Fig. 16-12b

43
Fig. 16-12b 0.25 µm Origin of replication Double-stranded DNA molecule Parental (template) strand Daughter (new) strand Bubble Replication fork Two daughter DNA molecules (b) Origins of replication in eukaryotes Eukaryotic replication

description

Eukaryotic replication. Origin of replication. Double - stranded DNA molecule. Parental (template ) strand. Daughter (new ) strand. Fig. 16-12b. 0.25 µm. Replication fork. Bubble. Two daughter DNA molecules. ( b ) Origins of replication in eukaryotes. 5 . - PowerPoint PPT Presentation

Transcript of Fig. 16-12b

Page 1: Fig. 16-12b

Fig. 16-12b

0.25 µm

Origin of replication Double-stranded DNA molecule

Parental (template) strandDaughter (new) strand

Bubble Replication fork

Two daughter DNA molecules

(b) Origins of replication in eukaryotes

Eukaryotic replication

Page 2: Fig. 16-12b

Fig. 16-19

Ends of parental DNA strands

Leading strandLagging strand

Lagging strand

Last fragment Previous fragment

Parental strand

RNA primer

Removal of primers and replacement with DNA where a 3 end is available

Second round of replication

New leading strand

New lagging strand

Further rounds of replication

Shorter and shorter daughter molecules

5

3

3

3

3

3

5

5

5

5

Page 3: Fig. 16-12b

Fig. 16-19

Ends of parental DNA strands

Leading strandLagging strand

Lagging strand

Last fragment Previous fragment

Parental strand

RNA primer

Removal of primers and replacement with DNA where a 3 end is available

Second round of replication

New leading strand

New lagging strand

Further rounds of replication

Shorter and shorter daughter molecules

5

3

3

3

3

3

5

5

5

5

Page 4: Fig. 16-12b

Fig. 16-20

1 µm

Staining of telomeres Florescence In Situ Hybridization (FISH)

“probe” = (5’-CTAACC-3’)100

Page 5: Fig. 16-12b

08_Figure37.jpg

Page 6: Fig. 16-12b

Fig. 16-7a

Hydrogen bond 3 end

5 end

3.4 nm

0.34 nm

3 end

5 end

(b) Partial chemical structure(a) Key features of DNA structure

1 nm

Page 7: Fig. 16-12b

Fig. 16-21a

DNA double helix (2 nm in diameter)

Nucleosome(10 nm in diameter)

Histones Histone tailH1

DNA, the double helix Histones Nucleosomes, or “beads on a string” (10-nm fiber)

Page 8: Fig. 16-12b

Fig. 16-21b

30-nm fiber

Chromatid (700 nm)

Loops Scaffold

300-nm fiber

Replicated chromosome (1,400 nm)

30-nm fiber Looped domains (300-nm fiber)

Metaphase chromosome

Page 9: Fig. 16-12b

What are genes?DNA

How do genes work?

Mutant phenotypesShortaristae

Blackbody

Cinnabareyes

Vestigialwings

Browneyes

0 48.5 57.5 67.0 104.5

Page 10: Fig. 16-12b

What are genes?DNA

How do genes work?

1909- Garrod -“Inborn errors of metabolism in man” e.g. Alkaptonuria: presence of alkapton in urine due to lack of enzyme -underappreciated at the time….

A gene specifies the action of an enzyme(The “one-gene, one-enzyme” hypothesis)

1942- Beadle and Tatum - Genetic studies in Bread Mold (Neurospora) show that biochemical reactions are controlled by genes

Page 11: Fig. 16-12b

Complete media(contains amino acids, nucleotides, vitamins, etc.)

Minimal Media

(lacks amino acids, nucleotides, vitamins, etc.)

