Filamentary Structure and Exponential Growth...

38
Filamentary Structure and Exponential Growth of Nonlinear Ballooning Instability 1 Ping Zhu in collaboration with C. C. Hegna and C. R. Sovinec University of Wisconsin-Madison Plasma Physics Seminar Madison, WI February 16, 2009 1 Research supported by U.S. Department of Energy.

Transcript of Filamentary Structure and Exponential Growth...

Page 1: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Filamentary Structure andExponential Growth of

Nonlinear Ballooning Instability 1

Ping Zhu

in collaboration withC. C. Hegna and C. R. Sovinec

University of Wisconsin-Madison

Plasma Physics SeminarMadison, WI

February 16, 2009

1Research supported by U.S. Department of Energy.

Page 2: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

A ballooning instability in a tokamak (NIMROD simulation)

Page 3: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Filamentary structure persists during (type-I) edgelocalized modes (ELMs) in the MAST tokamak

[Kirk et al., 2006]

Both linear and nonlin-ear ELM phases.

Page 4: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

ELM filaments resemble linear ballooning modestructure

MAST [Kirk et al. , 2006] ELITE [Snyder et al. , 2005]

NIMROD [Sovinec et al. , 2006]

I Characteristics of ELM filamentsI Toroidal mode number n ∼ 15− 20I Elongated structures aligned with field linesI Persist well into nonlinear phase

I Questions to address in theory:I Why do nonlinear ELM and ballooning filaments resemble

linear ballooning structure?I What is the temporal evolution in the nonlinear regime?

Page 5: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Different nonlinear regimes of ballooninginstability are characterized by the relativestrength of the nonlinearity with powers of n−1

I Nonlinearity and ballooning parameters

ε ∼ |ξ|Leq

� 1, n−1 ∼k‖k⊥

∼Ly

Lz� 1

I For ε � n−1, linear ballooning mode theory [Coppi, 1977; Connor,

Hastie, and Taylor, 1979; Dewar and Glasser, 1983]

I For ε ∼ n−1, early nonlinear regime [Cowley and Artun, 1997; Hurricane,

Fong, and Cowley, 1997; Wilson and Cowley, 2004]

I For ε ∼ n−1/2, intermediate nonlinear regime → this talk[Zhu, Hegna, and Sovinec, 2006; Zhu et al. , 2007; Zhu and Hegna, 2008; Zhu, Hegna, and Sovinec, 2008; ]

I For ε � n−1/2, late nonlinear regime; analytic theory underdevelopment.

Page 6: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Intermediate nonlinear regime was previouslyidentified for line-tied g mode [Plasma Physics Seminar 2006]

z

x

y

g∇ρ0

Left: Equilibrium configuration; Right: ux contour of line-tied g-moded

dx0

(p0 +

B20

2

)= ρ0g · x , g = −gx , B0 = B0z

ρ0(x0) = ρc + ρh tanh (x0 + Lc)/Lρ, p0(x0) = ρ0(x0)Lρ → pedestal width; 2ρh → pedestal height

Page 7: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Transition from early nonlinear regime ε ∼ n−1 tointermediate nonlinear regime ε ∼ n−1/2

[Zhu et al. , 2007]

0 10 20 30 40 50 60 70 80 90time (τ

A)

0.0001

0.001

0.01

0.1

1

(ux) m

ax

case a_rtp032105x01

ε=n-1

(CA)

ε=n-1/2

(Int)

t1 t2 t3

I (ux)max(t = 0) = 10−3

I t1 ∼ 46: ε ∼ n−1, ux ∼ 0.008, ξx ∼ 0.1 → mode width in y ;t2 ∼ 80: ε ∼ n−1/2, ux ∼ 0.3, ξx ∼ 3.6 → mode width in x .

I t1 <∼ t <∼ t2: finger formation initiates during the transition;t2 <∼ t <∼ t3: finger pattern becomes prominent as themode proceeds through the regime ε ∼ n−1/2.

Page 8: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Exponential growth persists in intermediatenonlinear regime of the line-tied g-mode [Zhu et al. , 2007]

0 20 40 60 80 100 120time (τ

A)

1e-08

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

1

velo

city

max

ux (theory)

ux (simulation)

uz (theory)

uz (simulation)

ε=n-1

(CA)

ε=n-1/2

(Int)

I (ux)max(t = 0) = 10−5

90 100 110 120 130time (τ

A)

0.001

0.01

0.1

1

velo

city

max

ux (theory)

ux (simulation)

uz (theory)

uz (simulation)

ε=n-1

(CA)

ε=n-1/2

(Int)

I Zoom-in of the left figure

I Simulation results agree with numerical solution of thenonlinear line-tied g mode equations.

I Both simulation and numerical solution of theory indicateexponential-like nonlinear growth. Why?

