Finite-Element Electrical Machine · PDF fileTechnische Universität Darmstadt,...

66
Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de Dr.-Ing. Herbert De Gersem Institut für Theorie Elektromagnetischer Felder Lecture Series Finite-Element Electrical Machine Simulation in the framework of the DFG Research Group 575 „High Frequency Parasitic Effects in Inverter-fed Electrical Drives” http://www.ew.e-technik.tu-darmstadt.de/FOR575 Dr.-Ing. Herbert De Gersem summer semester 2006 Institut für Theorie Elektromagnetischer Felder

Transcript of Finite-Element Electrical Machine · PDF fileTechnische Universität Darmstadt,...

Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

Dr.-

Ing.

Her

bert

De

Ger

sem

In

stitu

t für

The

orie

Ele

ktro

mag

netis

cher

Fel

der

Lecture Series

Finite-Element Electrical Machine Simulation

in the framework of the DFG Research Group 575„High Frequency Parasitic Effects

in Inverter-fed Electrical Drives”http://www.ew.e-technik.tu-darmstadt.de/FOR575

Dr.-Ing. Herbert De Gersemsummer semester 2006

Institut für Theorie Elektromagnetischer Felder

2

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rGeneral Information

• Contact: Herbert De Gersem– email (preferred): [email protected]– 06151-164801– room 133 in this building (S2/17)

• Schedule– almost every Thursday: 15:00-16:40– (also at Thursday: 17:00-18:00

Seminar Computation Engineering)– exact schedule + contents of the lectures

→ website: http://www.ew.e-technik.tu-darmstadt.de/FOR575

• Examination: on demand

3

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rGeneral Information

• Schedule– next Thursday 27.4: no lecture !!– next lecture: Thursday 4.5– see website: http://www.ew.e-technik.tu-darmstadt.de/FOR575

4

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rForeknowledge

• Electromagnetic field theory- vector algebra + grad/div/curl- Maxwell laws + potentials- analytical solution techniques for PDEs

• Electrical machine theory- DC, induction and synchronous machines- rotating field theory, equivalent circuits, DQ-axes- ferromagnetic materials

• Numerical simulation- linear algebra, systems of equations- analyse, approximation theory

5

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rStructure

Simulation techniques• overview• FE/FD/FIT discretisation• static simulation• non-linear materials• time-harmonic and

transient simulation• modelling of motion• permanent magnet material• field-circuit coupling• hysteresis models• coil models• optimisation

Examples• DC machine • transformer• induction machine• linear machine• synchronous

machine• single-phase motor• magnetic bearing• reluctance machine• magnetic brake

lecture series

6

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rMethodology

at every simulation step• machine-theoretical considerations (e.g.)

– relevant ↔ unrelevant phenomena– linear ↔ nonlinear behaviour

• field-theoretical considerations (e.g.)– formulations (magnetoquasistatic, full Maxwell equations, ...)– spatial effects (→ circuit and/or field simulation)– skin depth (→ grid resolution)– alternating and/or rotating fields

(→ scalar or vectorial hysteresis model)• numerical considerations (e.g.)

– computer configuration, algebraic solution methods– discretisation error (space/time)– loss of accuracy for derived quantities (torque, ...)

7

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rRelated Courses (1)

electrical machines– SS Elektrische Maschinen, Antriebe und Bahnen

(Binder)– SS Elektrische Maschinen und Antriebe I und II

(Binder)– WS Electrical Machines and Drives I (Binder)– SS/WSDesign of Electrical Machines and Actuators with

Numerical Field Simulation (Binder, Funieru)

8

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rRelated Courses (2)

electromagnetic field theory & field simulation– WS Technische Elektrodynamik (Weiland)– SS: Verfahren und Anwendungen der Feldsimulation

(Weiland, Ackermann)– WS Electromagnetic Field Simulation

(De Gersem, Gjonaj)– WS Finite Elements in Electromagnetism (Munteanu)