Wild type Neurospora grows on minimal media

Page 12: Fig. 16-12b

Complete media

1. X-rays2. Set up 1000 multiple

single spore cultures (in complete media)

A

B

C

wt

Page 13: Fig. 16-12b

Complete media

Minimal Media

1. X-rays2. Set up 1000 multiple

single spore cultures (in complete media)

3. Test each for growth on minimal media

wt

Complete media

A

B

C

A

B

C

Min. media

Min. media

Min. media

Page 14: Fig. 16-12b

1. X-rays2. Set up 1000

multiple single spore cultures (in complete media)

3. Test each for growth on minimal media

4. Retest on minimal media plus one component

A

A

A

A

A

A

A

+His +Leu +Arg

+Asp +Glu +Asn

A

A

+Lys

+Gln

Min. media

Min. media

Min. media

Min. media

Min. media

Min. media

Min. media

Min. media

A

A

+Trp

+Tyr

A

A

+Phe

+Gly

Min. media

Min. media

Min. media

Min. media

A A A

+Ser +Thr +Met

A

+Ile

Min. media

Min. media

Min. media

Min. media

A

+Ala

A

+Pro

Min. media

Min. media

A

A

+Val

+Cys

Min. media

Min. media

Page 15: Fig. 16-12b

Fig. 17-2c

CONCLUSION Class I mutants(mutation in

gene A)

Class II mutants(mutation in

gene B)

Class III mutants(mutation in

gene C)Wild type

Precursor Precursor Precursor PrecursorEnzyme AEnzyme AEnzyme AEnzyme A

Ornithine Ornithine Ornithine OrnithineEnzyme BEnzyme B Enzyme BEnzyme B

Citrulline Citrulline Citrulline CitrullineEnzyme CEnzyme CEnzyme CEnzyme C

Arginine Arginine Arginine Arginine

Gene A

Gene B

Gene C

Multiple enzymes are required for arginine biosynthesis

Page 16: Fig. 16-12b

Fig. 17-2c

CONCLUSION Class I mutants(mutation in

gene A)

Class II mutants(mutation in

gene B)

Class III mutants(mutation in

gene C)Wild type

Precursor Precursor Precursor PrecursorEnzyme AEnzyme AEnzyme AEnzyme A

Ornithine Ornithine Ornithine OrnithineEnzyme BEnzyme B Enzyme BEnzyme B

Citrulline Citrulline Citrulline CitrullineEnzyme CEnzyme CEnzyme CEnzyme C

Arginine Arginine Arginine Arginine

Gene A

Gene B

Gene C

Multiple enzymes are required for arginine biosynthesis

If we have an Arg requiring mutant, which gene is affected?

Page 17: Fig. 16-12b

Fig. 17-2b

RESULTS Classes of Neurospora crassa

Wild type Class I mutants Class II mutants Class III mutants

Minimalmedium(MM)(control)

MM +ornithine

MM +citrulline

MM +arginine(control)

Cond

ition

Page 18: Fig. 16-12b

Fig. 17-2c

CONCLUSION Class I mutants(mutation in

gene A)

Class II mutants(mutation in

gene B)

