Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor...

103
Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova, Denis Simakov, Robert Collins and Jiwon Kim

Transcript of Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor...

Page 1: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Feature matching

Digital Visual Effects, Spring 2005Yung-Yu Chuang2005/3/16

with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova, Denis Simakov, Robert Collins and Jiwon Kim

Page 2: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Announcements

• Project #1 is online, you have to write a program, not just using available software.

• Send me the members of your team.• Sign up for scribe at the forum.

Page 3: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Blender

http://www.blender3d.com/cms/Home.2.0.htmlBlender could be used for your project #3 matchmove.

Page 4: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

In the forum

• Barycentric coordinate• RBF

Page 5: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Outline

• Block matching• Features• Harris corner detector• SIFT• SIFT extensions• Applications

Page 6: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Correspondence by block matching• Points are individually ambiguous• More unique matches are possible with

small regions of images

Page 7: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Correspondence by block matching

Page 8: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Sum of squared distance

Page 9: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Image blocks as a vector

Page 10: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Image blocks as a vector

Page 11: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Matching metrics

Page 12: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Features

• Properties of features• Detector: locates feature• Descriptor and matching metrics:

describes and matches features

• In the example for block matching:– Detector: none– Descriptor: block– Matching: distance

Page 13: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Desired properties for features

• Invariant: invariant to scale, rotation, affine, illumination and noise for robust matching across a substantial range of affine distortion, viewpoint change and so on.

• Distinctive: a single feature can be correctly matched with high probability

Page 14: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris corner detector

Page 15: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Moravec corner detector (1980)• We should easily recognize the point by lookin

g through a small window• Shifting a window in any direction should give

a large change in intensity

Page 16: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Moravec corner detector

flat

Page 17: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Moravec corner detector

flat

Page 18: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Moravec corner detector

flat edge

Page 19: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Moravec corner detector

flat edgecorner

isolated point

Page 20: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Moravec corner detectorChange of intensity for the shift [u,v]:

2

,

( , ) ( , ) ( , ) ( , )x y

E u v w x y I x u y v I x y

IntensityShifted intensity

Window function

Four shifts: (u,v) = (1,0), (1,1), (0,1), (-1, 1)Look for local maxima in min{E}

Page 21: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Problems of Moravec detector• Noisy response due to a binary window function• Only a set of shifts at every 45 degree is considered• Responds too strong for edges because only minim

um of E is taken into account

Harris corner detector (1988) solves these problems.

Page 22: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris corner detector

Noisy response due to a binary window function Use a Gaussian function

Page 23: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris corner detector

Only a set of shifts at every 45 degree is consideredConsider all small shifts by Taylor’s expansion

yxyx

yxy

yxx

yxIyxIyxwC

yxIyxwB

yxIyxwA

BvCuvAuvuE

,

,

2

,

2

22

),(),(),(

),(),(

),(),(

2),(

Page 24: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris corner detector

( , ) ,u

E u v u v Mv

Equivalently, for small shifts [u,v] we have a bilinear approximation:

2

2,

( , ) x x y

x y x y y

I I IM w x y

I I I

, where M is a 22 matrix computed from image derivatives:

Page 25: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris corner detector

Responds too strong for edges because only minimum of E is taken into accountA new corner measurement

Page 26: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris corner detector

( , ) ,u

E u v u v Mv

Intensity change in shifting window: eigenvalue analysis

1, 2 – eigenvalues of M

direction of the slowest chan

ge

direction of the fastest change

(max)-1/2

(min)-1/2

Ellipse E(u,v) = const

Page 27: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris corner detector

1

2

Corner1 and 2 are large,

1 ~ 2;

E increases in all directions

1 and 2 are small;

E is almost constant in all directions

edge 1 >> 2

edge 2 >> 1

flat

Classification of image points using eigenvalues of M:

Page 28: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris corner detector

Measure of corner response:

2det traceR M k M

1 2

1 2

det

trace

M

M

(k – empirical constant, k = 0.04-0.06)

Page 29: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Another view

Page 30: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Another view

Page 31: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Another view

Page 32: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Summary of Harris detector

Page 33: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris corner detector (input)

Page 34: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Corner response R

Page 35: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Threshold on R

Page 36: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Local maximum of R

Page 37: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris corner detector

Page 38: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris Detector: Summary• Average intensity change in direction [u,v] can be e

xpressed as a bilinear form:

• Describe a point in terms of eigenvalues of M:measure of corner response

• A good (corner) point should have a large intensity change in all directions, i.e. R should be large positive

( , ) ,u

E u v u v Mv

2

1 2 1 2R k

Page 39: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris Detector: Some Properties• Partial invariance to affine intensity change

Only derivatives are used => invariance to intensity shift I I + b

Intensity scale: I a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Page 40: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris Detector: Some Properties• Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the sameCorner response R is invariant to image rotation

Page 41: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris Detector is rotation invariant

Repeatability rate:# correspondences

# possible correspondences

Page 42: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris Detector: Some Properties

• But: non-invariant to image scale!

All points will be classified as edges

Corner !

Page 43: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Harris Detector: Some Properties• Quality of Harris detector for different scale

changes

Repeatability rate:# correspondences

# possible correspondences

Page 44: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

SIFT (Scale Invariant Feature

Transform)

Page 45: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

SIFT• SIFT is an carefully designed procedure

with empirically determined parameters for the invariant and distinctive features.

