element 1

Trusses

lm m lm m− −

d1x

d2x

d2xd1x d1y d2y

d1y

d2y

9 -4

0 0 0 0

0 1 0 1(210 10 )(6 10 )

0 0 0 01

0 1 0 1

−× × =

− 66

Page 67: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Stiffness matrix of element 2

d2x

d3x

d3x d3y

d2y

d3y

d2x d2y

9 -4(2)

1 0 1 0

0 0 0 0(210 10 )(6 10 )k

1 0 1 01

0 0 0 0

× × = −

Stiffness matrix of element 3

Trusses

Stiffness matrix of element 3

9 -4(3)

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5(210 10 )(6 2 10 )k

0.5 0.5 0.5 0.52

0.5 0.5 0.5 0.5

− −

− −× × = − − − −

d1x

d3x

d3x d3y

d1y

d3y

d1x d1y

67

Page 68: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

5

0.5 0.5 0 0 0.5 0.5

0.5 1.5 0 1 0.5 0.5

0 0 1 0 1 0K 1260 10

0 1 0 1 0 0

0.5 0.5 1 0 1.5 0.5

0.5 0.5 0 0 0.5 0.5

− −

− − − −

= × −

− − − − −

Step 3: Assemble the global stiffness matrix

N/m

Trusses

0.5 0.5 0 0 0.5 0.5 − −

The final set of equations is K d F= Eq(1)

68

Page 69: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Step 4: Incorporate boundary conditions

2

3

3

0

0

0

x

x

y

dd

d

d

=

P

2

3

x

y

El#1

El#2

45o

El#3

$x

$yTrusses

y

x

y

x

F

F

d

d

1

1

1

1

3 yd 1

x45

Also, $3 0yd =

How do I convert this to a boundary condition in the global (x,y)

coordinates?

in the local coordinate system of element 3

69

=

=

y

x

y

y

x

y

x

F

F

F

PF

d

d

d

dd

3

3

2

3

3

2

2,

Page 70: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

1

1

2

3

3

x

y

y

x

y

F

F

PF

F

F

F

=

P

2

3

x

y

El#1

El#2

45o

El#3

$x

$yTrusses

y

x

y

x

F

F

d

d

1

1

1

1

3 yF 1

x45

Also,

How do I convert this to a boundary condition in the global (x,y)

coordinates?

in the local coordinate system of element 30ˆ3 =xF

70

=

=

y

x

y

y

x

y

x

F

F

F

PF

d

d

d

dd

3

3

2

3

3

2

2,

Page 71: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

$

$

3 3

33

1

2

x x

yy

dd l ml m

dm ld

= = =

Using coordinate transformations

$

$

( )

( )

3 33 3

33

1 1 1

2 2 2

1 1 1

x yx x

yy

d ddd

dd d d

+

⇒ = = − −

Trusses

( )333 3

1 1 1

2 2 2

yyy x

d d d − −

$3 0yd =

$ ( )3 3 3

3 3

10

2

0

y y x

y x

d d d

d d

⇒ = − =

⇒ − = Eq (2)

(Multi-point constraint)

71

Page 72: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Similarly for the forces at node 3Trusses

2

1,

ˆ

ˆ

3

3

3

3 ==

−=

mlF

F

lm

ml

F

F

y

x

y

x

( )

( )

+−

+

=

=

yx

yx

y

x

y

x

FF

FF

F

F

F

F

33

33

3

3

3

3

2

12

1

2

1

2

12

1

2

1

ˆ

ˆ

Eq (3)

0ˆ3 =xF

( )

0

02

33

333

=+

=+=

xy

xyx

FF

FFF

72

( )

+−

−yx FF 33

222

Page 73: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Therefore we need to solve the following equations simultaneously

K d F= Eq(1)

3 3 0y x

d d− = Eq(2)

3 3 0y x

F F+ = Eq(3)