Class III mutants(mutation in

gene C)Wild type

Precursor Precursor Precursor PrecursorEnzyme AEnzyme AEnzyme AEnzyme A

Ornithine Ornithine Ornithine OrnithineEnzyme BEnzyme B Enzyme BEnzyme B

Citrulline Citrulline Citrulline CitrullineEnzyme CEnzyme CEnzyme CEnzyme C

Arginine Arginine Arginine Arginine

Gene A

Gene B

Gene C

Page 19: Fig. 16-12b

RNA ProteinDNA

Replication Transcription Translation

Page 20: Fig. 16-12b

Fig. 17-3a-1

TRANSCRIPTION DNA

mRNA

(a) Bacterial cell

Page 21: Fig. 16-12b

Fig. 17-3a-2

(a) Bacterial cell

TRANSCRIPTION DNA

mRNA

TRANSLATIONRibosome

Polypeptide

Page 22: Fig. 16-12b

ATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTGACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGTTAACTCGGCGTTTCATCTGTGGTGCAACGGGCGCTGGGTCGGTTACGGCCAGGACAGTCGTTTGCCGTCTGAATTTGACCTGAGCGCATTTTTACGCGCCGGAGAAAACCGCCTCGCGGTGATGGTGCTGCGCTGGAGTGACGGCAGTTATCTGGAAGATCAGGATATGTGGCGGATGAGCGGCATTTTCCGTGACGTCTCGTTGCTGCATAAACCGACTACACAAATCAGCGATTTCCATGTTGCCACTCGCTTTAATGATGATTTCAGCCGCGCTGTACTGGAGGCTGAAGTTCAGATGTGCGGCGAGTTGCGTGACTACCTACGGGTAACAGTTTCTTTATGGCAGGGTGAAACGCAGGTCGCCAGCGGCACCGCGCCTTTCGGCGGTGAAATTATCGATGAGCGTGGTGGTTATGCCGATCGCGTCACACTACGTCTGAACGTCGAAAACCCGAAACTGTGGAGCGCCGAAATCCCGAATCTCTATCGTGCGGTGGTTGAACTGCACACCGCCGACGGCACGCTGATTGAAGCAGAAGCCTGCGATGTCGGTTTCCGCGAGGTGCGGATTGAAAATGGTCTGCTGCTGCTGAACGGCAAGCCGTTGCTGATTCGAGGCGTTAACCGTCACGAGCATCATCCTCTGCATGGTCAGGTCATGGATGAGCAGACGATGGTGCAGGATATCCTGCTGATGAAGCAGAACAACTTTAACGCCGTGCGCTGTTCGCATTATCCGAACCATCCGCTGTGGTACACGCTGTGCGACCGCTACGGCCTGTATGTGGTGGATGAAGCCAATATTGAAACCCACGGCATGGTGCCAATGAATCGTCTGACCGATGATCCGCGCTGGCTACCGGCGATGAGCGAACGCGTAACGCGAATGGTGCAGCGCGATCGTAATCACCCGAGTGTGATCATCTGGTCGCTGGGGAATGAATCAGGCCACGGCGCTAATCACGACGCGCTGTATCGCTGGATCAAATCTGTCGATCCTTCCCGCCCGGTGCAGTATGAAGGCGGCGGAGCCGACACCACGGCCACCGATATTATTTGCCCGATGTACGCGCGCGTGGATGAAGACCAGCCCTTCCCGGCTGTGCCGAAATGGTCCATCAAAAAATGGCTTTCGCTACCTGGAGAGACGCGCCCGCTGATCCTTTGCGAATACGCCCACGCGATGGGTAACAGTCTTGGCGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCGTTTACAGGGCGGCTTCGTCTGGGACTGGGTGGATCAGTCGCTGATTAAATATGATGAAAACGGCAACCCGTGGTCGGCTTACGGCGGTGATTTTGGCGATACGCCGAACGATCGCCAGTTCTGTATGAACGGTCTGGTCTTTGCCGACCGCACGCCGCATCCAGCGCTGACGGAAGCAAAACACCAGCAGCAGTTTTTCCAGTTCCGTTTATCCGGGCAAACCATCGAAGTGACCAGCGAATACCTGTTCCGTCATAGCGATAACGAGCTCCTGCACTGGATGGTGGCGCTGGATGGTAAGCCGCTGGCAAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAAGGTAAACAGTTGATTGAACTGCCTGAACTACCGCAGCCGGAGAGCGCCGGGCAACTCTGGCTCACAGTACGCGTAGTGCAACCGAACGCGACCGCATGGTCAGAAGCCGGGCACATCAGCGCCTGGCAGCAGTGGCGTCTGGCGGAAAACCTCAGTGTGACGCTCCCCGCCGCGTCCCACGCCATCCCGCATCTGACCACCAGCGAAATGGATTTTTGCATCGAGCTGGGTAATAAGCGTTGGCAATTTAACCGCCAGTCAGGCTTTCTTTCACAGATGTGGATTGGCGATAAAAAACAACTGCTGACGCCGCTGCGCGATCAGTTCACCCGTGCACCGCTGGATAACGACATTGGCGTAAGTGAAGCGACCCGCATTGACCCTAACGCCTGGGTCGAACGCTGGAAGGCGGCGGGCCATTACCAGGCCGAAGCAGCGTTGTTGCAGTGCACGGCAGATACACTTGCTGATGCGGTGCTGATTACGACCGCTCACGCGTGGCAGCATCAGGGGAAAACCTTATTTATCAGCCGGAAAACCTACCGGATTGATGGTAGTGGTCAAATGGCGATTACCGTTGATGTTGAAGTGGCGAGCGATACACCGCATCCGGCGCGGATTGGCCTGAACTGCCAGCTGGCGCAGGTAGCAGAGCGGGTAAACTGGCTCGGATTAGGGCCGCAAGAAAACTATCCCGACCGCCTTACTGCCGCCTGTTTTGACCGCTGGGATCTGCCATTGTCAGACATGTATACCCCGTACGTCTTCCCGAGCGAAAACGGTCTGCGCTGCGGGACGCGCGAATTGAATTATGGCCCACACCAGTGGCGCGGCGACTTCCAGTTCAACATCAGCCGCTACAGTCAACAGCAACTGATGGAAACCAGCCATCGCCATCTGCTGCACGCGGAAGAAGGCACATGGCTGAATATCGACGGTTTCCATATGGGGATTGGTGGCGACGACTCCTGGAGCCCGTCAGTATCGGCGGAATTCCAGCTGAGCGCCGGTCGCTACCATTACCAGTTGGTCTGGTGTCAAAAATAA