9

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rLiterature (1)

international journal– IEEE Transactions on Magnetics– IEEE Transactions on Energy Conversion– Archiv für Elektrotechnik

international conferences• ICEM : Int. Conf. on Electrical Machines (2006: Crete)

• Compumag : Int. Conf. on the Computation of EM Fields (2007: Aachen)

• CEFC : IEEE Conf. on EM Field Computation (2006: Miami)

• EMF : Int. Workshop on Electric and Magnetic Fields (2006: France)

• SPEEDAM : Symposion on Power Electronics and Electrical Drives (2006: Capri)

• IEMDC : IEEE Int. Electric Machines and Drives Conf.

10

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rLiterature (2)

books– J.P.A. Bastos, N. Sadowski, „Electromagnetic Modeling by Finite

Element Methods“, 2003.– K. Hameyer, R. Belmans, „Numerical Modelling and Design of

Electrical Machines and Devices“, 1999.– M. Kaltenbacher, „Numerical Simulation of Mechatronic Sensors

and Actuators“, 2004.– E. Kallenbach et al., „Elektromagnete“, 2003.– ...

11

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rForeknowledge

• Electromagnetic field theory- vector algebra + grad/div/curl- Maxwell laws + potentials- analytical solution techniques for PDEs

• Electrical machine theory- DC, induction and synchronous machines- rotating field theory, equivalent circuits, DQ-axes- ferromagnetic materials

• Numerical simulation- linear algebra, systems of equations- analyse, approximation theory

12

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rSoftware

• semi-analytical- SPEED

• field simulation (commercial tools)- Ansys → TUD-EW- Maxwell (Ansoft)- MagNet (Infolytica)- Flux2d/Flux3d (Cedrat)- Opera (VectorFields)- EMStudio (CST) → TUD-TEMF

• field simulation (tools at university)- FEMAG (ETH Zürich) → TUD-EW- MEGA (Univ. Bath) → TUD-EW- Olympos (K.U. Leuven) → TUD-TEMF- Dido (TUD-TEMF) → TUD-TEMF

13

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOverview

• semi-analytical techniques (overview)• magnetic equivalent circuit• rotating-field theory• equivalent circuits + standard tests

• analytical model supported by field simulatione.g. reluctance machine

• magnetoquasistatic formulation• discretisation in space

14

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rMagnetic Equivalent Circuit (1)

Ω

= ⋅∫∫rr

B dAφ

= ⋅∫r rV H ds

Γ

Ω

magnetic flux [Wb=Vs]

electric current [A]

magnetic voltage [A]

electric voltage [V]

15

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rMagnetic Equivalent Circuit (2)

µ

S

l

φ

mV mV mVtN

I

φ φ

reluctance= magnetic resistance

coil= magnetic voltage

induced currents= magnetic inductance

m m=dV Ldtφ

m m=V R φ m t=V N I

me

1=L

Rm =lRSµ

16

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rShaded-Pole Motor (1)

coil

short-circuited ring

squirrel cage

stator bridge

17

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rShaded-Pole Motor (2)

18

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rShaded-Pole Motor (3)

stL rtL

( )st rtφ

+dL Ldt

mV

m=V

stRrtR

( )st rt+ + φR R

φ

air gap

air gap

ag+ φR

19

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rMagnetic Equivalent Circuit (3)

• but- ferromagnetic saturation ?- eddy-current effects ?- motional parts ?

