Fermi-Dirac and Bose-Einstein...

22
Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg. chap. 6 and chap. 7 of K &K Quantum Gases Fermions, Bosons Partition functions and distributions Density of states Non relativistic Relativistic Classical Limit Fermi Dirac Distribution Fermi Energy Electrons in solids Nuclear matter White Dwarf Bose Einstein Distribution Bose-Einstein Condensation Liquid Helium

Transcript of Fermi-Dirac and Bose-Einstein...

Page 1: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 1 B.Sadoulet

Fermi-Dirac and Bose-EinsteinDistributions

Beg. chap. 6 and chap. 7 of K &KQuantum Gases

Fermions, BosonsPartition functions and distributionsDensity of states

Non relativisticRelativistic

Classical LimitFermi Dirac Distribution

Fermi Energy Electrons in solids

Nuclear matterWhite Dwarf

Bose Einstein DistributionBose-Einstein CondensationLiquid Helium

Page 2: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 2 B.Sadoulet

Quantum GasesBosons, Fermions

Integer spin= Boson = number of particles in a given state isarbitraryHalf Integer spin=Fermion= at most one on each orbital:

Pauli exclusion principlePartition Functions and mean occupation numbers

FermionAt most one

BosonSum on all integers

Z = 1+ expµ ! "#

$%&

'()

s !( ) =1

exp! " µ

#$ % & '

( ) +1

Z= exp sµ ! "#

$%&

'()

s=0

*

+ =1

1! exp µ ! "#

$%&

'()

s !( ) =1

exp! " µ

#$ % & '

( ) "1

Page 3: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 3 B.Sadoulet

Ideal quantum gases“Ideal gas” approximation

States are not modified by presence of other particles

“Density “ of statesmultiplicity x density in phase space change of variable to energy

Non relativistic

Ultra-Relativistic

gi !d3x d3p

h3

gi !p2dp d"

h3"# = D($ )d$ where D($) is the density of states

D !( )d! = 4"gip2dp

h3=

gi

4"22m

h2

#

$ %

&

' (

3

2 !d!

D !( )d! = 4"gip2dp

h3=

gi

2"2h3c3

!2d!

Page 4: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 4 B.Sadoulet

BehaviorSign is critical for (ε-µ)/τ small

Fermi-Dirac

Bose-EinsteinBose condensation

For (ε-µ)/τ large, classical limitOccupation number << 1

Same old resultsBoltzmann /Gibbs !

s !( ) =1

exp! " µ

#$ % & '

( ) + 1

=1

2 for ! = µ

= 1 for ! << µ

s !( ) =1

exp! " µ

#$ % & '

( ) "1

*+ for ! * µ

s !( ) " exp

µ # !$

%&'

()*= + exp #

!$

%&'

()*

independent of F.D. or B.E.

Prob !( ) =s !( )

N!!!!< N >= V s !( )" D !( )d! = V exp

µ

#$%&

'()exp *

!#

$%&

'()"d3p

h3

!!!< N >= V expµ

#$%&

'()nQ + µ = log

n

nQ

$

%&

'

()

<s(ε)>

µ ε

1

Page 5: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 5 B.Sadoulet

Thermo functions for ideal quantum gases

Number of Particles

µ(τ) set by requirement that N=total number of particles

Energy

- Bose- Einstein + Fermi-Dirac

Entropy

N =V s !( ) D !( )d!0

"# = V

D !( )d!

exp! $ µ

%& ' ( )

* + ±1

0

"#

U = V!D !( )d!

exp! " µ

#$ % & '

( ) ±1

0

*+

! "( ) =

# $ logZ( )

#$ !=! " µ

#s + logZ ! " log prob s =< s >( )$% &'

Page 6: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 6 B.Sadoulet

Fermi Gas Ground State (Non relativistic)

Fermi EnergyCalculation :

Energy/Free Energy

Pressure Repulsive!

s !( )

!

!F

! << µ

s !( ) =1

exp! " µ

#$ % & '

( ) + 1

*1 for ! < µ

! 0 for " > µ

N =V s !( ) D !( )d!0

"# = V D !( )d!

