FASTEN: Fast Sylvester Equation Solver for Graph Mining

41
Arizona State University Presenter: Boxin Du Joint work by: Hanghang Tong Boxin Du FASTEN: Fa st S ylvester Equat ion Solve r for Graph Min ing

Transcript of FASTEN: Fast Sylvester Equation Solver for Graph Mining

Page 1: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Presenter: Boxin Du

Joint work by:

Hanghang TongBoxin Du

FASTEN: Fast Sylvester Equation Solver for Graph Mining

Page 2: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Why Sylvester Equation?

2

β–ͺ Link users from different social networks

[Zhang et al’ 16]

β–ͺ Protein function prediction

[Vishwanathan et al’ 10]

β–ͺ Fraudulent transaction pattern matching

[Du et al’ 17] β–ͺ Chemical similarity calculation

[Yu-Chen et al’ 15]

Query pattern

?

β‰ˆ

Network alignment Graph kernel

Subgraph matching Node similarity

Transaction network Chemical compound network

Page 3: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

What is Sylvester Equation: an example on plain graph

3

Adjacency matrix

π€πŸ:

G2

Solution matrix X of the

Sylvester equation:

𝐗 = π€πŸπ—π€πŸ + 𝐁(π€πŸ and π€πŸ are normalized)

β–ͺ Sylvester equation 𝐗 = π€πŸπ—π€πŸ + 𝐁 gives the cross-network node similarity matrix 𝐗;

G1

Adjacency matrix:

π€πŸ:

Prior knowledge of

cross-network link: 𝐁

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

𝐁:0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional

orthology detection." Proceedings of the National Academy of Sciences (2008).

Page 4: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

What is Sylvester Equation: an example on attributed graph

4

Input graphs with node attributes

(colors and shapes)

Solution X of 𝐗 βˆ’ Οƒπ’Š,𝒋=𝟏𝟐 π€πŸ

𝑖𝑗𝐗(π€πŸ

𝑖𝑗)𝐓 = 𝐁

(π€πŸ and π€πŸ are normalized)

G1 G2

β–ͺ Sylvester equation 𝐗 βˆ’ Οƒπ’Š,𝒋=𝟏𝟐 π€πŸ

𝑖𝑗𝐗(π€πŸ

𝑖𝑗)𝐓 = 𝐁 gives the cross-network node similarity matrix 𝐗;

0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0

π€πŸ: π€πŸ:𝐁:0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional

orthology detection." Proceedings of the National Academy of Sciences (2008).

e.g. π€πŸπŸπŸ:

0 0 0

0 0 0

0 0 0 0

0 0 0 0

π€πŸπŸπŸ:

0 0 0 0

0 0

0 0 0 0

0 0 0 0

Page 5: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

β–ͺ Given:

β€’ Two graphs 𝐺1 and 𝐺2 (the adjacency matrices are π€πŸ and π€πŸ);

β€’ The preference matrix 𝐁.

β–ͺ Find: the solution 𝐗 of Sylvester equation:

or 𝐱 of its equivalent linear system:

β–ͺ Mathematical details:

β€’ π€πŸ ← Ξ± 1/2πƒπŸβˆ’πŸ/𝟐

π€πŸπƒπŸβˆ’πŸ/𝟐

, π€πŸ ← Ξ± 1/2πƒπŸβˆ’πŸ/𝟐

π€πŸπƒπŸβˆ’πŸ/𝟐

;

β€’ πƒπŸ and πƒπŸ are the diagonal degree matrices of π€πŸ and π€πŸ, 0 < 𝛼 < 1;

β€’ 𝐖 = π€πŸ βŠ—π€πŸ (both are normalized), 𝐱 = vec(𝐗), 𝐛 = vec(𝐁).

Formal Definition of Sylvester Equation (Plain Graph)

5

𝐗 βˆ’ π€πŸπ—π€πŸπ‘‡ = 𝐁

𝐈 βˆ’π– 𝐱 = 𝐛

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional orthology

detection." Proceedings of the National Academy of Sciences (2008).

G2G1

Solution matrix X

Page 6: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

β–ͺ Given:

β€’ Two graphs 𝐺1 = {𝐴1, 𝑁1}, 𝐺2 = {𝐴2, 𝑁2};

β€’ The preference matrix 𝐁.

β–ͺ Find: the solution 𝐗 of Sylvester equation:

or 𝐱 of its equivalent linear system:

β–ͺ Mathematical details:

β€’π€πŸ(π’Šπ’‹)

← Ξ± 1/2πƒπŸβˆ’πŸ/𝟐

ππŸπ’Šπ€πŸππŸ

π’‹πƒπŸβˆ’πŸ/𝟐

, π€πŸ(π’Šπ’‹)

← Ξ± 1/2πƒπŸβˆ’πŸ/𝟐

ππŸπ’Šπ€πŸππŸ

π’‹πƒπŸβˆ’πŸ/𝟐

;

β€’π€πŸ(π’Šπ’‹)

is the adjacency matrix β€˜filtered’ by attribute i and j.