20

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rMagnetic Equivalent Circuit (4)

B

H

1B

1H

µ1ν

BmR

=l

B Sφ =

ferromagnetic saturation

21

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rMagnetic Equivalent Circuit (5)

Ampère∂

= −∂

zHJrθ

=E Jθ θρ=z zB Hµ

Faraday-Lenz1 ∂∂ ⎛ ⎞− = −⎜ ⎟∂ ∂⎝ ⎠

zz

Hr j Hr r r

ρ ωµ

2 2 0′′ ′+ − =z z zr H rH j r Hωµσ

Ohm

magnetic

l µ

2=S Rπ

φ

mV

zH

rz θ

modified Bessel equation

( )( )

0m

0=

lz

I rVHI R

ξξ

1+= =

jjξ ωµσδ

skin depth( )( )

1m

0

2=

l

I RV RI R

ξπ µφξ ξ

( )( )

0m 2

1

12+

=l I Rj RR

I RR

ξδ ξµπ

22

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rMagnetic Equivalent Circuit (4)

0 50 100 150 200 250 300 350 400 450 5000

5

10

15x 105

frequency (Hz)

abs(

Rm

) (A

/Wb)

0 50 100 150 200 250 300 350 400 450 5000

10

20

30

40

50

frequency (Hz)

angl

e(R

m)

reluctance + eddy currents

23

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rAir-Gap Reluctance (1)

θ

( )mr θ

m,tooth0

=l z

r δµ

slotm,slot

0

+=

l z

hr δµ

slotting

24

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rAir-Gap Reluctance (2)

θ

( )mr θ

ct m,1 m,212

= +r r r

t

m,2

sin2=a rλ

λα

λ

( )m ct0

cos≠

= + ∑r r aλλ

θ λθ

m,1r

m,2r

25

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOverview

• semi-analytical techniques (overview)• magnetic equivalent circuit• rotating-field theory• equivalent circuits + standard tests

• analytical model supported by field simulatione.g. reluctance machine

• magnetoquasistatic formulation• discretisation in space

26

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rRotating-Field Theory (1)

( )zj θ

θ

current shield air-gap (magnetic) field

rz

θ

( ) −= ∑ jzj j e λθ

λλ

θ

( ) ( )−= ∑ j tzj j e ω λθ

λλ

θ

27

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rRotating-Field Theory (2)

= ∞µ

0=µ µ

( )zj θ

( )rH θ

= ∞µ

r

zθδ

Ampère

( ) ( ) ( )+ − =r r zH d H j Rdθ θ δ θ δ θ θ

( )=rz

dH R jd

θθ δ air-gap (magnetic) field

( ) ( )−= ∑ j trb b e ω λθ

λλ

θ

28

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rRotating Fields (1)

re im( ) Re cos sinω= = ω − ωj tI t I e I t I t

29

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rRotating Fields (2)

( )( , ) Re j tt a e ω −λθλ

λ∈Λ

⎧ ⎫⎪ ⎪θ = ⎨ ⎬⎪ ⎪⎩ ⎭∑u

( , )tθu ( , ) Re ( ) j tt e ωθ = θu u

θ

ω angular frequency

wave numberλ

synω

ω =λ

wave velocity

30

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rAngular Slip Frequency

′θ

mt′θ = θ +ω

( )( )m( , ) Re j tt a e ′ω−λω −λθλ

λ∈Λ

⎧ ⎫⎪ ⎪θ = ⎨ ⎬⎪ ⎪⎩ ⎭∑u

s,λω

angular slip frequencysame amplitudessame wave numbersdifferent frequencies

( )( , ) Re j tt a e ω −λθλ

λ∈Λ

⎧ ⎫⎪ ⎪θ = ⎨ ⎬⎪ ⎪⎩ ⎭∑u

θ

31

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOverview

• semi-analytical techniques (overview)• magnetic equivalent circuit• rotating-field theory• equivalent circuits + standard tests

• analytical model supported by field simulatione.g. reluctance machine

• magnetoquasistatic formulation• discretisation in space

32

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rEquivalent Circuits (1)

induction machine

stator

stator endwindings

rotor

rotor ring

shaft (omitted)

cooling ducts

stator slot

rotor slot

33

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rEquivalent Circuits (2)

equivalent circuit

XR1

U_ 1

I_1

R2'1σX

h1X

I_ 0

2σ'

I_ 2'

