Feature of synthetic aperture radar - Chiba...

3
<The 23 rd CEReS International Symposium> Development and Implementation of The System Parameter Analysis Simulator for L-Band Synthetic Aperture Radar Synthetic aperture radar and VLBI Lab. http://space.ajou.ac.kr Space Electronics and Information Technology Ajou University, Korea 2015. 12. 2. Presenter: Kyeong-Rok Kim Hae-Won Jung, Tu-Hwan Kim, Heein Yang, and Jae-Hyun Kim Contents Introduction Feature of synthetic aperture radar SAR System Parameter Design System Parameter Verification ¾ Antenna beam pattern analysis ¾ Point target simulation Conclusion Introduction Synthetic aperture radar ¾ Radar which operates on the moving platform ¾ National defense, disaster monitoring, resource exploration, and etc [1-3]. ¾ Especially L-band (1.27 GHz) SAR is used for the Earth observation [1] H. I. Yang, J. H. An, H. W. Jung, and J. H. Kim, “Circular Polarization Implementation on Synthetic Aperture Radar,” in Proc. ICTC 2014, Busan, Korea, 22-24. Oct. 2014. [2] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” Geoscience and Remote Sensing Magazine, vol. 1, pp. 6-43, 2013. [3] J. Amini and J. T. S. Sumantyo, “Employing a method on SAR and optical images for forest biomass estimation,” Geoscience and Remote Sensing, IEEE Trans. On, vol. 27, pp. 4020-4026, 2009. [4] http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-8113/14171_read-35852/ Fig. 1 Comparison of the penetration depth in X, C, and L-band[4] Feature of synthetic aperture radar Supports high resolution image using relatively small antenna ¾ Synthesize the larger virtual antenna during the flight path Use active sensor using microwave ¾ Transmits microwave signal and receives back-scattered signal from target ¾ Acquires the images regardless of the weather/light conditions Side-looking radar ¾ To avoid range ambiguities [5], [6] [5] K. Tomiyasu, “Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface,” in Proc. IEEE, vol. 66, pp. 563-583, 1978. [6] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” Geoscience and Remote Sensing Magazine, vol. 1, pp. 6-43, 2013. Antenna length Antenna length Beamwidth Synthetic aperture length Beamwidth Fig. 2 Conventional Radar (left) vs. Synthetic aperture radar (right) Beamwidth L O D Fig. 3 The general side-looking SAR mechanism Nadir Look angle SAR System Parameter Design Requirements analysis ¾ Maximum range, altitude, minimum SNR, and etc. Analysis on operation concept ¾ Platform velocity, operational frequency, and etc. Calculation the system parameters ¾ Range and swath width, incidence angle, beam width, sampling window length, and etc. Output parameters ¾ Antenna gain, resolution, SNR, and etc. Fig. 4 Flow chart of the SAR system parameter calculation Requirements analysis Analysis on operation concept Calculation the system parameters SNR > 13 dB ? NO YES Output parameters Antenna gain, resolution, SNR, and etc. Simulation SNR : Signal to noise ratio SAR System Parameter Design List Item Value Operational concept Altitude 600 km Platform velocity 7564 m/s Operational frequency 1.27 GHz (L-band) Look angle 32 Û Antenna concept Antenna size 5 m (L) × 2.6 m (W) Antenna gain 32 dBi Swath parameter Range swath 70.87 km Azimuth swath 15.87 km Range concept Middle range 721 km Nadir to swath 382 km Output parameter Resolution 10 m (R) × 2.5 m (Az) SNR 27.05 dB Tab. 1 Calculated SAR system parameter 109

Transcript of Feature of synthetic aperture radar - Chiba...

Page 1: Feature of synthetic aperture radar - Chiba Uopac.ll.chiba-u.jp/da/curator/103937/BA64563608-18-P109.pdf“A tutorial on synthetic aperture radar,” Geoscience and Remote Sensing

<The 23rd CEReS International Symposium>

Development and Implementation of The System Parameter Analysis Simulator

for L-Band Synthetic Aperture Radar

Synthetic aperture radar and VLBI Lab. http://space.ajou.ac.kr

Space Electronics and Information Technology Ajou University, Korea

2015. 12. 2. Presenter: Kyeong-Rok Kim

Hae-Won Jung, Tu-Hwan Kim, Heein Yang, and Jae-Hyun Kim

Contents

Introduction

Feature of synthetic aperture radar

SAR System Parameter Design

System Parameter Verification

Antenna beam pattern analysis

Point target simulation

Conclusion

Introduction

Synthetic aperture radar Radar which operates on the moving platform National defense, disaster monitoring, resource exploration, and etc [1-3]. Especially L-band (1.27 GHz) SAR is used for the Earth observation

[1] H. I. Yang, J. H. An, H. W. Jung, and J. H. Kim, “Circular Polarization Implementation on Synthetic Aperture Radar,” in Proc. ICTC 2014, Busan, Korea, 22-24. Oct. 2014. [2] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” Geoscience and Remote Sensing Magazine, vol. 1, pp. 6-43, 2013. [3] J. Amini and J. T. S. Sumantyo, “Employing a method on SAR and optical images for forest biomass estimation,” Geoscience and Remote Sensing, IEEE Trans. On, vol. 27, pp. 4020-4026, 2009. [4] http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-8113/14171_read-35852/

Fig. 1 Comparison of the penetration depth in X, C, and L-band[4]

Feature of synthetic aperture radar

Supports high resolution image using relatively small antenna Synthesize the larger virtual antenna during the flight path

Use active sensor using microwave Transmits microwave signal and receives back-scattered signal from target Acquires the images regardless of the weather/light conditions

Side-looking radar To avoid range ambiguities [5], [6]

[5] K. Tomiyasu, “Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface,” in Proc. IEEE, vol. 66, pp. 563-583, 1978. [6] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” Geoscience and Remote Sensing Magazine, vol. 1, pp. 6-43, 2013.

