Fig. 17-5

36
Fig. 17-5 Second mRNA base First mRNA base (5 end of codon) Third mRNA base (3 end of codon)

description

Fig. 17-5. Second mRNA base. First mRNA base (5  end of codon). Third mRNA base (3  end of codon). the mechanism of translation. Amino acids. Polypeptide. tRNA with amino acid attached. Ribosome. Trp. Phe. Gly. tRNA. Anticodon. Codons. 5 . 3 . mRNA. trp operon. - PowerPoint PPT Presentation

Transcript of Fig. 17-5

Page 1: Fig. 17-5

Fig. 17-5Second mRNA base

Firs

t mRN

A ba

se (5

end

of c

odon

)

Third

mRN

A ba

se (3

end

of c

odon

)

Page 2: Fig. 17-5

Polypeptide

Ribosome

Aminoacids

tRNA withamino acidattached

tRNA

Anticodon

Trp

Phe Gly

Codons 35

mRNA

the mechanism of translation

Page 3: Fig. 17-5

Fig. 18-3a

Polypeptide subunits that make upenzymes for tryptophan synthesis

(a) Tryptophan absent, repressor inactive, operon on

DNA

mRNA 5

Protein Inactiverepressor

RNApolymerase

Regulatorygene

Promoter Promoter

trp operon

Genes of operon

OperatorStop codonStart codon

mRNA

trpA

5

3

trpR trpE trpD trpC trpB

ABCDE

Page 4: Fig. 17-5

Fig. 18-2

trpE gene

trpD gene

trpC gene

trpB gene

trpA gene

(b) Regulation of enzyme production

(a) Regulation of enzyme activity

Enzyme 1

Enzyme 2

Enzyme 3

Tryptophan

Precursor

Page 5: Fig. 17-5

Fig. 18-3a

Polypeptide subunits that make upenzymes for tryptophan synthesis

(a) Tryptophan absent, repressor inactive, operon on

DNA

mRNA 5

Protein Trprepressor

RNApolymerase

Regulatorygene

Promoter Promoter

trp operon

Genes of operon

OperatorStop codonStart codon

mRNA

trpA

5

3

trpR trpE trpD trpC trpB

ABCDE

Page 6: Fig. 17-5

Fig. 18-3b-2

(b) Tryptophan present, repressor active, operon off

Tryptophan(corepressor)

No RNA made

Activerepressor

mRNA

Protein

DNA

Page 7: Fig. 17-5

The actual structure of the Trp Repressor

Page 8: Fig. 17-5

Fig. 18-4b

(b) Lactose present, repressor inactive, operon on

mRNA

Protein

DNA

mRNA 5

Inactiverepressor

Allolactose(inducer)

5

3

RNApolymerase

Permease Transacetylase

lac operon

-Galactosidase

lacYlacZ lacAlacI

The lac operon

Lac Repressor

Page 9: Fig. 17-5

Fig. 18-4a

(a) Lactose absent, repressor active, operon off

DNA

Protein Activerepressor

RNApolymerase

Regulatorygene

Promoter

Operator

mRNA5

3

NoRNAmade

lacI lacZ

Page 10: Fig. 17-5

Fig. 18-4b

(b) Lactose present, repressor inactive, operon on

mRNA

Protein

DNA

mRNA 5

Inactiverepressor

Allolactose(inducer)

5

3

RNApolymerase

Permease Transacetylase

lac operon

-Galactosidase

lacYlacZ lacAlacI

Page 11: Fig. 17-5

Fig. 18-5

(b) Lactose present, glucose present (cAMP level low): little lac mRNA synthesized

cAMP

DNA

Inactive lacrepressor

Allolactose

InactiveCAP

lacI

CAP-binding site

Promoter

ActiveCAP

Operator

lacZRNApolymerasebinds andtranscribes

Inactive lacrepressor

lacZ

OperatorPromoter

DNA

CAP-binding site

lacI

RNApolymerase lesslikely to bind

InactiveCAP

(a) Lactose present, glucose scarce (cAMP level high): abundant lac mRNA synthesized

Page 12: Fig. 17-5

Fig. 18-5

(b) Lactose present, glucose present (cAMP level low): little lac mRNA synthesized

cAMP

DNA

Inactive lacrepressor

Allolactose

InactiveCAP

lacI

CAP-binding site

Promoter

ActiveCAP

Operator

lacZRNApolymerasebinds andtranscribes

Inactive lacrepressor

lacZ

OperatorPromoter

DNA

CAP-binding site

lacI

RNApolymerase lesslikely to bind

InactiveCAP

(a) Lactose present, glucose scarce (cAMP level high): abundant lac mRNA synthesized

Page 13: Fig. 17-5

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Levels of gene regulation in eukaryotes

Page 14: Fig. 17-5

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Levels of gene regulation in eukaryotes

- Trancriptional activation in eukaryotes

Page 15: Fig. 17-5

Fig. 18-8-1

Enhancer(distal control elements)