E. Coli LacZ DNA sequence (1 strand shown)- 3075 base pairs

Page 23: Fig. 16-12b

AUGACCAUGAUUACGGAUUCACUGGCCGUCGUUUUACAACGUCGUGACUGGGAAAACCCUGGCGUUACCCAACUUAAUCGCCUUGCAGCACAUCCCCCUUUCGCCAGCUGGCGUAAUAGCGAAGAGGCCCGCACCGAUCGCCCUUCCCAACAGUUGCGCAGCCUGAAUGGCGAAUGGCGCUUUGCCUGGUUUCCGGCACCAGAAGCGGUGCCGGAAAGCUGGCUGGAGUGCGAUCUUCCUGAGGCCGAUACUGUCGUCGUCCCCUCAAACUGGCAGAUGCACGGUUACGAUGCGCCCAUCUACACCAACGUGACCUAUCCCAUUACGGUCAAUCCGCCGUUUGUUCCCACGGAGAAUCCGACGGGUUGUUACUCGCUCACAUUUAAUGUUGAUGAAAGCUGGCUACAGGAAGGCCAGACGCGAAUUAUUUUUGAUGGCGUUAACUCGGCGUUUCAUCUGUGGUGCAACGGGCGCUGGGUCGGUUACGGCCAGGACAGUCGUUUGCCGUCUGAAUUUGACCUGAGCGCAUUUUUACGCGCCGGAGAAAACCGCCUCGCGGUGAUGGUGCUGCGCUGGAGUGACGGCAGUUAUCUGGAAGAUCAGGAUAUGUGGCGGAUGAGCGGCAUUUUCCGUGACGUCUCGUUGCUGCAUAAACCGACUACACAAAUCAGCGAUUUCCAUGUUGCCACUCGCUUUAAUGAUGAUUUCAGCCGCGCUGUACUGGAGGCUGAAGUUCAGAUGUGCGGCGAGUUGCGUGACUACCUACGGGUAACAGUUUCUUUAUGGCAGGGUGAAACGCAGGUCGCCAGCGGCACCGCGCCUUUCGGCGGUGAAAUUAUCGAUGAGCGUGGUGGUUAUGCCGAUCGCGUCACACUACGUCUGAACGUCGAAAACCCGAAACUGUGGAGCGCCGAAAUCCCGAAUCUCUAUCGUGCGGUGGUUGAACUGCACACCGCCGACGGCACGCUGAUUGAAGCAGAAGCCUGCGAUGUCGGUUUCCGCGAGGUGCGGAUUGAAAAUGGUCUGCUGCUGCUGAACGGCAAGCCGUUGCUGAUUCGAGGCGUUAACCGUCACGAGCAUCAUCCUCUGCAUGGUCAGGUCAUGGAUGAGCAGACGAUGGUGCAGGAUAUCCUGCUGAUGAAGCAGAACAACUUUAACGCCGUGCGCUGUUCGCAUUAUCCGAACCAUCCGCUGUGGUACACGCUGUGCGACCGCUACGGCCUGUAUGUGGUGGAUGAAGCCAAUAUUGAAACCCACGGCAUGGUGCCAAUGAAUCGUCUGACCGAUGAUCCGCGCUGGCUACCGGCGAUGAGCGAACGCGUAACGCGAAUGGUGCAGCGCGAUCGUAAUCACCCGAGUGUGAUCAUCUGGUCGCUGGGGAAUGAAUCAGGCCACGGCGCUAAUCACGACGCGCUGUAUCGCUGGAUCAAAUCUGUCGAUCCUUCCCGCCCGGUGCAGUAUGAAGGCGGCGGAGCCGACACCACGGCCACCGAUAUUAUUUGCCCGAUGUACGCGCGCGUGGAUGAAGACCAGCCCUUCCCGGCUGUGCCGAAAUGGUCCAUCAAAAAAUGGCUUUCGCUACCUGGAGAGACGCGCCCGCUGAUCCUUUGCGAAUACGCCCACGCGAUGGGUAACAGUCUUGGCGGUUUCGCUAAAUACUGGCAGGCGUUUCGUCAGUAUCCCCGUUUACAGGGCGGCUUCGUCUGGGACUGGGUGGAUCAGUCGCUGAUUAAAUAUGAUGAAAACGGCAACCCGUGGUCGGCUUACGGCGGUGAUUUUGGCGAUACGCCGAACGAUCGCCAGUUCUGUAUGAACGGUCUGGUCUUUGCCGACCGCACGCCGCAUCCAGCGCUGACGGAAGCAAAACACCAGCAGCAGUUUUUCCAGUUCCGUUUAUCCGGGCAAACCAUCGAAGUGACCAGCGAAUACCUGUUCCGUCAUAGCGAUAACGAGCUCCUGCACUGGAUGGUGGCGCUGGAUGGUAAGCCGCUGGCAAGCGGUGAAGUGCCUCUGGAUGUCGCUCCACAAGGUAAACAGUUGAUUGAACUGCCUGAACUACCGCAGCCGGAGAGCGCCGGGCAACUCUGGCUCACAGUACGCGUAGUGCAACCGAACGCGACCGCAUGGUCAGAAGCCGGGCACAUCAGCGCCUGGCAGCAGUGGCGUCUGGCGGAAAACCUCAGUGUGACGCUCCCCGCCGCGUCCCACGCCAUCCCGCAUCUGACCACCAGCGAAAUGGAUUUUUGCAUCGAGCUGGGUAAUAAGCGUUGGCAAUUUAACCGCCAGUCAGGCUUUCUUUCACAGAUGUGGAUUGGCGAUAAAAAACAACUGCUGACGCCGCUGCGCGAUCAGUUCACCCGUGCACCGCUGGAUAACGACAUUGGCGUAAGUGAAGCGACCCGCAUUGACCCUAACGCCUGGGUCGAACGCUGGAAGGCGGCGGGCCAUUACCAGGCCGAAGCAGCGUUGUUGCAGUGCACGGCAGAUACACUUGCUGAUGCGGUGCUGAUUACGACCGCUCACGCGUGGCAGCAUCAGGGGAAAACCUUAUUUAUCAGCCGGAAAACCUACCGGAUUGAUGGUAGUGGUCAAAUGGCGAUUACCGUUGAUGUUGAAGUGGCGAGCGAUACACCGCAUCCGGCGCGGAUUGGCCUGAACUGCCAGCUGGCGCAGGUAGCAGAGCGGGUAAACUGGCUCGGAUUAGGGCCGCAAGAAAACUAUCCCGACCGCCUUACUGCCGCCUGUUUUGACCGCUGGGAUCUGCCAUUGUCAGACAUGUAUACCCCGUACGUCUUCCCGAGCGAAAACGGUCUGCGCUGCGGGACGCGCGAAUUGAAUUAUGGCCCACACCAGUGGCGCGGCGACUUCCAGUUCAACAUCAGCCGCUACAGUCAACAGCAACUGAUGGAAACCAGCCAUCGCCAUCUGCUGCACGCGGAAGAAGGCACAUGGCUGAAUAUCGACGGUUUCCAUAUGGGGAUUGGUGGCGACGACUCCUGGAGCCCGUCAGUAUCGGCGGAAUUCCAGCUGAGCGCCGGUCGCUACCAUUACCAGUUGGUCUGGUGUCAAAAAUAA