β€’ 𝑙 : the number of node attributes, 𝐱 = vec(𝐗), 𝐛 = vec(𝐁).

Formal Definition of Sylvester Equation (Attributed Graph)

6

𝑁2π‘—π‘Ž, π‘Ž = 1 if node

π‘Ž has node attribute

𝑗, o/w it is zero.

𝐗 βˆ’π’Š,𝒋=𝟏

𝒍

π€πŸπ‘–π‘—π—(π€πŸ

𝑖𝑗)𝐓 = 𝐁

𝐈 βˆ’π’Š,𝒋=𝟏

𝒍

(π€πŸπ‘–π‘—βŠ—π€πŸ

𝑖𝑗) 𝐱 = 𝐛

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional

orthology detection." Proceedings of the National Academy of Sciences (2008).

Solution matrix X

G2G1

0 0 0

0 0 0

0 0 0 0

0 0 0 0

π€πŸπŸπŸ:

Page 7: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Challenges of Solving the Sylvester Equation

β–ͺ Size of π€πŸ βŠ—π€πŸ:

– 𝑛2 Γ— 𝑛2 (for plain graphs with 𝑛 nodes and π‘š edges);

– Straightforward solver costs O(𝑛6) (time) and O(π‘š2) (space);

– State-of-the-art methods: time complexity at least O π‘šπ‘› + 𝑛2 ;

β–ͺ With node attributes:

– Add additional O(𝑙) complexity (for 𝑙 discrete node attributes);

β–ͺ Size of solution matrix 𝐗:

– 𝑛 Γ— 𝑛 ;

– Usually not sparse;

– Limit the time/space complexity of the equation solver.

7

The Ξ©(𝑛2)bottleneck

The Ξ©(𝑛2)bottleneck

Page 8: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

β–ͺ Obs.: Tradition methods: all attributed and provide exact solution, but high complexity;

Recent methods: at least 𝑂(𝑛2), and are often approximated/not attributed.

β–ͺ Q: Can we have a solution that is attributed, exact, and more efficient?

Comparison of Methods for the Sylvester EquationAlgorithm Attributed

(Y/N)

Exact

Solution (Y/N)

Time

Complexity

Space

Complexity

Fixed Point (FP) [Vishwanathan et al’ 10] 𝑂(𝑛3) 𝑂(π‘š2)

Conjugate Gradient (CG) [Y Saad et al’ 03] 𝑂(𝑛3) 𝑂(π‘š2)

Sylv. [Vishwanathan et al’ 10] 𝑂(𝑛3) 𝑂(π‘š2)

ARK [U Kang et al’ 12] 𝑂(𝑛2) 𝑂(𝑛2)

Cheetah [L Li et al’ 10] 𝑂(π‘Ÿπ‘›2) 𝑂(𝑛2)

NI-Sim [C Li et al’ 10] 𝑂(𝑛2) 𝑂(π‘Ÿ2𝑛2)

FINAL-P [S Zhang et al’16] 𝑂(π‘šπ‘› + 𝑛2) 𝑂(𝑛2)

FINAL-NE [S Zhang et al’16] 𝑂(π‘™π‘šπ‘› + 𝑙𝑛2) 𝑂(𝑛2)

FINAL-N+ [S Zhang et al’16] 𝑂(𝑛2) 𝑂(𝑛2)

8

FASTEN-P 𝑂(π‘˜π‘›2) 𝑂(𝑛2)

FASTEN-P+ 𝑂(π‘˜π‘š + π‘˜2𝑛) 𝑂(π‘š + π‘˜π‘›)

FASTEN-N 𝑂(π‘šπ‘›/+π‘˜π‘›2/𝑙) 𝑂(π‘š/𝑙 + 𝑛2)

FASTEN-N+ 𝑂(π‘˜π‘š + π‘˜2𝑙𝑛) 𝑂(π‘š + π‘˜π‘™π‘›)

Th

is P

ap

er

Recen

t

meth

od

sT

rad

ition

al

meth

od

s

Page 9: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Roadmap

β–ͺMotivations

β–ͺBackground

β–ͺProposed Algorithms for plain graphs

β–ͺProposed Algorithms for attributed graphs

β–ͺExperimental Results

β–ͺConclusions

9

Page 10: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Krylov Subspace Method (KSM) for Linear Systemβ–ͺ Minimal residual method for linear system 𝐀𝐱 = 𝐛 (𝐱 ∈ Rn):

– Extract 𝐱 from π‘˜-dimensional subspace of Rn 𝐱 ∈ 𝐱𝟎 + πΎπ‘˜

– Minimize residual 𝐫 = 𝐛 βˆ’ 𝐀𝐱 βŠ₯ πΏπ‘˜ small scaled system

– Iteratively update 𝐱 and 𝐫 until 𝐫 2 is small enough

β–ͺ Example:

– Let 𝐱𝟎 = 𝟎, 𝟎, 𝟎 𝑻(i.e. 𝐫𝟎 = 𝐛), extract 𝐱𝟏 ∈ πΎπ‘˜.

