Fatigue crack initiation in Ti-6Al-4V alloy

55
Fatigue crack initiation in Ti-6Al-4V alloy Kristell Le Biavant - Guerrier directed by : Claude Prioul Sylvie Pommier LMSS-Mat, Ecole Centrale Paris Valérie Gros Bruno Brethes Snecma, Villaroche Contributions of : M.Sampablo, S.Billard & V.Malherbe

description

Fatigue crack initiation in Ti-6Al-4V alloy. Kristell Le Biavant - Guerrier directed by :. Claude Prioul Sylvie Pommier LMSS-Mat, Ecole Centrale Paris. Valérie Gros Bruno Brethes Snecma, Villaroche. Contributions of : M.Sampablo, S.Billard & V.Malherbe. Plan. Industrial issue - PowerPoint PPT Presentation

Transcript of Fatigue crack initiation in Ti-6Al-4V alloy

Fatigue crack initiation in Ti-6Al-4V alloy

Kristell Le Biavant - Guerrier

directed by :

Claude Prioul

Sylvie Pommier

LMSS-Mat, Ecole Centrale Paris

Valérie Gros

Bruno Brethes

Snecma, Villaroche

Contributions of : M.Sampablo, S.Billard & V.Malherbe

2

Plan

Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction Conclusions and perspectives

3

Plan

Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction Conclusions and perspectives

4

Industrial issue Fatigue tests on notched specimens

App

lied

str

ess

(MP

a)

Fatigue life

<N>

<N> -3

5

Industrial issue The material

Time

Temperature

-forging

-transus

-forgingrecrystallisation

annealing

950°C

700°C

6

Industrial issue The material

Microstructure

=

50% primary grains (hcp)

+

50% lamellar grains

(lamellae (hcp) inmatrix (cc))

Element Ti Al V C Fe O

% min (weight) 5.5 3.5 - - -

% max (weight) 6.75 4.5 0.08 0.3 2500ppmBase

7

Plan

Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction Conclusions and perspectives

8

A ghost structure : the macrozones

A contrast appears at a millimetric scale

(after a 0,5 HF - attack)

9

A ghost structure : the macrozones

A strongly inhomogeneous

strain at a millimetric scale

Plastic strain + cyclic bending test

Specimen surface after : a tensile test conducted up to a plastic strain of 1% a cyclic bending test (max=800MPa, R=-1)

Photoelastic analysis

=350MPa =800MPa

1cm

10

A ghost structure : the macrozones Vocabulary

~1mm15µm

A 2 scale material

‘macrozones’ ‘grains’

nodules or lamellar grains

11

A ghost structure : the macrozones RX characterisation

Basal pole figures Prismatic pole figures

Macrozone 1

Macrozone 2

12

A ghost structure : the macrozones Conclusions

Existence of a millimetric structure : the macrozones

Macrozones = areas where -phase has a major crystallographic orientation

+ minor secondary orientations

The origin of the macrozones is still unclear

The macrozones have a strong influence on the local mechanical response of the material

13

Plan

Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure

Observations Crack initiation Crack growth

Model for fatigue life prediction Conclusions and perspectives

14

Macrozones and fatigue failure Observations

A strongly inhomogeneous

cracking process at a

millimetric scale

Within each macrozones

cracks are parallel one to

another

Specimen surface after a cyclic bending test

(max=800MPa, R=-1)

15

Macrozones and fatigue failure Observations

N=3000cycles

N=4000cycles

Fatigue cracking and interfaces between

neighbouring macrozones N=5000cycles

Specimen surface after a cyclic bending test

(max=800MPa, R=-1)

16

C.O.C.O. Average crack

orientation (C.O.)

Macrozones and fatigue failure Crack initiation

Relationship between the crystallographic orientation and crack initiation :

17

Macrozones and fatigue failure Crack initiation

Relationship between the crystallographic orientation and crack initiation :

18

Macrozones and fatigue failure Crack initiation

Fatigue cracks initiate along slip bands :

19

Macrozones and fatigue failure Crack initiation

Schmid factor calculations :

Hypotheses : A single orientation within the macrozone

local = macroscopic

Slip intensity :

= . cos . cos

20

Macrozones and fatigue failure Crack initiation

Major crystallographic orientation (measured)

Maximum resolved shear stresses

max (calculated)

Within each of the 12 macrozones studied :

Fatigue cracks observed cracks parallel to basal plane

or cracks parallel to a prismatic plane

or no cracks

21

Macrozones and fatigue failure Crack initiation

Macrozones with ‘basal’ cracks

Macrozones with

‘prismatic’ cracks

c

max (MPa)basal

Macrozone number

22

Macrozones and fatigue failure Crack initiation

Macrozones with ‘basal’ cracks

Macrozones with

‘prismatic’ cracks

max (MPa)prism

Macrozone number

Pc

23

Macrozones and fatigue failure Crack initiation

Macrozones with ‘basal’ cracks

Macrozones with

‘prismatic’ cracks

max (MPa)

Macrozone number

Pc

c

24

Macrozones and fatigue failure Crack initiation

Within each studied macrozone :

Fatigue cracks observed Fatigue crack density (measured)

Major crystallographic orientation (measured)

Resolved shear stresses amplitude

max (calculated)

max >

c

Fatigue crack initiation if or

Pmax > P

c

25

Macrozones and fatigue failure Crack initiation

max (MPa)basal

Crack density of the macrozone

(µm/mm2 for N cycles)

26

Macrozones and fatigue failure Crack initiation

?