Page 46: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

SIFT stages:

• Scale-space extrema detection• Keypoint localization• Orientation assignment• Keypoint descriptor

( )local descriptor

detector

descriptor

A 500x500 image gives about 2000 features

Page 47: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

1. Detection of scale-space extrema• For scale invariance, search for stable features

across all possible scales using a continuous function of scale, scale space.

• SIFT uses DoG filter for scale space because it is efficient and as stable as scale-normalized Laplacian of Gaussian.

Page 48: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

DoG filteringConvolution with a variable-scale Gaussian

Difference-of-Gaussian (DoG) filter

Convolution with the DoG filter

Page 49: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Scale space doubles for the next octave

K=2(1/s), s+3 images for each octave

Page 50: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Keypoint localization

X is selected if it is larger or smaller than all 26 neighbors

Page 51: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Decide scale sampling frequency

• It is impossible to sample the whole space, tradeoff efficiency with completeness.

• Decide the best sampling frequency by experimenting on 32 real image subject to synthetic transformations.

Page 52: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Decide scale sampling frequency

S=3, for larger s, too many unstable features

Page 53: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Decide scale sampling frequency

Page 54: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Pre-smoothing

=1.6, plus a double expansion

Page 55: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Scale invariance

Page 56: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

2. Accurate keypoint localization• Reject points with low contrast and poorly

localized along an edge• Fit a 3D quadratic function for sub-pixel

maxima

Page 57: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Accurate keypoint localization

If has offset larger than 0.5, sample point is changed.

If is less than 0.03 (low contrast), it is discarded.

Page 58: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Eliminating edge responses

r=10

Let

Keep the points with

Page 59: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Keypoint detector

(a) 233x189 image(b) 832 DOG extrema(c) 729 left after peak value threshold(d) 536 left after testing ratio of principle curvatures

Page 60: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

3. Orientation assignment

• By assigning a consistent orientation, the keypoint descriptor can be orientation invariant.

• For a keypoint, L is the image with the closest scale,

orientation histogram

Page 61: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Orientation assignment

Page 62: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Orientation assignment

Page 63: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Orientation assignment

Page 64: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Orientation assignment

Page 65: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Orientation assignment

Page 66: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Orientation assignment

Page 67: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Orientation assignment

Page 68: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Orientation assignment

0 2

36-bin orientation histogram over 360°,

weighted by m and 1.5*scale falloffPeak is the orientationLocal peak within 80% creates

multiple orientationsAbout 15% has multiple orientations

Page 69: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Orientation invariance

Page 70: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

4. Local image descriptor

• Thresholded image gradients are sampled over 16x16 array of locations in scale space

• Create array of orientation histograms• 8 orientations x 4x4 histogram array = 128 dimensions• Normalized, clip the components larger than 0.2

Page 71: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Why 4x4x8?

Page 72: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Sensitivity to affine change

Page 73: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

SIFT demo

Page 74: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Maxima in D

Page 75: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Remove low contrast

Page 76: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Remove edges

Page 77: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

SIFT descriptor

Page 78: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,
Page 79: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Estimated rotation

• Computed affine transformation from rotated image to original image:

0.7060 -0.7052 128.4230 0.7057 0.7100 -128.9491 0 0 1.0000

• Actual transformation from rotated image to original image:

0.7071 -0.7071 128.6934 0.7071 0.7071 -128.6934 0 0 1.0000

Page 80: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

SIFT extensions

Page 81: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

PCA

Page 82: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

PCA-SIFT

• Only change step 4• Pre-compute an eigen-space for local gradient

patches of size 41x41• 2x39x39=3042 elements• Only keep 20 components• A more compact descriptor

Page 83: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

GLOH (Gradient location-orientation histogram)

17 location bins16 orientation binsAnalyze the 17x16=272-d eigen-space, keep 128 components

Page 84: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Applications

Page 85: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Recognition

SIFT Features

Page 86: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

3D object recognition

Page 87: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

3D object recognition

Page 88: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Office of the past

Video of desk Images from PDF

Track & recognize

T T+1

Internal representation

Scene Graph

Desk Desk

Page 89: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

…> 5000images

change in viewing angle

Image retrieval

Page 90: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

22 correct matches

Image retrieval

Page 91: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

…> 5000images

change in viewing angle

+ scale change

Image retrieval

Page 92: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Robot location

Page 93: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Robotics: Sony AiboSIFT is used for Recognizing

charging station

Communicating with visual cards

Teaching object recognition

soccer

Page 94: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Structure from Motion

• The SFM Problem– Reconstruct scene geometry and camera

motion from two or more images

Track2D Features Estimate

3D Optimize(Bundle Adjust)

Fit Surfaces

SFM Pipeline

Page 95: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Structure from Motion

Poor mesh Good mesh

Page 96: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Augmented reality

Page 97: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Automatic image stitching

Page 98: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Automatic image stitching

Page 99: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Automatic image stitching

Page 100: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Automatic image stitching

Page 101: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Automatic image stitching

Page 102: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Automatic image stitching

Page 103: Feature matching Digital Visual Effects, Spring 2005 Yung-Yu Chuang 2005/3/16 with slides by Trevor Darrell Cordelia Schmid, David Lowe, Darya Frolova,

Reference• Chris Harris, Mike Stephens,

A Combined Corner and Edge Detector, 4th Alvey Vision Conference, 1988, pp147-151.

• David G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2), 2004, pp91-110.

• Yan Ke, Rahul Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors, CVPR 2004.

• Krystian Mikolajczyk, Cordelia Schmid, A performance evaluation of local descriptors, Submitted to PAMI, 2004.

• SIFT Keypoint Detector, David Lowe.• Matlab SIFT Tutorial, University of Toronto.