– Let 𝐱𝟏 = 𝐱𝟎 + 𝐳𝟎, minimize 𝐫 = 𝐫𝟎 βˆ’ π€π³πŸŽ (𝐫 βŠ₯ πΏπ‘˜).

– Update 𝐱 in 3-d space.

– ).10 [1] Saad, Yousef. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

πΏπ‘˜ = π€πΎπ‘˜

πΎπ‘˜

𝐫𝟎

𝑢

π€π³πŸŽ

𝐱𝟏

𝐫𝟎 βˆ’ π€π³πŸŽ: new residual

πΏπ‘˜: Subspace of constraints

3 1 11 2 11 1 3

π‘₯1π‘₯2π‘₯3

=111

𝐀 𝐱 𝐛

6 611 6

π‘₯1β€²

π‘₯2β€²=

45

𝐀′ 𝐲 𝐜

Page 11: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

KSM for Linear System (cont’d)β–ͺ Krylov subspace:

β€“πΎπ‘˜ 𝐀, 𝐫𝟎 = π‘ π‘π‘Žπ‘›{𝐫𝟎, π€π«πŸŽ, 𝐀2𝐫𝟎, … , π€π‘˜βˆ’1𝐫𝟎};

– Arnoldi process outputs 𝑖 orthonormal basis: 𝐕𝑖 = 𝐯1, 𝐯2, … , 𝐯𝑖 , 𝑖 ∈ {π‘˜, π‘˜ + 1}

β€“π€π•π‘˜ = π•π‘˜+1ΰ·©π‡π‘˜

β–ͺ Krylov subspace-based Minimal Residual method:

– Extract solution from π‘˜-dimensional Krylov subspace (let πΎπ‘˜ = πΎπ‘˜ 𝐀, 𝐫𝟎 );

– Minimize the residual 𝐫 and update solution at every iteration.

11

𝐀 π•π‘˜ = π•π‘˜+1ΰ·©π‡π‘˜

[1] Saad, Yousef. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

Upper-Hessenberg

matrix

𝐫𝟎

π€π«πŸŽ

𝐯1

𝐯2

Page 12: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

β–ͺ Arnoldi: 𝑂(π‘š) for sparse system;

β–ͺ Solve small scaled system every iteration;

β–ͺ Exact solution, no approximation needed;

β–ͺ Upper-Hessenberg makes solving system faster.

Minimize residual

𝐽 𝐲 = 𝐛 βˆ’ 𝐀𝐱2

= 𝐛 βˆ’ 𝐀 𝐱0 + π•π‘˜π² 2

= β‹―= ||π›½πž1 βˆ’ ΰ·©π‡π‘˜π²||2

Advantages of KSM with Minimal Residual

12

equivalent to solve:

[1] Saad, Yousef. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

β€’ Details:

A x A’ yb b= =Minimize residual

Update solution in

original dimension

High dimensional system

Low dimensional systemΰ·©π‡π‘˜π² = π›½πž1

=

on Krylov subspace

Page 13: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Challenges of Applying KSM on Sylvester Equation

β–ͺ Size of 𝐈 βˆ’π– 𝐱 = π›οΌš

– Generate πΎπ‘˜2(𝐈 βˆ’ π€πŸ βŠ—π€πŸ, 𝐫𝟎) 𝑂 𝑛4 or 𝑂 π‘š2 in time/space cost;

β–ͺ Size of 𝐈 βˆ’ Οƒπ’Š,𝒋=πŸπ’ (π€πŸ

π‘–π‘—βŠ—π€πŸ

𝑖𝑗) 𝐱 = π›οΌš

– Generate πΎπ‘˜2(𝐈 βˆ’ Οƒπ’Š,𝒋=πŸπ’ (π€πŸ

π‘–π‘—βŠ—π€πŸ

𝑖𝑗) , 𝐫𝟎) 𝑂(𝑙𝑛4) or 𝑂 π‘™π‘š2 cost.