Crack density of the macrozone

(µm/mm2 for N cycles)

max (MPa)prism

27

Macrozones and fatigue failure Crack initiation

Surface effect

‘easy’ initiation

M.W. Brown , K. J. Miller, (1973). A theory for fatigue failure under multiaxial stress-strain conditions. Proc.Instn.Mech.Engrs, Vol. 187, pp745-755.

‘uneasy’ initiation

Surface effect correction cos . cos . cos

28

Macrozones and fatigue failure Crack initiation

Crack density of the macrozone

(µm/mm2 for N cycles)

max . cos (MPa)uncracked macrozones

crack density = f(cos , N)

29

Plan

Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure

Observations Crack initiation Crack growth

Model for fatigue life prediction Conclusions and perspectives

30

Macrozones and fatigue failure Crack growth

Importance of crack coalescence in growth mechanism :

Cra

ck le

ngth

m)

Number of cycles

31

Macrozones and fatigue failure Crack growth

Importance of crack coalescence in growth mechanism :

Example of coalescence process

32

Macrozones and fatigue failure Crack growth

Importance of crack coalescence in growth mechanism :

Cra

ck le

ngth

m)

Number of cycles

Cra

ck le

ngth

m)

Number of cycles

33

Macrozones and fatigue failure Crack growth

Two mechanisms are involved in fatigue crack growth :

• crack coalescence

• ‘pure’ crack growth

Crack initiationdensity

Macrozone crystallographic

orientation

not significant

Inhomogeneous cracking process

34

Macrozones and fatigue failure Conclusions

Strong influence of macrozones on short cracks :

Cracks initiate along basal or prismatic slip bands

if max > c

Fatigue crack density = f (1,, 2,cos , N)

Short crack growth = crack coalescence + ‘pure’ crack growth

Long crack growth follows a Paris regime (a > 500µm)

35

Plan

Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction

Model description Hypotheses control

Conclusions and perspectives

36

Model for fatigue life prediction Model description

Number of cycles for short crack growth

Number of cycles for long crack growth

Number of cycles for fatigue failure

37

Model for fatigue life prediction Model description

Large grain microstructure

Within the macrozone, equivalence between

crack density and a longer crack

Small grain microstructure Macrozones

38

Model for fatigue life prediction Model description

zone of influence of the crack(Kachanov, 1993)

Definition of a crack density

39

Model for fatigue life prediction Model description

Crack length

Short cracks

1mm

Crack density

evolution law

500µm

Long cracks

Paris law

Threshold short / long cracks

macrozone size

40

Initiation model description

N=1000

N=3000

N=2000

N=5000

crack density

N

.cos

crack density

41

Initiation model description

crack density

.cos

N=1000

.cos

rc dc

Transition betweenshort / long cracks

42

Model for fatigue life prediction Model description

Number of cycles for short crack growth

Crack density

evolution law

Number of cycles for long crack growth

Threshold short / long cracks

Number of cycles for fatigue failure

43

Plan

Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction

Model description Hypotheses control

Conclusions and perspectives

44

Model for fatigue life prediction Hypotheses control

N growth = C.Km daa0

af

?~ macrozone size

Crack growth model(Paris law)

45

Model for fatigue life prediction Hypotheses control

46

Model for fatigue life prediction Hypotheses control

1. Initiation located on the fracture surface Macrozone located at the initiation site electropolished

47

Model for fatigue life prediction Hypotheses control

1. Initiation located on the fracture surface Macrozone located at the initiation site electropolished

4. Nf calculated

2. Major crystallographic orientation at the initiation site measured (EBSD)

3. max and P

max calculated

3D-analysis elastic calculation

Ti-6Al-4V

Ti-

48

Model for fatigue life prediction Hypotheses control

X 3,8

X 0,9

X 0,8

X 0,3

49

Model for fatigue life prediction Conclusions

1. Initiation model based on fatigue crack density within the macrozone

2. Crack growth model

Threshold short / long cracks = macrozone size

3. Fatigue life prediction Good understanding of life scatter on notched specimen

50

Plan

Industrial issue A ghost structure : the macrozones Macrozones and fatigue failure Model for fatigue life prediction Conclusions and perspectives

51

Model for fatigue life prediction Conclusions

1. Main aim of this study achieved :

Fatigue life scatter explained

2. New result :

Macrozone existence exhibited

3. Influence of macrozones on fatigue failure :

Crack initiation Crystallographic orientation

Crack growth Macrozone size

4. Fatigue life model proposed

52

Comparison between notch size

and macrozone size

Conclusions

?Notch size ~ macrozone size Notch size >> macrozone size

Large scatter of NfLow scatter of Nf

(lower limit)

Distribution of

crystallographic orientations

53

Perspectives

Model improvements

1. Normal stress

2. Stress calculation within the macrozone

3. Improvement of evolution law of crack density

4. Distribution of crystallographic orientations

54

Perspectives

Material improvements

1. Understanding of thermo-mechanical treatment

2. Reduce macrozone size

3. Control of crystallographic orientation ? Fatigue life for each zone of the disk

55

Plan

Industrial issue Fatigue on notched specimen The material of the study

A ghost structure : the macrozones Macrozones and fatigue failure

Observations Crack initiation Crack growth

Model for fatigue life prediction Model description Hypotheses control

Conclusions and perspectives