RFe

I RFe_ (1-s)

sR2'______I_µ

34

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rEquivalent Circuits (3)

no-load test

R1 X

X hE

I 0

U0,line3

P03

RFe

35

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rEquivalent Circuits (4)

short-circuit test

R1 X 1σ R'2Xσ2'

Rk Xk

I kPk3

Uk,line3

36

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOverview

• semi-analytical techniques (overview)• magnetic equivalent circuit• rotating-field theory• equivalent circuits + standard tests

• analytical model supported by field simulatione.g. reluctance machine

• magnetoquasistatic formulation• discretisation in space

37

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rReluctance Machine

38

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDirect- & Quadrature Axis

direct axis quadrature axis

seen from one of the phases

22 tt

m

NSL NR

µ= =

lL high L low

θ

39

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rModel

( )( ) ( ) d tu t R i tdtψ

= + voltage in a coil

( ) ( )( ) ( ) ( ) ( )di t dLu t R i t L i tdt dt

θθ= + +

m( ) ( )( ) ( ) ( ) ( ) ( )di t dLu t R i t L t i t

dt dθθ ωθ

= + +

mechanical velocity

inductance L(θ) dependenton rotor angle

electromagneticfield simulation

torque ( ) co

ct,

i

dWT id

θθ =

=

40

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rApproach (1)

(first try)• magnetic field simulation

→ magnetic vector potential formulation• transversal symmetry

→ 2D model• lamination→ no eddy currents → static simulation

• important ferromagnetic saturation expected→ nonlinear simulation

41

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r2D FE Model

electric boundary conditions (Dirichlet)

electrical boundary conditions (floatingpotential)

nonlinear material

applied currents

42

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rSimulation (1)

1.27 T

spatial resolution for the permeabilitynot sufficient

43

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rApproach (2)

(second try)• magnetic field simulation

→ magnetic vector potential formulation• transversal symmetry

→ 2D model• lamination

→ no eddy currents → static simulation• important ferromagnetic saturation expected

→ nonlinear simulation

• local saturation→ adaptive mesh refinement till e.g. the relative change

of the magnetic energy < 1%

44

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r2D FE Model

4.25 T

45

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r3D End Effects (1)

coil

magneticallyactive length

end parts→ ‚fringing‘ effect→ leakage inductance

yoke length zl

aktiv z>l l

assumptions→→ leakage inductance independent of thesaturation and the rotor angle

aktiv zγ=l l

46

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rApproach (3)

(third try)• magnetic field simulation

→ magnetic vector potential formulation• transversal symmetry

→ 2D model• lamination

→ no eddy currents → static simulation• important ferromagnetic saturation expected

→ nonlinear simulation• local saturation

→ adaptive mesh refinement till e.g. the relative change of the magnetic energy < 1%

• end effects, compute and→ compare 3D and 2D models→ linear simulation (smaller grids)

γLσ

47

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r3D End Effects (2)

linear simulation

48

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r3D End Effects (3)

leakage flux

adapted scaling

49

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r3D End Effects (4)

linear models

2magn,3D 3D

12

W L i= 2magn,2D 2D

12

W L i=

3D,d 2D,dL L Lσγ= +

2D2D m

( )( ) ( )( ) ( ) ( ) ( ) ( )dLdi t di tu t R i t L t i t Ldt d dtσ

θγ θ γ ωθ

= + + +

3D,q 2D,qL L Lσγ= +

50

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rApproach (4)

(fourth try)• magnetic field simulation

→ magnetic vector potential formulation• transversal symmetry

→ 2D model• lamination

→ no eddy currents → static simulation• important ferromagnetic saturation expected

→ nonlinear simulation• local saturation

→ adaptive mesh refinement till e.g. the relative change of the magnetic energy < 1%

• end effects, compute and→ compare 3D and 2D models→ linear simulation (smaller grids)

• automate the whole procedure in order to carry out parameter variation and optimisation steps