β–ͺ Example:

13

G2G1Krylov subspace of

πΎπ‘˜2(𝐈 βˆ’ π€πŸ βŠ—π€πŸ, 𝐫𝟎):16 dimension

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

G2G1

ππ€πŸπ€πŸ

*

* ,…

𝑙 multiplication

𝑛2 Γ— 𝑛2

𝑛2 Γ— 𝑛2

*𝑛2 Γ— 𝑛2

Page 14: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Roadmap

β–ͺMotivations

β–ͺBackground

β–ͺProposed Algorithms for plain graphs

β–ͺProposed Algorithms for attributed graphs

β–ͺExperimental Results

β–ͺConclusions

14

Page 15: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Key Ideas

β–ͺ#1: Kronecker Krylov Subspace (KKS)

– Implicit construction of the original large Krylov subspace

–Largely reduce the time/space complexity 𝑂 𝑛4 𝑂 𝑛2

β–ͺ#2: MRES* on KKS with Implicit Solution Representation

–Solve small scaled system and update solution till converge

–Further reduce the time/space complexity 𝑂 π‘˜π‘›2 𝑂 π‘˜2𝑛 + π‘˜π‘š

*: MRES: Minimal Residual method

15

Page 16: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Theorem: π•π‘˜ βŠ—π–k forms

the orthonormal basis of the

Kronecker Krylov subspace;

don’t need to be computed

directly

Kronecker Krylov Subspace (Details)

16

β–ͺ Step 1: Choose Arnoldi vectors 𝐠, 𝐟; 𝑂 𝑛2

β–ͺ Step 2: Generate πΎπ‘˜ π€πŸ, 𝐠 ; 𝑂 π‘˜π‘š

β–ͺ Step 3: Generate πΎπ‘˜ π€πŸ, 𝐟 ; 𝑂(π‘˜π‘š)

β–ͺ Details:

– Choosing 𝐠, 𝐟 s.t. 𝐫𝟎 ∈ πΎπ‘˜ π€πŸ, 𝐠 βŠ— πΎπ‘˜(π€πŸ, 𝐟):

– If π‘πŸŽ 1≀ π‘πŸŽ ∞

,

𝐟: π‘πŸŽβ€™s column of largest norm, 𝐠 = π‘πŸŽπ“πŸ/ 𝐟 𝟐

𝟐

– If π‘πŸŽ 1> π‘πŸŽ ∞

,

𝐠: π‘πŸŽβ€™s row of largest norm, 𝐟 = π‘πŸŽπ“π / 𝐠 𝟐

𝟐

πΎπ‘˜ π€πŸ, 𝐠 βŠ— πΎπ‘˜(π€πŸ, 𝐟)

π€πŸπ•π‘˜ = π•π‘˜+1෩𝐇1 π€πŸπ–π‘˜ = π–π‘˜+1෩𝐇2

π•π‘˜ = 𝐯1, 𝐯2, … , π―π‘˜ 𝐖k = 𝐰1, 𝐰2, … ,π°π‘˜

𝐈 βˆ’π– 𝐱 = 𝐛

Page 17: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Example

β–ͺ Step 1: π‘πŸŽ = 𝐁 (𝐱𝟎 = 𝟎), 𝐟 = 0,0,0,1 𝑇, 𝐠 = 1,0,0,0 𝑇;

β–ͺ Step 2: πΎπ‘˜ π€πŸ, 𝐠 = π‘ π‘π‘Žπ‘›{ 0,0.7071,0.7071,0 ,𝑇 1,0,0,0 𝑇};

β–ͺ Step 3: πΎπ‘˜ π€πŸ, 𝐟 = π‘ π‘π‘Žπ‘›{ 0,0.7071,0.7071,0 𝑇, 0,0,0,1 𝑇};

β–ͺ πΎπ‘˜ π€πŸ, 𝐠 βŠ— πΎπ‘˜ π€πŸ, 𝐟 = π‘ π‘π‘Žπ‘›{𝐯𝟏 βŠ—π°πŸ, 𝐯𝟏 βŠ—π°πŸ, 𝐯𝟐 βŠ—π°πŸ, 𝐯𝟐 βŠ—π°πŸ}.

17

G2G10 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

G2G1

𝐁 A2A1

𝐈 βˆ’π– 𝐱 = 𝐛

𝐯𝟏 𝐯𝟐

𝐰𝟏 𝐰𝟐

Page 18: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Minimal Residual (Details):

18

β–ͺ Step 1: Initial residual: 𝐫𝟎 = 𝐛 βˆ’ 𝐈 βˆ’ 𝛼𝐖 𝐱𝟎

β–ͺ Step 2: Let new solution:

𝐱 = 𝐱𝟎 + 𝐳𝟎, 𝐳𝟎 ∈ πΎπ‘˜ π€πŸ, 𝐠 βŠ— πΎπ‘˜(π€πŸ, 𝐟)

β–ͺ Step 3: Minimize new residual:

π‘πŸ= π–π‘˜+𝟏

𝐓 π‘πŸŽπ•π‘˜+𝟏 βˆ’ ΰ·©π‡πŸπ˜ΰ·©π‡πŸπ“ + πˆπ‘˜+𝟏,π‘˜π˜πˆπ‘˜+1,π‘˜

𝑻

𝐅

β–ͺ Both 𝐘 and 𝐂 are π‘˜ by π‘˜: small scaled system.