0

! F#

!F = µ " = 0( )

!"F =

h2

2m3#

2n( )

2

3 with n =N

V

U = F = V !D !( )d!0

!F

" =3

5N!

F

p = !"F

"V #

=2

5n$F %V

!5

3

Spin 1/2

Page 7: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 7 B.Sadoulet

Fermi Gas Ground State (Relativistic)Note that even at zero temperature very large kinetic energies: in

some case ultra-relativistic

Fermi Energy

Energy

Pressure

!F = µ " = 0( )

N =V D !( )d!0

! F" =

V

3#2h3c3!F3

!"F = 3#

2n( )1

3 hc

U = F = V !D !( )d!0

! F" =

3

4N!F

p = !"F

"V #

=1

4n$F %V

!4

3

Page 8: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 8 B.Sadoulet

Hole and Electron ExcitationsSymmetry of Fermi Dirac distribution

Basic symmetry (except for lower bound at δ =-µ ).Note:

Decomposition into hole-like and electron-likeexcitations

Number of excited electrons= number of excited holes

When referenced to the Fermi energy, the energy of holes are opposite tothat of the corresponding missing electrons and is positive

With !="-µ !!!!!!!! f ",#( ) =1

exp!#

$%&

'()+1

1* f ",#( ) =1

exp *!#

$%&

'()+1

N

V= D !( ) f !,"( )

0

#$ d! = D !( )

0

!F$ d!

D !( ) f !,"( )!F#$ d!

B = "electrons"

1 2444 3444= D !( ) 1% f !,"( )( )0

!F$ d!

A = "holes"

1 24444 34444

f ! ,"( )

!

u !( ) " u 0( ) = # " #F( )D #( ) f #,!( )#F$% d#

"electrons"

1 24444 34444+ #F " #( )D #( ) 1" f #,!( )( )0

#F% d#

"holes"

1 244444 344444

for ! << µ,!µ !( ) " µ 0( ) = #

F

f !,"( ) = s !( )"

Page 9: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 9 B.Sadoulet

Energy Band structurePeriodicity of the lattice (e.g., spacing a)

Resonant tunelling: free propagation of specific modes

gap (cf. Kittel, introduction to Solid States Physics Chap. 7))≈ 1 eV

Seen in projection on the energy axis: energy bands• Valence band• Conduction band

Metal: Fermi level = chemical potential in conduction band => conductioncan be described by free Fermi gas

Insulator: Fermi level in gap

Electrons in crystals: Quantum States

Discrete E k( )

E

k

εc

εv

conduction band

valence band

Gap

Page 10: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 10 B.Sadoulet

Electrons in metalsOrder of magnitude

τ=o : very good approximation at room temperature and below

Heat Capacity

use: • Conservation of number of particles• df /dτ only large close to εF• µ does not vary fast with τ• εF/τ large

!F " 5 eV # TF " 5 104

K >> Tlab

Cel = kBdU

d!= kB

d

d!V"D "( ) f ",!( )

0

#

$ d" = kBV "D "( )d

d!f " ,!( )

0

#

$ d"

Cel!"2

3kBVD #

F( )$

Ctot = Cel +C! = "T + AT3

!F

!�

f ! ,"( )

Page 11: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 11 B.Sadoulet

Insulators: Density of states cf. K&K chap 13

Often called intrinsic semiconductors (no role of impurities)

Statistical distributionStill good approximation to consider free electrons as quantum ideal gas=> occupation number

Density of states

We then get

f !( ) =1

exp ! " µ( ) /#( ) +1

Dh(!)d! =2

4" 22mh

*

h2

#

$ %

&

' (

3

2

(!v )! )d!

De(!)d! =2

4" 22me

*

h2

#

$ %

&

' (

3

2

(! ) !c)d!!c

!v

! !

