Feb22_Mar1_MBE

download Feb22_Mar1_MBE

of 25

Transcript of Feb22_Mar1_MBE

  • 8/9/2019 Feb22_Mar1_MBE

    1/25

    1

    Material Balance

    Derivation of material balance

    General form of material balance

    Linear form of material balance equation

    Uses and limitations of material balance

  • 8/9/2019 Feb22_Mar1_MBE

    2/25

    2

    Cross Section of a Combination Drive

    Reservoir

  • 8/9/2019 Feb22_Mar1_MBE

    3/25

    3

    Use of Material Balance Equations

    Determining hydrocarbon in place under various

    conditions Determining water influx

    Predicting reservoir pressure

  • 8/9/2019 Feb22_Mar1_MBE

    4/25

    4

    Material Balance

    During production, from time 0 to time t:

    Change in Oil volume + Change in Free Gas Volume

    + Change in Water Volume + Change in Void Space

    Volume = 0

    During production, overall volume change is zero.

  • 8/9/2019 Feb22_Mar1_MBE

    5/25

    5

    What do we need for the calculation?

    Production, reservoir, and lab data:

    Initial reservoir pressure, average reservoirpressure at time t

    Produced oil, gas, water

    Amount of water that enters into the reservoirFormation volume factors

    Gas oil ratios Initial ratio of gas and oil volume

  • 8/9/2019 Feb22_Mar1_MBE

    6/25

    6

    Symbols Used in Material Balance

  • 8/9/2019 Feb22_Mar1_MBE

    7/25

    7

    Symbols Used in Material Balance

    N: Initial reservoir oil, STB (t0)

    Np: Cumulative produced oil, STB (t)

    G: Initial reservoir free gas, SCF (t0)

    Gf: Volume of free gas in the reservoir, SCF (t)W: Initial reservoir water, bbl (t0)

    Wp: Cumulative produced water, STB (t)

    We: Water influx into reservoir, bbl (t)

    Vf: Initial void space, bbl (t0)m: initial reservoir free gas volume / initial reservoir oil volume (t0)

  • 8/9/2019 Feb22_Mar1_MBE

    8/25

    8

    Boi: Initial oil formation volume factor, bbl/STB (t0)

    Bo: oil formation volume factor, bbl/STB (t)

    Bgi: Initial gas formation volume factor, bbl/SCF (t0)

    Bg: Gas formation volume factor, bbl/SCF (t)

    Bw: Water formation volume factor, bbl/STB (t)

    cw: Water isothermal compressibility, psi

    -1

    p: change in average reservoir pressure, psia (t)

    Swi: Initial water saturation (t0)

    Vf: Initial void space, bbl (t0)

    Rsoi: Initial solution gas-oil ratio, SCF/STB (t0)

    Rp : Cumulative produced gas-oil ratio, SCF/STB (t)Rso: Solution gas-oil ratio, SCF/STB (t)

  • 8/9/2019 Feb22_Mar1_MBE

    9/25

    9

    Oil Volume Change

    Change in oil volume = NBoi - (N-Np)Bo

    Initial reservoir oil volume: NBoi

    Oil volume at time t and pressure p: (N-Np)Bo

  • 8/9/2019 Feb22_Mar1_MBE

    10/25

    10

    Free Gas Volume Changegi

    oi

    GB

    m NB

    gi oiGB NmB

    f

    SCF initial gas (free + dissolved) - SCF gas produced - SCF in solution

    G [ ] [( ) ]

    Reservoir free gas volume at time t=

    ( )

    oisoi p p p so

    gi

    oisoi p p p so g

    gi

    NmB NR N R N N RB

    NmB NR N R N N R BB

    Ratio of initial free gas to initial oil volume:Initial free gas volume =

    ( )oioi soi p p p so ggi

    NmB NmB NR N R N N R BB

    SCF free gas at t:

    Change in free gas volume:

  • 8/9/2019 Feb22_Mar1_MBE

    11/25

    11

    Water Volume Change

    Change in water volume:

    W (W - BwWp + We+ Wcwp) = BwWp We - Wcwp

    Initial reservoir water volume (t0): W (res bbl)

    Cumulative water produced at t = Wp (STB)Reservoir volume of cumulative produced water(t) = BwWp

    Volume of encroached water at t: We (res bbl)Change in volume of water due to change in

    pressure: Wcwp (res bbl)Reservoir water volume at t: W - BwWp + We+ Wcwp

  • 8/9/2019 Feb22_Mar1_MBE

    12/25

    12

    Rock Volume Change

    f f f V V c p

    [ ] f f f f f f V V V c p V c p

    Change in void space volume =

    Initial void space volume = Vf

    Volume at time t =

    Change in rock volume =

    f fV c p

  • 8/9/2019 Feb22_Mar1_MBE

    13/25

    13

    Total Change in Water and Rock Volume

    f fWith W=V , and V ,1

    oi oiwi

    wi

    NB NmBS

    S

    e w p w f f W B W Wc p V c p

    We have total change in water and rock volume:

    [ ]( )1

    (1 )

    1

    oi oi

    e w p w wi f wi

    w wi f

    e w p oi

    wi

    NB NmB

    W B W c S c pS

    c S cW B W m NB p

    S

  • 8/9/2019 Feb22_Mar1_MBE

    14/25

    14

    Total Change in Oil and Free Gas Volume

    [ ]oi g

    oi o p o oi soi g p p g

    gi

    g so p g so

    NmB B NB NB N B NmB NR B N R B

    B

    NB R N B R

  • 8/9/2019 Feb22_Mar1_MBE

    15/25

    15

    Material Balance

    During production, from time 0 to time t:

    Change in Oil volume + Change in Free Gas Volume

    ==

    -(Change in Water Volume + Change in Void SpaceVolume)

    During production, overall volume change is zero.

  • 8/9/2019 Feb22_Mar1_MBE

    16/25

    16

    p

    [ ]

    (1 )1

    Adding and subtracting the term N ,

    [ ]

    oi g

    oi o p o oi soi g p p g

    gi

    w wi f

    g so p g so e w p oi

    wi

    g soi

    oi g

    oi o p o oi soi g p p g g so p

    gi

    NmB B NB NB N B NmB NR B N R B

    B

    c S c NB R N B R W B W m NB p

    S

    B R NmB B

    NB NB N B NmB NR B N R B NB R N BB

    p pN N (1 )1

    Then grouping items:

    [ ( ) ] [ ( ) ]

    ( ) [ ] (1 )1

    Wri

    g so

    w wi f

    g soi g soi e w p oi

    wi

    oi oi o soi so g p o soi so g

    oi g w wi f

    p soi g p e w p oi

    gi wi

    R

    c S c B R B R W B W m NB pS

    NB NmB N B R R B N B R R B

    NmB B c S c R R B N W B W m NB p

    B S

    oi o soi so g tte B and [B +(R -R )B ]=B , we have:tiB

  • 8/9/2019 Feb22_Mar1_MBE

    17/25

    17

    tiN(B ) [ ( ) ] (1 )

    (1 )1

    g

    t p t p oi g ti

    gi

    w wi f

    e w p ti

    wi

    B B N B R R B NmB

    B

    c S cW B W m NB p

    S

    tN(B ) ( ) (1 )1

    [ ( ) ]

    w wi f titi g gi ti e

    gi wi

    p t p soi g w p

    c S cNmB B B B m NB p W

    B S

    N B R R B B W

    Rearrange to become:

  • 8/9/2019 Feb22_Mar1_MBE

    18/25

    18

    tN(B ) ( ) (1 )1

    [ ( ) ]

    w wi f titi g gi ti e

    gi wi

    p t p soi g w p

    c S cNmB B B B m NB p W

    B S

    N B R R B B W

    Expansion of oilor gas zones

    Change in voidspace volume

    Water influx

    Oil and gasproduction

    Water production

    General Material Balance Equation

    For saturated oil reservoir with an associated gas cap.