β–ͺ Step 4: Update solution 𝐗 and residual 𝐑.

𝐗 ← 𝐗 + π•π€π˜π–π€π“, 𝐑 ← 𝐑 βˆ’ 𝐕𝐀+πŸΰ·©π‡πŸπ˜ΰ·©π‡πŸ

𝐓𝐖𝐀+πŸπ“ + π•π€π˜π–π€

𝐓

βˆ’π‚ L(𝐘)

Small system L(𝐘) = 𝐂

Easy to solve!, π‘˜ β‰ͺ 𝑛

Effectiveness: this method

gives the exact solution of the

Sylvester equation on plain

graphs w.r.t. a tolerance πœ–.

𝐈 βˆ’π– 𝐱 = 𝐛

Complexity: Time: 𝑂(π‘˜π‘›2), Space: 𝑂(𝑛2)=

Page 19: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

FASTEN-Pβ–ͺ Major steps:

β–ͺ Details:

– 𝐗 is often initialized as 𝟎, and 𝐑 = 𝐁;

– Overall Complexity: time: 𝑢(π’Œπ’πŸ); space: 𝑢(π’πŸ);

19

𝑢(π’πŸ)Choosing

Arnoldi

vectors 𝐠 and

𝐟 by 𝐑

𝑢(π’Œπ’Ž)Arnoldi

Process on π€πŸ

and π€πŸ to get

the orthogonal

basis 𝐕k, 𝐖k

𝑢(π’Šπ’•π’†π’“ βˆ— π’ŒπŸ‘)Solve the new

linear system in

low dimensional

space

𝐿 𝐘 = 𝐂

𝑢(π’Œπ’πŸ)Update 𝐗 and

𝐑 by 𝐘 and

check

stopping

condition

Till converge ( 𝐑𝐹< πœ–, e.g. 10βˆ’8).

Page 20: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Can we further scale up?

β–ͺ Goal: complexity: from 𝑂(𝑛2) to linear

β–ͺ Difficulties:

–𝐗: 𝑛 Γ— 𝑛, 𝑂(𝑛2) seems to be the lower bound;

–𝐗: in general not sparse.

β–ͺ Observation:

–𝐁 is often sparse and low-rank (sparse anchor links across network);

– If prior anchor links are unknown: 𝐁 is uniform (rank 1);

–𝐁 is low-rank 𝐗 must have low-rank property (see proof in paper).

β–ͺ Solution:

– Implicit representation of residual 𝐑, intermediate solution 𝐗.

20

𝐗 βˆ’ π€πŸπ—π€πŸπ‘‡ = 𝐁

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

G2G1

𝐁

𝑛 Γ— 𝑛

Page 21: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Kronecker Krylov Subspace with Low-rank Residualβ–ͺ Step 1: Represent π‘πŸŽ by low-rank matrices π”πŸ, π”πŸ: 𝑂(𝑛).

β–ͺ Step 2: Choose Arnoldi vectors 𝐠, 𝐟: 𝑂(π‘Ÿπ‘›) (π‘Ÿ: rank of π”πŸ, π”πŸ)

β–ͺ Step 3: Generate πΎπ‘˜ π€πŸ, 𝐠 , πΎπ‘˜ π€πŸ, 𝐟 : 𝑂(π‘˜π‘š), and obtain

β–ͺ Details:

– Choosing 𝐠, 𝐟 (let 𝐫𝟏 = πžπ“π”πŸπ”πŸ, 𝐫𝟐 = π”πŸπ”πŸπž):

– If max 𝐫𝟏 β‰₯ max 𝐫𝟐 ,

𝐟 = π”πŸπ”πŸ(: , 𝑖1), 𝐠 = π”πŸπ“π”πŸ

π“πŸ/ 𝐟 𝟐𝟐 (𝑖1is the index of π«πŸβ€™s largest entry)

– If max 𝐫𝟏 < max(𝐫𝟐),

𝐠 = π”πŸπ‘»π”πŸ(𝑖2, : ), 𝐟 = π”πŸπ”πŸπ / 𝐠 𝟐

𝟐 (𝑖2is the index of π«πŸβ€™s largest entryοΌ‰

21

π€πŸπ•π‘˜ = π•π‘˜+1෩𝐇1

π€πŸπ–π‘˜ = π–π‘˜+1෩𝐇2

π•π‘˜ = 𝐯1, 𝐯2, … , π―π‘˜

𝐖k = 𝐰1, 𝐰2, … ,π°π‘˜

Page 22: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Exampleβ–ͺ Step 1:

‒𝐁: Assume each node in G1 has at most one 1-to-1 anchor link to G2.