Antenna length Antenna length

Beamwidth

Synthetic aperture length

Beamwidth

Fig. 2 Conventional Radar (left) vs. Synthetic aperture radar (right)

BeamwidthL

Fig. 3 The general side-looking SAR mechanism

Nadir

Look angle

SAR System Parameter Design

Requirements analysis Maximum range, altitude, minimum SNR, and etc.

Analysis on operation concept Platform velocity, operational frequency, and etc.

Calculation the system parameters Range and swath width, incidence angle, beam width, sampling window length, and etc.

Output parameters Antenna gain, resolution, SNR, and etc.

Fig. 4 Flow chart of the SAR system parameter calculation

Requirements analysis

Analysis on operation concept

Calculation the system parameters

SNR > 13 dB ?NOYES

Output parameters Antenna gain, resolution, SNR, and etc.

Simulation

SNR : Signal to noise ratio

SAR System Parameter Design

List Item Value

Operational concept

Altitude 600 km

Platform velocity 7564 m/s

Operational frequency 1.27 GHz (L-band)

Look angle 32

Antenna concept Antenna size 5 m (L) × 2.6 m (W)

Antenna gain 32 dBi

Swath parameter Range swath 70.87 km

Azimuth swath 15.87 km

Range concept Middle range 721 km

Nadir to swath 382 km

Output parameter Resolution 10 m (R) × 2.5 m (Az)

SNR 27.05 dB

Tab. 1 Calculated SAR system parameter

109

Page 2: Feature of synthetic aperture radar - Chiba Uopac.ll.chiba-u.jp/da/curator/103937/BA64563608-18-P109.pdf“A tutorial on synthetic aperture radar,” Geoscience and Remote Sensing

System Parameter Verification

Antenna beam pattern analysis To verify the designed system parameters

Output range direction antenna beam pattern Confirm the SNR requirement in printed area

Fig. 6 Antenna beam pattern Fig. 5 Geometry concept of simulation

23.6 dB

System Parameter Verification

Point target simulation To verify the designed system parameters

Targets are arranged in cross shape in printed area Raw data is generated by observation simulation and chirp signal generation Image processing using Range-Doppler algorithm Confirm the restored point targets

Fig. 7 Target positioning and observation area

Azimuth (km)

Range (km)

15.87

70.87

382num_azimuth_samples

Printed area

xy

Range swath

Azimuth swath

System Parameter Verification

Point target simulation To verify the designed system parameters (a) The point targets (b) Raw data (c) Pulse compressed image (d) Restored point targets after azimuth compression

(a) (b) (c) (d) Fig. 8 Process of image processing and restoration

System Parameter Verification

Point target simulationA. Set the point targets to observe using SAR

Range (m)

510

Azi

mut

h (m

)

Fig. 9 Five point target

3.82

System Parameter Verification

Point target simulationB. Obtained raw data by observation simulation

Fig. 10 Generated raw data Range samples

Azi

mut

h sa

mpl

es

System Parameter Verification

Point target simulationC. Get the pulse compressed image using RDA algorithm

Fig. 11 Pulse compressed image

Range samples

Azi

mut

h sa

mpl

es

110

Page 3: Feature of synthetic aperture radar - Chiba Uopac.ll.chiba-u.jp/da/curator/103937/BA64563608-18-P109.pdf“A tutorial on synthetic aperture radar,” Geoscience and Remote Sensing

System Parameter Verification

Point target simulationD. Restored point targets after azimuth compression

Fig. 12 Azimuth compressed image

Range samples

410

Azi

mut

h sa

mpl

es

System Parameter Verification

Additional Image Processing To enhance resolution of the point target

Fig. 13 Target image (left) vs. Zero padding target image (right)

Range samples

Azi

mut

h sa

mpl

es

Azi

mut

h sa

mpl

es

Range samples

Conclusion

L-band SAR system parameter for earth observation has been designed and verified by simulation SNR has been calculated by antenna beam pattern analysis and is satisfied over 13 dB Point target analysis has been simulated and the simulation can be restored point target Planning to specify the parameter design and improving of MATLAB code to enhance resolution and to apply real satellite

Reference

[1] H. I. Yang, J. H. An, H. W. Jung, and J. H. Kim, “Circular Polarization Implementation on Synthetic Aperture Radar,” in Proc. ICTC 2014, Busan, Korea, 22-24. Oct. 2014. [2] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” Geoscience and Remote Sensing Magazine, vol. 1, pp. 6-43, 2013. [3] J. Amini and J. T. S. Sumantyo, “Employing a method on SAR and optical images for forest biomass estimation,” Geoscience and Remote Sensing, IEEE Trans. On, vol. 27, pp. 4020-4026, 2009. [4] http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-8113/14171_read-35852/ [5] K. Tomiyasu, “Tutorial review of synthetic-aperture radar (SAR) with applications to imaging of the ocean surface,” in Proc. IEEE, vol. 66, pp. 563-583, 1978. [6] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” Geoscience and Remote Sensing Magazine, vol. 1, pp. 6-43, 2013.

Thank you

111