E. Coli LacZ RNA sequence - 3075 nucleotides

Page 24: Fig. 16-12b

MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQLRSLNGEWRFAWFPAPEAVPESWLECDLPEADTVVVPSNWQMHGYDAPIYTNVTYPITVNPPFVPTENPTGCYSLTFNVDESWLQEGQTRIIFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRAGENRLAVMVLRWSDGSYLEDQDMWRMSGIFRDVSLLHKPTTQISDFHVATRFNDDFSRAVLEAEVQMCGELRDYLRVTVSLWQGETQVASGTAPFGGEIIDERGGYADRVTLRLNVENPKLWSAEIPNLYRAVVELHTADGTLIEAEACDVGFREVRIENGLLLLNGKPLLIRGVNRHEHHPLHGQVMDEQTMVQDILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHGMVPMNRLTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGNESGHGANHDALYRWIKSVDPSRPVQYEGGGADTTATDIICPMYARVDEDQPFPAVPKWSIKKWLSLPGETRPLILCEYAHAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENGNPWSAYGGDFGDTPNDRQFCMNGLVFADRTPHPALTEAKHQQQFFQFRLSGQTIEVTSEYLFRHSDNELLHWMVALDGKPLASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAWQQWRLAENLSVTLPAASHAIPHLTTSEMDFCIELGNKRWQFNRQSGFLSQMWIGDKKQLLTPLRDQFTRAPLDNDIGVSEATRIDPNAWVERWKAAGHYQAEAALLQCTADTLADAVLITTAHAWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASDTPHPARIGLNCQLAQVAERVNWLGLGPQENYPDRLTAACFDRWDLPLSDMYTPYVFPSENGLRCGTRELNYGPHQWRGDFQFNISRYSQQQLMETSHRHLLHAEEGTWLNIDGFHMGIGGDDSWSPSVSAEFQLSAGRYHYQLVWCQK

E. Coli LacZ protein sequence – 1024 amino acids

Page 25: Fig. 16-12b

Fig. 17-5Second mRNA base

Firs

t mRN

A ba

se (5

end

of c

odon

)

Third

mRN

A ba

se (3

end

of c

odon

)

Page 26: Fig. 16-12b

Beta-galactosidase protein (E. coli)LacZ (Beta-galactosidase) gene (DNA)