β€’π‘πŸŽ = 𝐁 = 0,0,0,1 𝐓 βˆ— 1,0,0,0 = π”πŸπ”πŸ; 𝑂(𝑛).

β–ͺ Step 2: Choose Arnoldi vectors, 𝐟 = 0,0,0,1 𝑇, 𝐠 = 1,0,0,0 𝑇; 𝑂(π‘Ÿπ‘›)

β–ͺ Step 3:

β€’πΎπ‘˜ π€πŸ, 𝐠 = π‘ π‘π‘Žπ‘›{ 0,0.7071,0.7071,0 ,𝑇 1,0,0,0 𝑇}; 𝑂(π‘˜π‘š)

β€’πΎπ‘˜ π€πŸ, 𝐟 = π‘ π‘π‘Žπ‘›{ 0,0.7071,0.7071,0 𝑇 , 0,0,0,1 𝑇}; 𝑂(π‘˜π‘š)

2222

G2G10 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

G2G1

𝐁 A2A1

Page 23: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Minimal Residual Method with Low-rank Representation

β–ͺ Step 1: Obtain and solve small scaled system L(𝐘) = 𝐂.

β–ͺ Step 2: Implicit solution representation 𝐏 = 𝐏, π•π€π˜ , 𝐐 = [𝐐,𝐖𝐀𝐓];

(Original updating: 𝐗 ← 𝐗 + π•π€π˜π–π€π“)

β–ͺ Step 3: Let π‘³πŸ = π‘½π’Œ+πŸΰ·©π‡1π˜ΰ·©π‡2𝑇, 𝐏𝟐 = 𝐖𝐀+𝟏

𝐓 , π‹πŸ‘ = π•π€π˜, ππŸ‘ = 𝐖𝐀𝐓

Construct new residual π”πŸ = π”πŸ, π‹πŸ, π‹πŸ‘ , π”πŸ = π”πŸπ“, 𝐏𝟐

𝐓, ππŸ‘π“ 𝐓

(Original updating: 𝐑 ← 𝐑 βˆ’ 𝐕𝐀+πŸΰ·©π‡πŸπ˜ΰ·©π‡πŸπ“π–π€+𝟏

𝐓 + π•π€π˜π–π€π“)

23

Complexity:

Time: 𝑂(π‘˜ π‘˜ + 2 𝑛),Space: 𝑂(π‘š + π‘˜π‘›)

Low-rank property: If 𝐁 is

rank π‘Ÿ, the rank of 𝐗 is

upper-bounded by π‘–π‘‘π‘’π‘Ÿ βˆ— π‘Ÿ(π‘–π‘‘π‘’π‘Ÿ: the iteration number)

𝐗 PQ

Represented as

𝐑 π”πŸ

π”πŸRepresented as

Page 24: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

FASTEN-P+β–ͺ Major steps:

β–ͺ Details:

– : 𝐑𝑭

can be computed as π‘‘π‘Ÿπ‘Žπ‘π‘’(π”πŸπ“ π”πŸ

π“π”πŸ π”πŸ);

– Overall Complexity: time: 𝑢(π’Œπ’Ž+ π’ŒπŸπ’); space: 𝑢(π’Ž+ π’Œπ’);

24

𝑢(π’Œπ’Ž)Arnoldi

Process on π€πŸ

and π€πŸ to get

the orthogonal

basis 𝐕k, 𝐖k

𝑢(π’Šπ’•π’†π’“ βˆ— π’ŒπŸ‘)Solve the new

linear system in

low dimensional

space 𝐿 𝐘 = 𝐂

𝑢(𝒓𝒏)Choosing

Arnoldi

vectors 𝐠and 𝐟 by π”πŸ,

π”πŸ

𝑢(π’ŒπŸπ’)Update 𝐏,

𝐐 and π”πŸ, π”πŸ

by 𝐘 and check

stopping

condition

1 2 3 4

Till converge ( 𝐑𝐹< πœ–)

4

Page 25: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Roadmap

β–ͺMotivations

β–ͺBackground

β–ͺProposed Algorithms for plain graphs

β–ͺProposed Algorithms for attributed graphs

β–ͺExperimental Results

β–ͺConclusions

25

Page 26: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Key Ideas

β–ͺ#1: Decomposition of Sylvester equation

–Decompose the equation to a inter-correlated Sylvester equation set

–Each decomposed equation is small-scaled & fast to solve

β–ͺ#2: Apply FASTEN-P(+) on decomposed equation

–Apply Block Coordinate Descent (BCD) on the whole equation set

–Efficiently solve every single equation by FASTEN-P(+)

26

Page 27: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

β–ͺObservation:

– The solution matrix 𝐗 has block-diagonal structure

– The equation can be decomposed to:

– 𝐀1π‘–π‘ž

is a block of 𝐀1 of rows from attribute 𝑖 to columns of attribute π‘ž.

