Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited...

59
Fig. 13.1 NMR IR UV

Transcript of Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited...

Page 1: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.1

NMRIRUV

Page 2: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.2NMR: excited spin stateIR: excited vibrational stateUV: excited electronic state

Page 3: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.30

Page 4: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Tab. 13.4

Page 5: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.31

“fingerprint region”

Page 6: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.32

Page 7: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.33

Page 8: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.34

Page 9: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.35

Page 10: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Which one of the following compounds is most consistent with the IR given?

OH

O

CH3

O

OH OH

Page 11: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

IR: Isolation of Cinnamon Oil from CinnamonExp. [11C]

Mayo, pp. 213 – 218. Please note the prior reading assignments given on p. 213.

Your write-up should include the following:

• Data from the experiment including mass of oil, percent recovery from cinnamon, IR spectrum.

• Structure of cinnamon oil, with an analysis of the IR spectrum.• Problems 6-77, 6-78, 6-79, 6-80

Steam Distillation – http:wiley.com/college/chem/mayo321850/wave_s.html(under Reference Discussions pp. 27-30)

Page 12: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.1

NMRIRUV

Page 13: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.2NMR: excited spin stateIR: excited vibrational stateUV: excited electronic state

Page 14: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.3

• The lower energy orientation is the oneparallel to Ho and more nuclei havethis orientation.

Page 15: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.4• The energy difference in the two spin statesis proportional to the strength of the appliedfield.

4.7 Tesla - 200MHz (radiofrequency)

Page 16: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.5

Source of energyto excite nucleus

Aligns nuclear spins

Contains sample,may have deuteratedsolvent

Detects theabsorption of rf radiation

Page 17: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.23a

• Number of signals – number of nonequivalent protons (H)

• Chemical shift – electronic environment of the proton, represented by ppm• Integration – number of equivalent protons (H), represented as area beneath the curve• Multiplicity – number of protons (H) on the adjacent positions

Page 18: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.6

• Alone, a proton would feel the full strengthof the external field, but a proton in anorganic molecule responds to both theexternal field plus any local fields withinthe molecule.

• Electrons “shield” the proton from thefull effects of the magnetic field.

Chemical Shift

Page 19: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.7 • Electron density “shields” theproton from the full effects ofthe external magnetic field.

H-C-CH-C-XH-C=CH-ArH-C=O

Chemical Shift

Page 20: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Tab. 13.1

H-C-X 2-5 ppm

Chemical Shift

Page 21: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.11

Integration

Page 22: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Integration

C8H8O2

http://www.chem.ucla/~webspectra

Page 23: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.12

Multiplicity

n+1 Rule - A signal is split into n+1 peaks,where n=number of adjacent protons (H)

Page 24: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.15

C2H5Br

2

3

Deduce structure of :

Page 25: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.17

1 H

6 H

Deduce structure of C3H7Cl

Page 27: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.19

Page 28: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.20

Page 29: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.21

-OH protons areexchangeable

Page 30: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.22

Page 31: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Tab. 13.3

Page 32: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.23b

Page 33: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.24

Page 34: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.25

Page 35: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.26a

Page 36: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.26b

Page 37: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.28

Page 38: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.29

Page 39: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.37

Page 40: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Tab. 13.5

Page 41: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.38

Page 42: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.39

Page 43: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.40

+ e- .+ + 2e-

M+

base peak

Page 44: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.41

chlorobenzene

Page 45: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.42

decane base peakM+

molecular ion peak

Page 46: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.43

propylbenzene

Page 47: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.44

GC-MS

Page 48: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Spectra for homework problems at the end of Chapter 13 -

Page 49: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.45

Page 50: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.46a

Page 51: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.46b

Page 52: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.47a

Page 53: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.47b

Page 54: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.48a

Page 55: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.48b

Page 56: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.49a

Page 57: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.49b

Page 58: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.49c

Page 59: Fig. 13.1 NMRIRUV. Fig. 13.2 NMR: excited spin state IR: excited vibrational state UV: excited electronic state.

Fig. 13.49d