Incorporate boundary conditions and reduce Eq(1) to

1

1

2

3

3

x

y

y

x

y

F

F

PF

F

F

F

=

0

Trusses

2

5

3 3

3 3

1 1 0

1 2 6 0 1 0 1 1 .5 0 .5

0 0 .5 0 .5

x

x x

y y

d P

d F

d F

× − =

2

3

3

0

0

0

x

x

y

dd

d

d

=

5

0.5 0.5 0 0 0.5 0.5

0.5 1.5 0 1 0.5 0.5

0 0 1 0 1 0K 1260 10

0 1 0 1 0 0

0.5 0.5 1 0 1.5 0.5

0.5 0.5 0 0 0.5 0.5

− −

− − − −

= × −

− − − − − 73

Page 74: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Write these equations out explicitly

5

2 3

5

2 3 3 3

5

3 3 3

1 2 6 0 1 0 ( )

1 2 6 0 1 0 ( 1 .5 0 .5 )

1 2 6 0 1 0 ( 0 .5 0 .5 )

x x

x x y x

x y y

d d P

d d d F

d d F

× − =

× − + + =

× + =

Eq(4)

Eq(5)

Eq(6)

Add Eq (5) and (6)

Trusses

5

2 3 3 3 31 2 6 0 1 0 ( 2 ) 0x x y x y

d d d F F× − + + = + = using Eq(3)

5

2 31 2 6 0 1 0 ( 3 ) 0x x

d d⇒ × − + = using Eq(2)

2 33x x

d d⇒ = Eq(7)

Plug this into Eq(4)5

3 3

5 6

3

1 2 6 0 1 0 ( 3 )

2 5 2 0 1 0 1 0

x x

x

d d P

d

⇒ × − =

⇒ × =

74P=1000 kN

Page 75: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

3

2 3

0 .0 0 3 9 6 8

3 0 .0 1 1 9

x

x x

d m

d d m

⇒ =

= =

Compute the reaction forces

1

1 2

52 3

0 0 .5 0 .5

0 0 .5 0 .5

1 2 6 0 1 0 0 0 0

x

y x

y x

F

F d

F d

− − − −

= ×

Trusses

2 3

3 3

3

1 2 6 0 1 0 0 0 0

1 1 .5 0 .5

0 0 .5 0 .5

5 0 0

5 0 0

0

5 0 0

5 0 0

y x

x y

y

F d

F d

F

k N

= × −

− = − 75

Page 76: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Physical significance of the stiffness matrix

In general, we will have a stiffness matrix of the form

= 232221

131211

kkk

kkk

kkk

K

Trusses

333231 kkk

And the finite element force-displacement relation

=

3

2

1

3

2

1

333231

232221

131211

F

F

F

d

d

d

kkk

kkk

kkk

76

Page 77: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Physical significance of the stiffness matrix

The first equation is

1313212111 Fdkdkdk =++Force equilibrium

equation at node 1

Columns of the global stiffness matrix

Trusses

What if d1=1, d2=0, d3=0 ?

313

212

111

kF

kF

kF

=

=

= Force along d.o.f 1 due to unit displacement at d.o.f 1

Force along d.o.f 2 due to unit displacement at d.o.f 1

Force along d.o.f 3 due to unit displacement at d.o.f 1

While d.o.f 2 and 3 are held fixed

Similarly we obtain the physical significance of the other entries

of the global stiffness matrix77

Page 78: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

ijk = Force at d.o.f ‘i’ due to unit displacement at d.o.f ‘j’

keeping all the other d.o.fs fixed

In general

Trusses

78

Page 79: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Example

P1

P2

1

2

3

x

y

El#1

El#2

The length of bars 12 and 23 are equal (L)

E: Young’s modulus

A: Cross sectional area of each bar

Solve for d2x and d2y using the “physical

interpretation” approach

Solution

45o

Trusses

1x

Solution

Notice that the final set of equations will be of the form

211 12 1

221 22 2

x

y

dk k P

dk k P

=

Where k11, k12, k21 and k22 will be determined using the “physical

interpretation” approach79

Page 80: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

F2x=k11

F2y=k21

1

2

3

x

y

El#1

El#2

To obtain the first column 11

21

k

k

apply 2

2

1

0

x

y

d

d

=

=

2

x

T1

y

2’

1δ = =

2

11.cos(45)