– Off-diagonal block: need not to be solved

– Diagonal block: apply Block Coordinate Descent (BCD)

π—π’Šπ‘– βˆ’

πͺ=𝟏

π₯

π€πŸπ‘–π‘žπ—π‘žπ‘ž π€πŸ

π‘–π‘žπ“= 𝐁𝑖𝑖

𝐗𝑖𝑗 = 𝐁𝑖𝑗 (1 ≀ 𝑖, 𝑗 ≀ 𝑙, 𝑖 β‰  𝑗)

Decomposition of Sylvester Equation

27

Diagonal block

variables

Off-diagonal

block variables

Solution matrix X

𝐗 βˆ’π’Š,𝒋=𝟏

𝒍

π€πŸπ‘–π‘—π—(π€πŸ

𝑖𝑗)𝐓 = 𝐁

Page 28: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Apply FASTEN-P(+) on Decomposed Equation

β–ͺObservation:

– When applying BCD: solve a non-attributed Sylvester equation each time

– e.g.: when solving 𝐗11, the equation becomes:

– Apply FASTEN-P(+) to solve the above equation.

28

Diagonal block

variables

𝐗11 βˆ’ 𝐀211𝐗11(𝐀1

11)𝑇 = 𝐁11 +

π‘žβ‰ 1

𝑙

𝐀21π‘žπ—π‘žπ‘ž(𝐀1

1π‘ž)𝑇 = ΰ·ͺ𝐁𝟏𝟏

π—π’Šπ‘– βˆ’

πͺ=𝟏

π₯

π€πŸπ‘–π‘žπ—π‘žπ‘ž π€πŸ

π‘–π‘žπ“= 𝐁𝑖𝑖

𝐀111 𝐀2

11

ΰ·ͺ𝐁𝟏𝟏

G1’ G2’

Page 29: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

𝐗11 βˆ’ 𝐀211𝐗11 𝐀1

11 𝑇 + 𝐀212𝐗22 𝐀1

12 𝑇 = 𝐁11

𝐗22 βˆ’ 𝐀221𝐗11 𝐀1

21 𝑇 + 𝐀222𝐗22 𝐀1

22 𝑇 = 𝐁22

𝐗12 = 𝐁12

𝐗21 = 𝐁21

β–ͺ In this example, the attributed Sylvester equation is decomposed to:

Example

29

𝐗11 and

𝐗22 are two

2 by 2

diagonal

blocks

G2G10 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

Solution matrix X𝐁

e.g. Solve non-attributed Sylvester

equation on π€πŸπŸπŸ, π€πŸ

𝟏𝟏 for 𝐗11:𝐗 βˆ’

π’Š,𝒋=𝟏

𝟐

π€πŸπ‘–π‘—π—(π€πŸ

𝑖𝑗)𝐓 = 𝐁

A2A1

Diagonal

Off-diagonal

1’

2’

3’ 4’

ΰ·ͺ𝐁𝟏𝟏1

2

43

Page 30: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

FASTEN-N

β–ͺ Major steps:

β–ͺ Details:

– : 𝐍𝟏, 𝐍𝟐 are the node attribute matrices of π€πŸ and π€πŸ.

– Overall Complexity: time: 𝑢(π’Žπ’/𝒍 + π’Œπ’πŸ/𝒍); space: 𝑢(π’Ž/𝒍 + π’πŸ);

30

Initialize

each

diagonal 𝐗𝑖𝑖

and the

residual 𝐑

𝑢(π’Ž)Construct

block

matrices 𝐀1𝑖𝑗

,

𝐀2𝑖𝑗

, 𝐁𝑖𝑗 by

𝐍𝟏, 𝐍𝟐

𝑢(π’Žπ’/𝒍)Iterate 𝑙 times

to solve 𝑙 block

variables by

BCD &

FASTEN-P

𝑢(π’Œπ’πŸ/𝒍)Update 𝐗

and 𝐑; check

stopping

condition

1 2 3 4

2

𝐗 βˆ’π’Š,𝒋=𝟏

𝒍

π€πŸπ‘–π‘—π—(π€πŸ

𝑖𝑗)𝐓 = 𝐁

Till converge ( 𝐑𝐹< πœ–)