Gap

D (!)

conduction band

valence band

2 spin states

Parabolicat gap edge

Electron state density below the gap

1

exp µ ! "( ) / #( ) +1Dh"( )d"

0

"v

$holes

1 244444 344444

=1

exp " ! µ( ) / #( ) +1De"( )d"

"c

%

$electrons

1 244444 344444

ne =2

4! 2

2me

*

h2

"#$

%&'

3/2

1

exp ( ') µ ) (c( )( ) / *( ) +1( 'd( '

0

+

, - nQe exp )(c ) µ*

"#$

%&'

with!nQe = 2me

**2!h

2

"#$

%&'

3

2

!!

for ! << "v = nh =2

4# 2

2mh

*

h2

$%&

'()

3/2

1

exp " '* "v * µ( )( ) / !( ) +1" 'd" '

0

+

, - nQh exp *µ * "v!

$%&

'()

with!nQh = 2mh

*!2#h

2

$%&

'()

3

2

Page 12: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 12 B.Sadoulet

Determining the chemical potentialNo impurities: intrinsic semiconductors

!v !

c

f

!v !

c

µµ

logne(µ)

lognhµ( )

Page 13: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 13 B.Sadoulet

SemiconductorsLarge role of impurities: localized states (Not band !) in gap

If they are shallow (≈ 40meV (Si) ≈10meV (Ge)) can be excited at roomtemperature. This modifies totally the behavior!Donors

Acceptors note: 2 A0 state because a bond is missing and the missing electron

can be spin up or down, A- bond established (pair of electrons of antiparallel spins) : 1state

⇒The number of free electrons(holes) is no moreconstant

Can be increased by donors and decreased by acceptorsBut we need to keep charge neutrality = method to compute the

Fermi level⇒For large enough impurities concentration, the Fermi level can

move close to the edge of the gap⇒(Thermally generated) conductivity either dominated by

• electron like excitation: negative carriers (n type)• hole like excitation: positive carriers (p type)

do! d

++ e

" nd = nd + + ndo

a!" a

o+ e

! na = na!+ n

ao

k

εc

εv

εDεA

Page 14: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 14 B.Sadoulet

Donors

negative carriers (n type)

Acceptors

positive carriers (p type)

Semiconductors cf. K&K fig 13.6

!v !

c

µ

µ

logne(µ)

lognhµ( )

d0 ! d

++ e

"

nd+ = nd

exp "#+

$%&'

()*

exp "#+

$%&'

()*+ 2exp "

#0 " µ

$%&'

()*

= nd

1

1+ 2expµ " #

d

$%&'

()*

with!!!#d+ #0 " #+ , #

c"0.04 !eV !Si

0.01!eV !Ge

lognd+ µ( )

!d

Electric neutrality

ne= n

d+ + nh ! nd+

!v !

c

µ

µ

logne(µ)

lognhµ( )

lognd+ µ( )

!a

Electric neutrality

ne+ n

a!= n

h" n

a!

a0+ e

! " d+

na! = na

exp !#! ! µ

$%&'

()*

2exp !#0$

%&'

()*+ exp !

#! ! µ

$%&'

()*

= nd

1

1+ 2exp#a! µ

$%&'

()*

with!!!#a+ #! ! #0 , #

v+0.04 !eV !Si

0.01!eV !Ge

Page 15: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 15 B.Sadoulet

Other examples of degenerate Fermigas3He

Spin 1/2Very different behavior from 4He: phase separation

Nuclear Matter

⇒Fermi momentumR ! 1.3 10

"13 A

1

3 cm

np ! nn ! 5 1037

cm-3"#F = 4 10

$12 J ! 30 MeV

Page 16: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 16 B.Sadoulet

White Dwarfs and Neutron StarsWhite dwarf stars (and core of massive stars)

=> Degenerate Fermi gasFermi pressure balances gravity => Condition for equilibriumNon relativistic minimum of total energy: stable!

Ultra RelativisticDegeneracy pressure cannot balance gravity if M too big!

