Fe Cant Wall

11
A1 B C D E F G H I J 2 SOLUTION FOR CANTILEVER RETAINING WALL STABILITY 3 Refence: Das, Principles of Foundation Engineering 6th, 4 Section 8.4 -8.7, Example 8.1 5 Wall Geometry (See Fig. 8.2(b)) Material Properties 6 Wall Height, H = 20.8 117.00 7 Stem Top Width, W = 1.5 117.00 8 10.0 107.00 9 Depth, D = 4.0 150.00 10 Base Thickness, BT = 2.8 0.00 11 Toe Length, TL = 4.0 10.00 12 tem Bottom Width, W' = 2.5 0.294 13 Heel Length, HL = 6.0 c = 0.00 14 Kp 0.00 15 Back Height, H' = 21.8 c 900.0 16 Base Width, B = 12.5 0.67 17 0.67 18 Results eccentricity = 0.45 19 of Safety - Sliding = 1.59 Bearing Capacity q toe = 2428.68 20 ctor of Safety - O.T. = 3.48 F.S = 4.21 q heel = 1568.76 21 22 Item Width Height Gamma V H(R) H(O) arm M(R) 23 (1) Backfill 6 18.0 117.0 12636.00 9.50 120042.0 24 (2) Backfill 6 1.06 117.0 371.34 10.50 3899.1 25 (3) Stem 1.5 18.0 150 4050.00 5.75 23287.5 26 (4) Stem 1 18.0 150 1350.00 4.67 6300.0 27 (5) Base 12.5 2.75 150 5156.25 6.25 32226.6 28 8179.62 2.00 0.0 29 8055.36 7.27 30 1420.38 12.50 17754.7 31 0.0 32 Cohesion at the base 7503.75 33 Friction at the base 5313.24 34 SUM 24983.97 12816.99 8055.36 203510 Active Bac Heel Backfill Angle, a = Passive backf Con q a o Active Ka Passive k1 = k2 = Pa = Ph = Pa cos(a) Pv = Pa sin(a) Pp HL W W' H a BT TL a

Transcript of Fe Cant Wall

Page 1: Fe Cant Wall

A1 B C D E F G H I J K

2 SOLUTION FOR CANTILEVER RETAINING WALL STABILITY

3 Refence: Das, Principles of Foundation Engineering 6th, 4 Section 8.4 -8.7, Example 8.15 Wall Geometry (See Fig. 8.2(b)) Material Properties6 Wall Height, H = 20.8 117.007 Stem Top Width, W = 1.5 117.008 10.0 107.00 Cell K11 = 1

9 Depth, D = 4.0 150.0010 Base Thickness, BT = 2.8 0.00 Cell K11 = 0.5

11 Toe Length, TL = 4.0 10.00 1.0

12 Stem Bottom Width, W' = 2.5 0.29413 Heel Length, HL = 6.0 c = 0.0014 Kp = 0.0015 Back Height, H' = 21.8 c = 900.0

16 Base Width, B = 12.5 0.67

17 0.6718 Results eccentricity = 0.45 (Is e< B/6?)19 Factor of Safety - Sliding = 1.59 Bearing Capacity q toe = 2428.68 B' =20 Factor of Safety - O.T. = 3.48 F.S = 4.21 q heel = 1568.76 11.6042122 Item Width Height Gamma V H(R) H(O) arm M(R) M(O)23 (1) Backfill 6 18.0 117.0 12636.00 9.50 120042.024 (2) Backfill 6 1.06 117.0 371.34 10.50 3899.125 (3) Stem 1.5 18.0 150 4050.00 5.75 23287.526 (4) Stem 1 18.0 150 1350.00 4.67 6300.027 (5) Base 12.5 2.75 150 5156.25 6.25 32226.6

28 8179.62 2.00 0.0

29 8055.36 7.27 58557

30 1420.38 12.50 17754.7

31 0.032 Cohesion at the base 7503.7533 Friction at the base 5313.2434 SUM 24983.97 12816.99 8055.36 203510 58557

Active Backfill g = Heel cover g = For f > 0,

Backfill Angle, a = Passive backfill g = Concrete g = For f = 0,

q a or (q + d) =

Active Ka =

Passive

k1 =

k2 =

Pa =

Ph = Pa cos(a)

Pv = Pa sin(a)

Pp

HL

W

W'

H

a

BT TL

a

Page 2: Fe Cant Wall

35 Normal force on base (N) 24983.97 5.80

Page 3: Fe Cant Wall

A1 B C D E F G H I2 Resultant Active Earth Force on a Wall -- Coulomb and Rankine Method34 Wooksheet Name: Active5 Reference: Das, Fundamentals of Geotechnical Engineering67 deg rad8 Friction angle 34.00 0.5934 117.009 Wall friction angle 0.00 0.0000 H' = 21.8110 Backfill angle (0 horiz) 10.00 0.174511 Wall inclination (0 = vert) 0.00 0.00001213 deg rad function14 phi - theta = 34.00 0.5934 0.687315 delta + theta = 0.00 0.0000 1.000016 delta + phi = 34.00 0.5934 0.559217 phi - alpha = 24.00 0.4189 0.406718 delta + theta = 0.00 0.0000 1.000019 theta - alpha = -10.00 -0.1745 0.984820

21 0.314 8723.1 8590.6

22 0.294 8190.0 8065.6

f = g = d =a =q =

Coulomb Ka = Pa = Pa cos(q+d) =

Rankine Ka = Pa = Pa (cosa) =

Page 4: Fe Cant Wall

A1 B C D E F G H I2 Resultant Passive Earth Force on a Wall -- Coulomb and Rankine Method34 Wooksheet Name: Passive5 Reference: Das, Fundamentals of Geotechnical Engineering67 deg rad

8 Friction angle 18.00 0.3142 107.00

9 900.00 D = 4.001011121314151617181920

21 1.894 11531.58

22 1.894 11531.58

f2 = g =

c2 =

Coulomb Kp = Pp =

Rankine Kp = Pp =

Page 5: Fe Cant Wall

Resultant Passive Earth Force on a Wall -- Coulomb and Rankine Method

Page 6: Fe Cant Wall

BEARING CAPACITY OF SHALLOW FOUNDATIONSTerzaghi and Vesic Methods

Date April 21, 2023Identification Problem 13.1

Input Results

Units of Measurement Terzaghi VesicE SI or E Bearing Capacity

q ult = 18,609 lb/ft^2 10,219 lb/ft^2Foundation Information q a = 18,609 lb/ft^2 10,219 lb/ft^2

Shape CO SQ, CI, CO, or REB' = 11.60 ft Allowable Wall LoadL = 20 ft P/b = 214 k/ft 117 k/ftD = 4.00 ft

Soil Information

c = 900.00 lb/ft^2phi = 18.00 deg

gamma = 107.00 lb/ft^3Dw = 20 ft

Factor of SafetyF = 1

Page 7: Fe Cant Wall

Unit conve 1000

Gamma w 62.4phi (radian 0.314159

Terzaghi Computationsa theta = 2.043238Nc = 15.52Nq = 6.04N gamma 3.31gamma' = 107coefficient 1coefficient 0.5sigma zD' 428Vesic ComputationNc = 13.10

1.00

1.13817.87

0.642Nq = 5.26Fqs = 1.00Fqd = 1.107

4.071.001.00

0.000B/L = 0D/B = 0.344718W sub f 2.0

Fcs =

Fcd =y =

Fci = Fqi =

Ng =Fgs =Fgd =Fgi =

Page 8: Fe Cant Wall

43gc-g =