  • 8/9/2019 Feb22_Mar1_MBE

    19/25

    19

    tN(B ) [ ( ) ]1

    w wi f

    ti ti e p t p soi g w p

    wi

    c S c B NB p W N B R R B B W

    S

    p tiN and NmB p p gi R G GB

    tN(B ) ( ) ( )1

    ( )

    w wi f

    ti g gi ti gi e

    wi

    p t p soi g w p

    c S c B G B B NB GB p W

    S

    N B G NR B B W

    Unsaturated oil reservoir: m = 0

    Simplifications

    Gas reservoir:

    ( )1

    w wi f

    g gi gi e p g w p

    wi

    c S cG B B GB p W G B B W

    S

    No initial oil, N = 0, Np = 0:

  • 8/9/2019 Feb22_Mar1_MBE

    20/25

    20

    Drive Mechanisms

    Segregation

    Drive (Gas cap)

    Water Drive

    Depletion Drive(Volumetric reservoir)

  • 8/9/2019 Feb22_Mar1_MBE

    21/25

    21

    tN(B ) ( ) (1 ) 1

    [ ( ) ]

    w wi f ti

    ti g gi ti egi wi

    p t p soi g w p

    c S cNmB

    B B B m NB p W B S

    N B R R B B W

    t

    N(B ) ( ) ( ) [ ( ) ]ti

    ti g gi e w p p t p soi ggi

    NmBB B B W B W N B R R B

    B

    Drive Mechanisms

    With three drives, compressibility term is negligibleRearrange

    t

    ( )( )N(B )

    1[ ( ) ] [ ( ) ] [ ( ) ]

    ti g gi

    gi e w pti

    p t p soi g p t p soi g p t p soi g

    NmBB B

    B W B W B

    N B R R B N B R R B N B R R B

    Divide each term by the right hand side term

    Depletion Drive Index Segregation Drive Index Water Drive Index

  • 8/9/2019 Feb22_Mar1_MBE

    22/25

    22

    Assumption of Material Balance Equations

    The reservoir may have an initial gas phase andliquid phase. The gas is dissolved in the liquid phase and is inequilibrium.

    Oil can become volatile and enter into the gasphase.

    Water is allowed to invade the reservoir from the

    aquifer during production. Water and rock are compressible.

  • 8/9/2019 Feb22_Mar1_MBE

    23/25

    23

    Limitations of Material Balance Equations

    Sources of error:

    Assumptions:- Gas and oil may not be at equilibrium

    Data:

    - gas libration processes simulate those thatoccur in reservoir

    - Average pressure (how it was averaged, extent

    of spatial variation)

    - Error in estimates of gas and water production.

  • 8/9/2019 Feb22_Mar1_MBE

    24/25

    24

    Havlena and Odeh method: linearization

    t

    I, I,

    [ ( ) ]

    = N[(B ) ( ) (1 ) ]1

    Here W cumulative water injection, G cumulative gas injection, formation volume factor of injected

    p t p soi g w p I I Ig

    w wi f titi g gi ti e

    gi wi

    Ig

    N B R R B B W W G B

    c S cmB B B B m NB p W

    B S

    B

    gas

    F: net production from reservoir

    Eo:expansion of oil E

    f,w

    : expansion offormation and waterEg:

    expansion of gas

    ,(1 ) tio ti f w g egi

    NmBF NE N m B E E W B

  • 8/9/2019 Feb22_Mar1_MBE

    25/25

    25

    Havlena and Odeh method: linearization

    ,(1 )

    ti

    o ti f w g egi

    NmB

    F NE N m B E E W B

    When no original gas cap, no water influx, and negligible

    formation and water compressibilities:

    oF NE