LacZ mRNA

Page 27: Fig. 16-12b

ATGAAATTTACCGTAGAACGTGAGCATTTATTAAAACCGCTACAACAGGTGAGCGGTCCGTTAGGTGGTCGTCCTACGCTACCGATTCTCGGTAATCTGCTGTTACAGGTTGCTGACGGTACGTTGTCGCTGACCGGTACTGATCTCGAGATGGAAATGGTGGCACGTGTTGCGCTGGTTCAGCCACACGAGCCAGGAGCGACGACCGTTCCGGCGCGCAAATTCTTTGATATCTGCCGTGGTCTGCCTGAAGGCGCGGAAATTGCCGTGCAGCTGGAAGGTGAACGGATGCTGGTACGCTCCGGGCGTAGCCGTTTTTCGCTGTCTACCCTGCCAGCGGCGGATTTCCCGAACCTCGATGACTGGCAGAGTGAAGTCGAATTTACCCTGCCGCAGGCAACGATGAAGCGTCTGATTGAAGCGACCCAGTTTTCTATGGCGCATCAGGACGTTCGCTATTACTTAAATGGTATGCTGTTTGAAACCGAAGGTGAAGAACTGCGCACCGTGGCAACCGACGGCCACCGTCTGGCGGTCTGTTCAATGCCAATTGGTCAATCTTTGCCAAGCCATTCGGTGATCGTACCGCGTAAAGGCGTGATTGAACTGATGCGTATGCTCGACGGCGGCGACAATCCGCTGCGCGTACAGATTGGCAGCAACAACATTCGCGCCCACGTTGGCGACTTTATCTTCACCTCCAAACTGGTGGATGGTCGCTTCCCGGATTATCGCCGCGTTCTGCCGAAGAACCCGGACAAACATCTGGAAGCTGGCTGCGATCTGCTCAAGCAGGCGTTTGCTCGCGCGGCGATTCTCTCTAACGAGAAATTCCGCGGCGTACGTCTTTATGTCAGCGAAAACCAGCTGAAAATCACCGCCAACAACCCGGAACAGGAAGAAGCGGAAGAGATCCTCGACGTTACCTATAGCGGTGCGGAGATGGAAATCGGCTTCAACGTCAGTTATGTGCTGGATGTTCTGAACGCGCTGAAATGCGAAAACGTCCGCATGATGCTGACCGATTCGGTTTCCAGCGTGCAGATTGAAGATGCGGCCAGCCAGAGCGCGGCTTATGTTGTCATGCCAATGAGACTGTAA

E. Coli Sliding Clamp DNA sequence (1 strand shown)- 1101 base pairs

E. Coli Sliding Clamp Protein sequence- 366 amino acids

MKFTVEREHLLKPLQQVSGPLGGRPTLPILGNLLLQVADGTLSLTGTDLEMEMVARVALVQPHEPGATTVPARKFFDICRGLPEGAEIAVQLEGERMLVRSGRSRFSLSTLPAADFPNLDDWQSEVEFTLPQATMKRLIEATQFSMAHQDVRYYLNGMLFETEGEELRTVATDGHRLAVCSMPIGQSLPSHSVIVPRKGVIELMRMLDGGDNPLRVQIGSNNIRAHVGDFIFTSKLVDGRFPDYRRVLPKNPDKHLEAGCDLLKQAFARAAILSNEKFRGVRLYVSENQLKITANNPEQEEAEEILDVTYSGAEMEIGFNVSYVLDVLNALKCENVRMMLTDSVSSVQIEDAASQSAAYVVMPMRL

Page 28: Fig. 16-12b

Fig. 16-15bOrigin of replication

RNA primer

“Sliding clamp”

DNA pol IIIParental DNA

3

5

5

5

5

5

5

3

3

3

Page 29: Fig. 16-12b

Sliding clamp protein (E. coli)- shown with DNA double helix

Page 30: Fig. 16-12b

Fig. 17-4

DNAmolecule

Gene 1

Gene 2

Gene 3

DNAtemplatestrand

TRANSCRIPTION

TRANSLATION

mRNA

Protein

Codon

Amino acid

Page 31: Fig. 16-12b

Fig. 5-27c-2

Ribose (in RNA)Deoxyribose (in DNA)