Page 9: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Outline

1. Nonlinear ballooning equationsI FormulationI Analytic solution

2. Comparison with NIMROD simulationsI Simulation setupI Comparison methodI Comparison results

3. Summary and Discussion

Page 10: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

A Lagrangian form of ideal MHD is used to developthe theory of nonlinear ballooning instability

ρ0

J∇0r · ∂2ξ

∂t2 = −∇0

[p0

Jγ+

(B0 · ∇0r)2

2J2

]

+∇0r ·[

B0

J· ∇0

(B0

J· ∇0r

)]+

ρ0

J∇0r · g (1)

where r(r0, t) = r0 + ξ(r0, t),∇0 =∂

∂r0, J(r0, t) = |∇0r| (2)

The full MHD equation can be further reduced for nonlinearballooning instability using expansion in terms of ε and n−1

ξ(√

nx0, ny0, z0, t) =∞∑

i=1

∞∑j=0

εin−j2

(xξx{i,j} +

y√n

ξy{i,j} + zξz{i,j}

).

(3)

Page 11: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Nonlinear ballooning expansion is carried out forgeneral magnetic configurations with flux surfaces

I Clebsch coordinate system (Ψ0, α0, l0)

B = ∇0Ψ0 ×∇0α0 (4)

I Expansions are based on intermediate nonlinearballooning ordering ε ≡ |ξ|/Leq ∼ n−1/2 � 1

ξ(√

nΨ0, nα0, l0, t) =∞∑

j=1

n−j2

(e⊥ξΨ

j2

+e∧√

nξα

j+12

+ Bξ‖j2

)(5)

J(√

nΨ0, nα0, l0, t) = 1 +∞∑

j=0

n−j2 J j

2(6)

where e⊥ = (∇0α0 × B)/B2, e∧ = (B×∇0Ψ0)/B2.I The spatial structure of ξ(Ψ, α, l) and J(Ψ, α, l) is ordered

to be consistent with linear ideal ballooning theory:Ψ =

√nΨ0, α = nα0, l = l0.

Page 12: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

The linear local ballooning operator will continueto play a fundamental role in the nonlineardynamics

Linear ideal MHD ballooning and g modes obey

ρ∂2t ξ = L(ξ) (7)

where

L(ξ) ≡ B · ∇0(B · ∇0ξ)− [∇0(B · ∇0B) +∇0(ρg)] · ξ

−BB · ∇0

{1

1 + γβ

[B · ∇0ξ

‖ − ρB · gB2 ξ‖ −

(2κ +

ρgB2

)· ξ⊥

]}−2B · ∇0B + ρg

1 + γβ

[B · ∇0ξ

‖ − ρB · gB2 ξ‖ −

(2κ +

ρgB2

)· ξ⊥

](8)

is an ODE operator, with ξ = ξ‖B + ξ⊥ [Hurricane, Fong, and Cowley, 1997].

Page 13: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

A set of nonlinear ballooning equations for ξ aredescribed using the linear operator [Zhu and Hegna, 2008]

ρ(|e⊥|2∂α∂2t ξΨ

12

+ [ξ 12, ∂2

t ξ 12]) = ∂αL⊥(ξΨ

12, ξ‖12) + [ξ 1

2,L(ξ 1

2)], (9)

ρB2∂2t ξ‖12

= L‖(ξΨ12, ξ‖12) (10)

L⊥(ξΨ, ξ‖) ≡ e⊥ · L(ξ) (11)= B∂l(|e⊥|2B∂lξ

Ψ) + 2e⊥ · κe⊥ · ∇0pξΨ

+2γpe⊥ · κ

1 + γβ

(B∂lξ

‖ − 2e⊥ · κξΨ)

, (12)

L‖(ξΨ, ξ‖) ≡ B · L(ξ) (13)

= B∂l

[γp

1 + γβ

(B∂lξ

‖ − 2e⊥ · κξΨ)]

, (14)

[A, B] ≡ ∂ΨA · ∂αB− ∂αA · ∂ΨB. (15)

Page 14: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

The local linear ballooning mode structure andgrowth continue to satisfy the nonlinearballooning equations in Lagrangian space

I The nonlinear ballooning equations can be written in thecompact form[

Ψ + ξΨ, ρ|e⊥|2∂2t ξΨ − L⊥(ξΨ, ξ‖)

]= 0, (16)

ρB2∂2t ξ‖ − L‖(ξΨ, ξ‖) = 0. (17)

I The general solution satisfies

ρ|e⊥|2∂2t ξΨ = L⊥(ξΨ, ξ‖) + N(Ψ + ξΨ, l , t), (18)

ρB2∂2t ξ‖ = L‖(ξΨ, ξ‖). (19)

I A special solution to the nonlinear ballooning equations isthe solution of the linear ballooning equations

N(Ψ, l , t) = 0, where Ψ = Ψ + ξΨ. (20)

Page 15: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Implications of the analytic solution

I The solution is linear in Lagrangian coordinates, butnonlinear in Eulerian coordinates

ξ = ξlin(r0) = ξlin(r− ξ) = ξnon(r).