2δ = =

T2

F2x=k11

F2y=k21

1x x

1

11.cos(45)

2δ = =

Force equilibrium

11 1 2

21 1 2

cos(45) cos(45) 0

sin(45) sin(45) 0

x

y

F k T T

F k T T

= − − =

= − + =

∑∑

Force-deformation relations

1 1

2 2

EAT

L

EAT

L

δ

δ

=

=

d2x=1

80

Page 81: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Combining force equilibrium and force-deformation relations

( )( )

( )( )

1 2

11 1 2

1 2

21 1 2

2 2

2 2

T T EAk

L

T T EAk

L

δ δ

δ δ

+= = +

−= = −

Now use the geometric (compatibility) conditions (see figure)

11.cos(45)δ = =

Trusses

2

11.cos(45)

2δ = =

1

11.cos(45)

2δ = =

Finally

( )

( )

11 1 2

21 1 2

2( )

2 2 2

02

EA EA EAk

LL L

EAk

L

δ δ

δ δ

= + = =

= − =

81

Page 82: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

1

2

3

x

y

El#1

El#2

To obtain the second column 12

22

k

k

apply 2

2

0

1

x

y

d

d

=

=

2

x

T1

y

2’

1δ = =

2

11.cos(45)

2δ = − = −

T2

F2x=k12

F2y=k22

d2y=1

1x x

1

11.cos(45)

2δ = =

Force equilibrium

12 1 2

22 1 2

cos(45) cos(45) 0

sin(45) sin(45) 0

x

y

F k T T

F k T T

= − − =

= − + =

∑∑

Force-deformation relations

1 1

2 2

EAT

L

EAT

L

δ

δ

=

=

82

Page 83: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Combining force equilibrium and force-deformation relations

( )( )

( )( )

1 2

12 1 2

1 2

22 1 2

2 2

2 2

T T EAk

L

T T EAk

L

δ δ

δ δ

+= = +

−= = −

Now use the geometric (compatibility) conditions (see figure)

11.cos(45)δ = =

Trusses

2

11.cos(45)

2δ = − = −

1

11.cos(45)

2δ = =

Finally

( )

( )

12 1 2

22 1 2

02

2( )

2 2 2

EAk

L

EA EA EAk

LL L

δ δ

δ δ

= + =

= − = =

This negative is due to compression

83

Page 84: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

© 2002 Brooks/Cole Publishing / Thomson Learning™ 3D Truss (space truss)

84

Page 85: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

=

2x

1z

1y

1x

2x

1z

1y

1x

d

d

d

d

00k00k

000000

000000

00k00k

f

f

f

f

dkf =In local coordinate system

2z

2y

2z

2y

d

d

000000

000000

f

f

85

Page 86: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

The transformation matrix for a single vector in 3D

=

333

222

111

*T

nml

nml

nml

dTd*

=

l1, m1 and n1 are the direction cosines of x ^

z

y

x

n

m

l

θ

θ

θ

cos

cos

cos

1

1

1

=

=

=

© 2002 Brooks/Cole Publishing / Thomson Learning™© 2002 Brooks/Cole Publishing / Thomson Learning™

86

Page 87: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

Transformation matrix T relating the local and global displacement and

load vectors of the truss element

dTd =

=

×*

*

66 T0

0TT

fTf =

Element stiffness matrix in global coordinates

66666666

TkTk××××

=T

87

Page 88: Finite Element Method...Finite Element Method MSM 1333 Chapter 3.2 spring & truss Prepared by: Dr. Yeak Su Hoe C22-432, U.T.M. Skudai s.h.yeak@utm.my 012-7116604 Feb 2012 1 Problem

−−−

−−−

−−−

−−−

−−−

==

22

11

2

11111

2

111

1111

2

11111

2

1

2

11111

2

11111

11

2

11111

2

111

1111

2

11111

2

1

L

EATkTk

nnmnlnnmnl

nmmmlnmmml

nlmllnlmll

nnmnlnnmnl

nmmmlnmmml

nlmllnlmll

T

−−−2

11111

2

11111 nnmnlnnmnl

Notice that the direction cosines of only the local x axis enter the k

matrix

^

88