Sugars

(c) Nucleoside components: sugars

Page 32: Fig. 16-12b

Fig. 5-27c-1

(c) Nucleoside components: nitrogenous bases

Purines

Guanine (G)Adenine (A)

Cytosine (C) Thymine (T, in DNA) Uracil (U, in RNA)

Nitrogenous basesPyrimidines

Page 33: Fig. 16-12b

Fig. 16-5 Sugar–phosphate backbone

5 end

Nitrogenous bases

Thymine (T)

Adenine (A)

Cytosine (C)

Guanine (G)

DNA nucleotide

Sugar (deoxyribose) 3 end

Phosphate

Chemical structure of DNA

Page 34: Fig. 16-12b

Fig. 16-5 Sugar–phosphate backbone

5 end

Nitrogenous bases

Thymine (T)

Adenine (A)

Cytosine (C)

Guanine (G)

DNA nucleotide

Sugar (deoxyribose) 3 end

Phosphate

Uracil (U)OH

OH

OH

OH

RNA

Chemical structure ofRNA

-ribose instead of deoxyribose

Uracil instead of thymine

Cytosine (C)

Page 35: Fig. 16-12b

RNA ProteinDNA

Replication Transcription Translation

Polymerase

Monomers

DNA Pol III (and I)

dNTPs

Direction of synthesis

5’ to 3’

Template ssDNA

Product polynucleotide

Page 36: Fig. 16-12b

RNA ProteinDNA

Replication Transcription Translation

Polymerase

Monomers

DNA Pol III (and I)

RNA Pol

dNTPs NTPs

Direction of synthesis

5’ to 3’ 5’ to 3’

Template ssDNA ssDNA

Product polynucleotide polynucleotide

Page 37: Fig. 16-12b

Fig. 17-7a-1Promoter Transcription unit

DNAStart pointRNA polymerase

553

3

Page 38: Fig. 16-12b

Fig. 17-7a-2Promoter Transcription unit

DNAStart pointRNA polymerase

553

3

Initiation

33

1

RNAtranscript

5 5

UnwoundDNA

Template strandof DNA

Page 39: Fig. 16-12b

Fig. 17-7a-3Promoter Transcription unit

DNAStart pointRNA polymerase

553

3

Initiation

33

1

RNAtranscript

5 5

UnwoundDNA

Template strandof DNA

2 Elongation

RewoundDNA

5

5 5 3 3 3

RNAtranscript

Page 40: Fig. 16-12b

Fig. 17-7a-4Promoter Transcription unit

DNAStart pointRNA polymerase

553

3

Initiation

33

1

RNAtranscript

5 5

UnwoundDNA

Template strandof DNA

2 Elongation

RewoundDNA

5

5 5 3 3 3

RNAtranscript

3 Termination

5

5 5 33

3Completed RNA transcript

Page 41: Fig. 16-12b

Fig. 17-7b

Elongation

RNApolymerase

Nontemplatestrand of DNA

RNA nucleotides

3' end

Direction oftranscription(“downstream”) Template

strand of DNANewly madeRNA

3'

5'

5'

Page 42: Fig. 16-12b

Fig. 17-8A eukaryotic promoterincludes a TATA box

3

1

2

3

Promoter

TATA box Start point

Template

TemplateDNA strand

535

Transcriptionfactors

Several transcription factors mustbind to the DNA before RNApolymerase II can do so.

5533

Additional transcription factors bind tothe DNA along with RNA polymerase II,forming the transcription initiation complex.

RNA polymerase IITranscription factors

55 53

3

RNA transcript

Transcription initiation complex

Page 43: Fig. 16-12b

RNA ProteinDNA

Replication Transcription Translation

Polymerase

Monomers

DNA Pol III (and I)

RNA Pol

dNTPs NTPs

Direction of synthesis

5’ to 3’ 5’ to 3’

Template ssDNA ssDNA

Product polynucleotide polynucleotide