Page 31: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

From FASTEN-N to FASTEN-N+β–ͺ Major steps:

β–ͺ Details:

– Key idea: apply FASTEN-P+ instead of FASTEN-P in step ;

– Overall Complexity: time: 𝑢(π’Œπ’Ž+ π’ŒπŸπ’π’); space: 𝑢(π’Ž+ π’Œπ’π’);

31

𝑢(π’Ž)Construct

block

matrices 𝐀1𝑖𝑗

,

𝐀2𝑖𝑗

, 𝐁𝑖𝑗 by

𝐍𝟏, 𝐍𝟐

𝑢(𝒏)Initialize each

implicit

solution ππ’Š,ππ’Š

and the

residual π”πŸ,π”πŸ

𝑢(π’Œπ’Ž)Iterate 𝑙 times

to solve 𝑙block variables

by BCD &

FASTEN-P+

𝑢(π’ŒπŸπ’π’)Update

ππ’Š,ππ’Š and

π”πŸ,π”πŸ; check

stopping

condition

1 2 3 4

𝐗 βˆ’π’Š,𝒋=𝟏

𝒍

π€πŸπ‘–π‘—π—(π€πŸ

𝑖𝑗)𝐓 = 𝐁

Till converge ( 𝐑𝐹< πœ–)

3

Page 32: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Roadmap

β–ͺMotivations

β–ͺBackground

β–ͺProposed Algorithms for plain graphs

β–ͺProposed Algorithms for attributed graphs

β–ͺExperimental Results

β–ͺConclusions

32

Page 33: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Experimental Setup

β–ͺ Datasets Summary:

β–ͺ Baseline methods

– Conjugate Gradient method (CG) [Saad Y. SIAM 03]

– Fixed Point (FP) [Saad Y. SIAM 03]

– FINAL-P+ & FINAL-N+ [Zhang et al. KDD’16]

33

Dataset Name Category # of Nodes # of Edges

DBLP Co-authorship 9,143 16,338

Flickr User relationship 12,974 16,149

LastFm User relationship 15,436 32,638

Aminer Academic network 1,274,360 4,756,194

LinkedIn Social network 6,726,290 19,360,690

Exact methods

Approximated methods

Page 34: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Experimental Result - Efficiency

34

β€’ Obs.: maximum speedup: > 10,000 times with 25K-node network.

β€’ Better than approximated methods!

1. DBLP (9,143 nodes)

2. Flickr (12.974 nodes)

3. LastFm (15,436 nodes)

4. Aminer with 25K nodes

5. Aminer with 100K nodes

6. Aminer with 1.2M nodes

7. LinkedIn (6.7M nodes)

Our method

Page 35: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Experimental Result - Efficiency

35

Our method

β€’ Obs.: maximum speedup: > 10,700 times with 25K-node network.

β€’ Better than approximated methods!

1. DBLP (9,143 nodes)

2. Flickr (12.974 nodes)

3. LastFm (15,436 nodes)

4. Aminer with 25K nodes

5. Aminer with 100K nodes

6. Aminer with 1.2M nodes

7. LinkedIn (6.7M nodes)

Page 36: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Experimental Result - Scalability

36

Our method

On plain graphs On attributed graphs

Our method

β€’ Obs.: FASTEN-P/N scales almost in accord with FINAL-P+/N+

β€’ FASTEN-P+/N+ scale linearly with regard to # of nodes (to over 1M)

Page 37: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Experimental Result - Effectiveness

37

On plain graphs On attributed graphs

0

Our method

β€’ Obs.: FASTEN gives exact solution while having low running time.

Page 38: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Parameter Sensitivity

38

0

β€’ Obs.: the running time of FASTEN-P stays stable in a range of [14,60].

β€’ e.g.: FASTEN-P:

Page 39: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Roadmap

β–ͺMotivations

β–ͺBackground

β–ͺProposed Algorithms for plain graphs

β–ͺProposed Algorithms for attributed graphs

β–ͺExperimental Results

β–ͺConclusions

39

Page 40: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Conclusions

β–ͺ Goal: Fast & exact solver for (attributed) Sylvester equation.

β–ͺ Solution: β€œFASTEN” family

– Key idea #1: Generate Kronecker Krylov subspace

– Key idea #2: Indirect solution representation

– Key idea #3: Decomposition of Sylvester equation

– Key idea #4: BCD & FASTEN-P(+) on decomposed equation

β–ͺ Results:

– Exact solution and linear scalability w.r.t the size of input graphs;

– Significant speedup against traditional methods.

40

Page 41: FASTEN: Fast Sylvester Equation Solver for Graph Mining

Arizona State University

Thank You!

41