Proximalcontrol elements

Poly-A signalsequence

Terminationregion

DownstreamPromoterUpstream

DNAExonExon ExonIntron Intron

A Eukaryotic Gene

Page 16: Fig. 17-5

Fig. 18-9-1

Enhancer TATAbox

PromoterActivatorsDNA

Gene

Distal controlelement

Page 17: Fig. 17-5

Fig. 18-9-2

Enhancer TATAbox

PromoterActivatorsDNA

Gene

Distal controlelement

Group ofmediator proteins

DNA-bendingprotein

Generaltranscriptionfactors

Page 18: Fig. 17-5

Fig. 18-9-3

Enhancer TATAbox

PromoterActivatorsDNA

Gene

Distal controlelement

Group ofmediator proteins

DNA-bendingprotein

Generaltranscriptionfactors

RNApolymerase II

RNApolymerase II

Transcriptioninitiation complex RNA synthesis

Page 19: Fig. 17-5

Fig. 18-10

Controlelements

Enhancer

Availableactivators

Albumin gene

(b) Lens cell

Crystallin geneexpressed

Availableactivators

LENS CELLNUCLEUS

LIVER CELLNUCLEUS

Crystallin gene

Promoter

(a) Liver cell

Crystallin genenot expressed

Albumin geneexpressed

Albumin genenot expressed

Page 20: Fig. 17-5

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Levels of gene regulation in eukaryotes

- Eukaryotes can control the availability of DNA for expression by altering the extent of DNA packing

Page 21: Fig. 17-5

Fig. 16-21a

DNA double helix (2 nm in diameter)

Nucleosome(10 nm in diameter)

Histones Histone tailH1

DNA, the double helix Histones Nucleosomes, or “beads on a string” (10-nm fiber)

Page 22: Fig. 17-5

Figure 18.7

Amino acidsavailablefor chemicalmodification

Histone tails

DNA double helix

Nucleosome(end view)

(a) Histone tails protrude outward from a nucleosome

Unacetylated histones Acetylated histones(b) Acetylation of histone tails promotes loose chromatin

structure that permits transcription

Page 23: Fig. 17-5

Fig. 18-7

Histonetails

DNAdouble helix

(a) Histone tails protrude outward from a nucleosome

Acetylated histones

Aminoacidsavailablefor chemicalmodification

(b) Acetylation of histone tails promotes loose chromatin structure that permits transcription

Unacetylated histones

Fig. 15-18Normal Igf2 alleleis expressed

Paternalchromosome

Maternalchromosome

Normal Igf2 alleleis not expressed

Mutant Igf2 alleleinherited from mother

(a) Homozygote

Wild-type mouse(normal size)

Mutant Igf2 alleleinherited from father

Normal size mouse(wild type)

Dwarf mouse(mutant)

Normal Igf2 alleleis expressed

Mutant Igf2 alleleis expressed

Mutant Igf2 alleleis not expressed

Normal Igf2 alleleis not expressed

(b) Heterozygotes

Page 24: Fig. 17-5

Fig. 15-8X chromosomes

Early embryo:

Allele fororange fur

Allele forblack fur

Cell division andX chromosomeinactivationTwo cell

populationsin adult cat:

Active XActive X

Inactive X

Black fur Orange fur

Page 25: Fig. 17-5

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Levels of gene regulation in eukaryotes

-Alternative splicing can be generated

Page 26: Fig. 17-5

Fig. 18-11

or

RNA splicing

mRNA

PrimaryRNAtranscript

Troponin T gene

Exons

DNA

Alternative splicing

Page 27: Fig. 17-5

The DSCAM gene (Drosophila): ~38,000 possible splice variants

Page 28: Fig. 17-5

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Levels of gene regulation in eukaryotes

- Proteins can be selectively degraded

Page 29: Fig. 17-5

Fig. 18-12

Proteasomeand ubiquitinto be recycledProteasome

Proteinfragments(peptides)Protein entering a

proteasome

Ubiquitinatedprotein

Protein tobe degraded

Ubiquitin

Ubiquitin ligase

Page 30: Fig. 17-5

Fig. 12-17b

Cyclin isdegraded

Cdk

MPF

Cdk

MS

G 1G2

checkpoint

Degradedcyclin

Cyclin

(b) Molecular mechanisms that help regulate the cell cycle

G 2

Cyclin accumulation

Page 31: Fig. 17-5

Fig. 12-6d

Metaphase Anaphase Telophase and Cytokinesis

Cleavagefurrow

Nucleolusforming

Metaphaseplate

Centrosome atone spindle pole

SpindleDaughterchromosomes

Nuclearenvelopeforming

Page 32: Fig. 17-5

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Levels of gene regulation in eukaryotes

Small, non-coding RNAs can affect gene regulation at multiple levels

Page 33: Fig. 17-5

Nematodes with a GFP transgene Nematodes with a GFP transgene

Treated with GFP dsRNA

Page 34: Fig. 17-5

dsRNA can reduce gene expression for generations

Page 35: Fig. 17-5

Fig. 18-13

miRNA-proteincomplex(a) Primary miRNA transcript

Translation blocked

Hydrogenbond

(b) Generation and function of miRNAs

Hairpin miRNA

miRNA

Dicer

3

mRNA degraded

5

Page 36: Fig. 17-5

Fig. 18-13

miRNA-proteincomplex(a) Primary miRNA transcript

Translation blocked

Hydrogenbond

(b) Generation and function of miRNAs

Hairpin miRNA

miRNA

Dicer

3

mRNA degraded

5