Chandrasekhar limitNeutron stars

Same story for neutrons (uncertainty of equation of state)Similar Chandrasekhar limit if larger => black hole

! " 106 g/cm3 n " 1030 cm-3

!F " 0.5 10#13

J " 3 105

eV TF " 3 109

K >> Tstar

1.4 M!

3 M!

R

UUFD Non Relativistic

UT NR

UG

R

UFD Relativistic

UTRel UG

Page 17: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 17 B.Sadoulet

White Dwarf Explosions: SN Ia

time

Lum

inos

ity

Distance

Ωm=1ΩΛ=0

Fain

ter

An acceleratinguniverse?

Supernovae Type Ia at high redshift (2 groups) Ωm-ΩΛDistant supernovae appear dimmer

than expected in a flat universe

Potential problemsAre supernova properties

really constant?Dust?

The Uninvited Guest:Dark Energy

Large negative energy

aacceleration

{ =G

r2

1

c2

uenergy density

{ + 3 p

pressure

{

!

"#

$

%&

GR gravitational mass

1 24444 34444

V

Gravity becomes repulsive!

Page 18: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 18 B.Sadoulet

Bose-Einstein CondensationCalculation of chemical potential

Let us take the origin of energy at the ground state

Separating between the ground state s=1 and the other states

Forwe can solve the equation by having

Bose Einstein condensation. For large number of particles, not a verylow temperature phenomenon

1

exp!µ

"#

$ %

&

' ( !1

+1

exp)s! µ

"#

$ %

&

' ( !1s>1

* = N

exp!µ

"#

$ %

&

' ( ) 1

exp!s

"#$%

&'(>> 1+

1

N)" << !

sN

f 0,!( ) = s 0( ) =1

exp "µ

!#$%

&'("1

) "!µ) N ** µ ) "

!N

! << "sN

! Nexc = 2.612m"2#h

2

$

% &

'

( )

3 /2

V = 2.612nQV

!E

=2"h

2

m

N

2.612 V

#

$ %

&

' (

2/3

) Nexc

= N!!E

#

$ %

&

' (

3/2

Page 19: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 19 B.Sadoulet

Liquid Helium 4Properties of 4He

Loose coupling =>liquid (4.2K at 1 Atm) ≈ ideal gas 4He has spin 0 => boson ≠ 3He spin 1/2

=> expect condensation at ≈3.1KExperimentally “lambda point” 2.17K (Landau temp.)

Phase transition => peculiar propertiesMacroscopic quantum state

=> Quantization phenomenae.g. Vortex Equivalent of Josephson effect

=>Superfluidity

! = n1/2

ei" t,

r x ( )

!" = 2n# where n is integer

C 4He

T2.17K

Page 20: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 20 B.Sadoulet

Much cleaner system: Alcali VaporsBE condensation for atoms demonstrated in 1995=> 2001 Nobel Prize in Physics

awarded jointly to Eric A. Cornell of NIST / JILA; WolfgangKetterle of MIT; and Carl E. Wieman of CU / JILA.

Time sequence of imagesshowing one cycle of the ringingof a Bose-Einsteincondensate (BEC) in the JILATOP (time-averaged orbitingpotential) trap after being drivenby strong oscillationsof trap potential.

Page 21: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 21 B.Sadoulet

Pairing of FermionsSuperconductivity

Pairing of electrons s=0 (Cooper pairs) <= phonon interactionBut condensation theory bad approximation (not free)Similar effects

• Zero resistance• Quantization of flux : Vortices

3HeSpin 1/22 phases of pairing s=1

similar to superconductivity but magnetic properties

τcondensation = 0.95mK and 2.5mK

Page 22: Fermi-Dirac and Bose-Einstein Distributionscosmology.berkeley.edu/Classes/S2006/Phys112/Phys112_06...Phys 112 (S2005) 6 1 B.Sadoulet Fermi-Dirac and Bose-Einstein Distributions Beg.

Phys 112 (S2005) 6 22 B.Sadoulet

Energy Density of Ultra Relativistic GasesGeneralizationImportant for behavior of early universe (energy density =>expansion)

Suppose that particles are non degenerate (µ<<τ)

Density of energy

f !( ) "1

exp!#

$

% &

'

( ) ±1

u = gbosons +7

8gfermions

!

" #

$

% & 'aB

2T4