I Linear ballooning mode operator requires solution havingfilamentary structure ξ ∼ A(Ψ, α)H(l)

I Linear ballooning mode structure gives exponential growth

∂2t ξ = Lξ = Γ2A(Ψ, α)H(l) = Γ2ξ.

I Perturbation developed from linear ballooning instabilityshould continue to

I grow exponentiallyI maintain filamentary spatial structure

Page 16: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Outline

1. Nonlinear ballooning equationsI FormulationI Analytic solution

2. Comparison with NIMROD simulationsI Simulation setupI Comparison methodI Comparison results

3. Summary and Discussion

Page 17: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Simulations of ballooning instability are performedin a tokamak equilibrium with circular boundaryand pedestal-like pressure

I Equilibrium fromESC solver [Zakharov and

Pletzer,1999]

I Finite element meshin NIMRODsimulation.

0

0.02

0.04

0.06

0.08

p0

0.51

1.52

2.5

3

q

0 0.2 0.4 0.6 0.8 1

(Ψp/2π)

1/2

0

0.5

1

1.5

2

<J ||B

/B2 >

Page 18: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Linear ballooning dispersion is characteristic ofinterchange type of instabilities

0 10 20 30 40 50toroidal mode number n

0

0.05

0.1

0.15

0.2

0.25γτ

A

f_050808x01x02

I Extensive benchmarks between NIMROD and ELITE showgood agreement [B. Squires et al., 2009].

Page 19: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Simulation starts with a single n = 15 linearballooning mode

0 5 10 15 20 25 30 35 40 45time (µs)

1e-15

1e-12

1e-09

1e-06

0.001

1

1000

kine

tic e

nerg

y

n=0n=15n=30total

elecd=ndiff=0,kvisc=kperp=25,nhypd=1

mx=20,my=32,poly=5,lphi=7

f_es081908x01a

Page 20: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Isosurfaces of perturbed pressure δp showfilamentary structure (t = 30µs, δp = 168Pa)

Page 21: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

For theory comparison, we need to know plasmadisplacement ξ associated with nonlinearballooning instability

ξ connects the Lagrangian and Eulerian frames,

r(r0, t) = r0 + ξ(r0, t) (21)

In the Lagrangian frame

dξ(r0, t)dt

= u(r0, t) (22)

In the Eulerian frame

∂tξ(r, t) + u(r, t) · ∇ξ(r, t) = u(r, t) (23)

where u(r, t) is velocity field, ∂t = (∂/∂t)r, and ∇ = ∂/∂r. ξ isadvanced as an extra field in simulations.

Page 22: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Lagrangian compression ∇0 · ξ can be moreconveniently used to identify nonlinear regimes

I Nonlinearity is defined by |ξ|/Leq, but Leq is not specific.I Linear regime

∇0 · ξ = ∇ · ξ (24)

I Early nonlinear regime

∇0 · ξ ∼ λ−1Ψ ξΨ + λ−1

α ξα + λ−1‖ ξ‖ (25)

∼ n1/2n−1 + n1n−3/2 + n0n−1 ∼ n−1/2 � 1.

I Intermediate nonlinear regime

∇0·ξ ∼ λ−1Ψ ξΨ+λ−1

α ξα+λ−1‖ ξ‖ ∼ n1/2n−1/2+n1n−1+n0n−1/2 ∼ 1.

(26)I The Lagrangian compression is sensitive to nonlinearity:

matrix (I−∇ξ)−1 could become singular passing beyondintermediate nonlinear regime.

Page 23: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

The Lagrangian compression ∇0 · ξ is calculatedusing the Eulerian tensor ∇ξ

Transforming from Lagrangian to Eulerian frames, one finds

ξ(r0, t) = ξ[r− ξ(r, t), t ] (27)

∇ξ =∂ξ

∂r

=

(∂r∂r− ∂ξ

∂r

)· ∂ξ

∂r0

= (I−∇ξ) · ∇0ξ (28)

The Lagrangian compression ∇0 · ξ is calculated from theEulerian tensor ∇ξ at each time step using

∇0 · ξ = Tr(∇0ξ) = Tr[(I−∇ξ)−1 · ∇ξ]. (29)

Page 24: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Exponential linear growth persists in theintermediate nonlinear regime of tokamakballooning instability [Zhu, Hegna, and Sovinec, 2008]

0 5 10 15 20 25 30 35time (µs)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

|ξ|max

(m)

(div0ξ)

max

Int

Dotted line indicates the transition to the intermediate nonlinearregime when ∇0 · ξ ∼ O(1)

Page 25: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Lagrangian compression may also be able toidentify other nonlinear ballooning regimes

0 5 10 15 20 25 30 35 40 45time (µs)

1e-06

0.0001

0.01

1

100

10000

1e+06

1e+08

|ξ|max

(m)

(div0ξ)

max

Int

20x32,poly=5,lphi=7elecd=ndiff=0,kvisc=kperp=25,nhypd=1f_es081908x01a

I Intermediate nonlinear regime is entered ∼ 28µs.I Large ∇0 · ξ indicates transition to nonlinear regimes.