γLσ

51

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rEnergy

-30 -25 -20 -15 -10 -5 00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

rotor angle (degrees)

mag

netic

ener

gy(J

)1 A3 A5 A7 A9 A11 A13 A15 A

52

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCoenergy

-30 -25 -20 -15 -10 -5 00

0.5

1

1.5

2

2.5

rotor angle (degrees)

mag

netic

coe

nerg

y(J

)1 A3 A5 A7 A9 A11 A13 A15 A

53

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rTorque

-30 -25 -20 -15 -10 -5 0-2

0

2

4

6

8

10

12

rotor angle (degrees)

torq

ue(N

m)

1 A3 A5 A7 A9 A11 A13 A15 A

lower accuracy

54

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOverview

• semi-analytical techniques (overview)• magnetic equivalent circuit• rotating-field theory• equivalent circuits + standard tests

• analytical model supported by field simulatione.g. reluctance machine

• magnetoquasistatic formulation• discretisation in space

55

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rEM Field Simulation

full Maxwell equations

wave equationWelec Wmagn

τPloss

Welec

Wmagn

τPloss

electroquasistatics

Welec

Wm

agn

τPloss

magnetoquasistatics

Welec

Wmagn

τPloss

56

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rMagnetoquasistatics (1)

• neglect displacement currents with respect to conducting currents– Ampère-Maxwell

• magnetic vector potential– conservation of magnetic flux

• electric scalar potential (voltage)– Faraday-Lenz

DH Jt

∂∇× = +

rr r

0= +∇×rr

B A0B∇⋅ =r

B AEt t

∂ ∂∇× = − = −∇×

∂ ∂

rrr

Ar

φ

AEt

φ∂= − −∇

rr

Welec

Wmagn

τPloss

57

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

Ampère

parabolic partial differential equation↔ elliptic PDEs (e.g. electrostatics,

magnetostatics)↔ hyperbolic PDEs (e.g. wave equation)

H J∇× =r r

( )B Eν κ∇× =r r

( )s

∂∇× ∇× + = − ∇

∂ r

rr

123J

AAt

ν κ κ ϕ

1B H Hµν

= =r r r

J Eκ=r r

conductivity

permeability

reluctivity

Magnetoquasistatics (2)

source current density

58

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOverview

• semi-analytical techniques (overview)• magnetic equivalent circuit• rotating-field theory• equivalent circuits + standard tests

• analytical model supported by field simulatione.g. reluctance machine

• magnetoquasistatic formulation• discretisation in space

59

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

• Weighted residual approach

• scalar product :

Spatial Discretisation (1)

Ωin

vectorial „weighting functions“vectorial „test functions“

( , , )iw x y zr

( ) sd dΩ Ω

⎛ ⎞∂∇ × ∇× + ⋅ Ω = ⋅ Ω⎜ ⎟∂⎝ ⎠

∫ ∫r r

rr r

i iJt

wA wAν κ ( , , )iw x y z∀r

( ) s∂

∇ × ∇× + =∂

rr r

JAt

Aν κ

( ),u v u v dΩ

= ⋅ Ω∫r r r r

60

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

• → weak formulation

( ) sd dΩ Ω

⎛ ⎞∂∇ × ∇× + ⋅ Ω = ⋅ Ω⎜ ⎟∂⎝ ⎠

∫ ∫r r

rr r

i iJt

wA wAν κ ( , , )iw x y z∀r

( ) sd dΩ Ω

⎛ ⎞∂∇ ⋅ ∇ × × + ∇× ⋅∇ × + ⋅ Ω = ⋅ Ω⎜ ⎟∂⎝ ⎠

∫ ∫r

r rr r rrri i i iw AA A w w wJ

tν ν κ

( ) ( )v w v w v w∇× ⋅ = ∇ ⋅ × + ⋅∇ ×r r r r r r

Gauss

only first derivative required„weak“ formulation

sd d d∂Ω Ω Ω

⎛ ⎞∂∇× × ⋅ Γ + ∇× ⋅∇ × + ⋅ Ω = ⋅ Ω⎜ ⎟∂⎝ ⎠

∫ ∫ ∫r r r r

rr r r r

i i i iw w w wA JtAAν ν κ

Hr

Spatial Discretisation (2)

61

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rSpatial Discretisation (3)

neumΓ

dirΓ

Ω

Jr

t 0H =r

n 0B =

dirA n A n× = ×r rr r

( )t 0H A nν= ∇× × =rr r

dirΓ

neumΓ

Dirichlet BC at

homogeneous Neumann BC at

nB n B⋅ =r r

0=

( , , )iw x y z∀r

0= dir0: ati iw w n∀ × = Γrr r

neum dir

d di iA wAwν νΓ Γ

∇× × ⋅ Γ + ∇× × ⋅ Γ∫ ∫r rrrr r

Hr

„natural“boundary condition

„essential“boundary condition

62

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rSpatial Discretisation (4)

• discretization

• Ritz-Galerkin method

• Petrov-Galerkin method

= ∑r r

j jj

uA v

„shape/form functions“, „trial functions“

dir( , , 0 at)jv x y z n× = Γrr

( , , ) ( , , )j jw x y zv x y z =rr

( , , ) ( , , )j jw x y zv x y z ≠rr

( , , )jv x y zr

unknowns, degrees of freedomju

63

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rSpatial Discretisation (5)

• nodal shape functions

• edge shape functions

( ), , =x y zϕ 11 ( , )Nu x y 2 2 ( , )+ Nu x y 3 3( , )+ Nu x y

( ) m n n mv x N N N N= ∇ − ∇r r

n

p

m km

n

nN∇

mN−∇

64

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

• discretization( , , )iw x y z∀

r

jik= if=

[ ]⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ =⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎣ ⎦j i

jji ij

duk u m f

dt K and M symmetric,semi-positive-definite

sd dΩ Ω

⎛ ⎞∂∇ × ⋅∇ × + ⋅ Ω = ⋅ Ω⎜ ⎟∂⎝ ⎠

∫ ∫r r

rr rr

i i iv v vAtA Jν κ

jj

jA vu= ∑r r

sd d dΩ Ω Ω

⎛ ⎞⎜ ⎟∇ × ⋅∇ × Ω + ⋅ Ω = ⋅ Ω⎜ ⎟⎝ ⎠

∑ ∫ ∫ ∫r r rr r ri ij j i

jj

j

dv v vv v

uu J

dtν κ

jim=

Spatial Discretisation (6)

65

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rSpatial Discretisation (7)

sd d dΩ Ω Ω

⎛ ⎞⎜ ⎟∇ × ⋅∇ × Ω + ⋅ Ω = ⋅ Ω⎜ ⎟⎝ ⎠

∑ ∫ ∫ ∫r r rr r ri ij j i

jj

j

dv v vv v

uu J

dtν κ

∇× = ∑r rj qqj

qcv z

sd d dΩ Ω Ω

⎛ ⎞⎜ ⎟⋅ Ω + ⋅ Ω = ⋅ Ω⎜ ⎟⎝ ⎠

∑ ∑∑ ∫ ∫ ∫r r rr rr

p i iq jj

j ip jqj p q

z vdu

z v vu c c Jdt

ν κ

m

n

p

FE, ,p qνM FE

, ,i jκM s,))

ij)

ja

FE FE+ =) )))% s

ddtν κaCM Ca M j

Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

Dr.-

Ing.

Her

bert

De

Ger

sem

In

stitu

t für

The

orie

Ele

ktro

mag

netis

cher

Fel

der

Lecture Series

Finite-Element Electrical Machine Simulation

http://www.ew.e-technik.tu-darmstadt.de/FOR575NEXT LECTURE : THURSDAY May 4th

Dr.-Ing. Herbert De Gersemsummer semester 2006

Institut für Theorie Elektromagnetischer Felder