Page 26: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Perturbation energy grows with the linear growthrate into the intermediate nonlinear regime(vertical line)

0 5 10 15 20 25 30 35 40 45time (µs)

1e-15

1e-12

1e-09

1e-06

0.001

1

1000

kine

tic e

nerg

y

n=0n=15n=30total

elecd=ndiff=0,kvisc=kperp=25,nhypd=1

mx=20,my=32,poly=5,lphi=7

f_es081908x01a

Page 27: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Contours of plasma velocity and displacement ξ att = 5µs, linear phase

Re VR

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re VZ

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re VPhi

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re XiR

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re XiZ

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re XiP

2.0 2.5 3.0 3.5 4.0-1

.0-0

.50.

00.

51.

0R

Z

Page 28: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Contours of plasma velocity and displacement ξ att = 30µs, intermediate nonlinear phase

Re VR

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re VZ

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re VPhi

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re XiR

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re XiZ

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re XiP

2.0 2.5 3.0 3.5 4.0-1

.0-0

.50.

00.

51.

0R

Z

Page 29: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Contours of plasma velocity and displacement ξ att = 40µs, start of late nonlinear phase

Re VR

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re VZ

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re VPhi

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re XiR

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re XiZ

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re XiP

2.0 2.5 3.0 3.5 4.0-1

.0-0

.50.

00.

51.

0R

Z

Page 30: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Distortions of flux surface are consistent withplasma displacement

Re P

2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

R

Z

Re P

2.0 2.5 3.0 3.5 4.0-1

.0-0

.50.

00.

51.

0

R

Z

I Above: Total pressure contours.I Left: t = 30µs; Right: t = 40µs.

Page 31: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Total pressure contours on 4 poloidal slices show3D view of distorted pedestal (t = 40µs)

Page 32: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Total pressure isosurface shows nonlinearfilamentary structure (t = 40µs, p = 3602Pa)

Page 33: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Distribution of plasma displacement vectors (ξ)aligns with pressure isosurface ribbons (t = 40µs)

Page 34: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Zoom-in view of total pressure isosurface anddisplacement (ξ) vectors (t = 40µs)

Page 35: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Distribution of velocity (u) vector is different fromthat of displacement (ξ) vector at t = 40µs

Page 36: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Simulations started from multiple linear ballooningmodes also confirm theory prediction

1e-05

0.0001

0.001

0.01

0.1

1

10

100

|ξ|max

/a

(div0ξ)

max

0 10 20 30 40 50time (τ

A)

1e-8

1e-6

1e-4

1e-2

1

100

kine

tic e

nerg

y

Int

total n=15

n=30 n=0

1e-05

0.0001

0.001

0.01

0.1

1

10

100

|ξ|max

/a

(div0ξ)

max

0 10 20 30 40time (τ

A)

1e-8

1e-6

1e-4

1e-2

1

100

kine

tic e

nerg

y

n=0

n=1

n=6

n=11

n=13

n=15

total

Int

Page 37: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Summary

I There is an exponential growth phase of nonlinearballooning instability

I The growth rate is same as the linear growth rate.I The spatial structure is same as the linear mode (in

Lagrangian space).I This nonlinear phase is defined by ordering ξΨ ∼ λΨ.

I ImplicationsI May explain persistence of filamentary structures in ELM

experiments.I Nonlinear ELM behavior of pedestal may be largely

controlled by its linear properties (which is determined bythe configuration).

Page 38: Filamentary Structure and Exponential Growth ofhomepages.cae.wisc.edu/~pzhu/pub/pub09/wisc0216/nbg.pdf · 2009. 2. 16. · Filamentary Structure and Exponential Growth of Nonlinear

Discussion

I What are missing?I Nonlinearity

I What is the “nonlinearity depletion” mechanism?I Marginal unstable configuration (Γ ∼ 0) need nonlinear

filament envelope equation (detonation?)I Late nonlinear regimes: saturation, filament->blob?

I 2-fluid, FLR (finite Larmor radius) effectsI Edge shear flow effectsI RMP (resonant magnetic perturbation) effectsI Geometry (non-circular shape, divertor separatrix/X-point)I Peeling-ballooning couplingI ......