Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ –...

20
Dec 13, 2014 Ocean Biogeochemistry in CMIP5 Fasham, Ducklow and McKelvie (1990) 1

Transcript of Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ –...

Page 1: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Fasham,  Ducklow  and  McKelvie  (1990)  

1  

Page 2: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5   2  

Fasham,  Ducklow  and  McKelvie  (1990)  

Page 3: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

A  variety  of  OBGCMs  are  now  in  use  Steina

cher  et  a

l.  (201

0;  Biogeoscien

ces)  

Page 4: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Diversity  of  Ocean  BGC  in  CMIP5  

4  

Bopp  et  al.  (2013)  

Page 5: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

What’s  happened  since  1990?  •  Global  applicaPon  •  IncorporaPon  of  other  elemental  cycles  

–  Carbon  Cycle  (OCMIP2)  –  Oxygen  cycle  –  Iron  cycle  (HNLC)  –  Silicic  Acid  (diatoms)  –  CalcificaPon  (forams,  coccoliths)  –  Nitrogen-­‐Phosphorus  interacPons  

•  River,  atmosphere  and  N2  fixaPon  supply  •  Water  Column  and  sediment  denitrificaPon  

•  Improved  processes  –  Phytoplankton  K/R  strategies  and  size  structure  –  MechanisPcally  moPvated  sinking  –  Dissolved  organic  ma[er  

5  

Page 6: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Typical  OBGCMs  applicaPons  1.  How much anthropogenic carbon uptake has occurred? 2.  How will anthropogenic carbon uptake change under climate change? 3.  How will the natural carbon cycle change under climate change? 4.  How will ecosystems change under climate change? …limiting uncertainties representing ocean circulation and sensitivity to change. Biogeochemical uncertainties include mechanistic controls on:

•  Euphotic zone nutrient consumption and degree of residual nutrient •  Controls on POM/DOM passive and active transport •  Deviations in stoichiometry from Redfield (e.g. N2 fixation) •  Remineralization scales through the twilight zone

Ecological uncertainties include: •  Physiology (general controls, functional traits, adaptation limits) •  Biodiversity (predictability, phenology, niche gaps, etc) •  Ecological interactions

Page 7: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Philosophies  for  Ocean  BGC  Modeling  

7  

•  Challenge:  the  vast  complexity  of  natural  systems  versus  the  limited,  imperfect  ability  to  mathemaPcally  represent  those  processes.  

•  Seek  fundamental  rules  and  constraints  of  energy,  mass,  and  biogeochemistry  

•  RepresentaPon  of  phytoplankton  via:  •  SenPnal  species  (i.e.  Prochlorococcus,  Trichodesmium,  and  T.  weissflogii,  E.  huxleya)  

•  CalibraPon  to  best-­‐known  constraints,  but  leaves  vast  biogeochemical  gaps  •  Phytoplankton  funcPonal  groups  (CO2-­‐fixers,  N2-­‐fixers,  silicifiers,  calcifiers)  

•  CalibraPon  to  parPcular  funcPons,  leaving  other  funcPons  missing  •  Empirical  biogeochemical  funcPon  (CO2-­‐fxaPon,  N2-­‐fixaPon,  silicificaPon,  calcificaPon)  

•  CalibraPon  to  overall  biogeochemical  impact  

•  Assessment  and  a[ribuPon  of  biases  •  PrioriPzaPon  of  process  study  sites,  field  observaPons,  vs  satellite  esPmates  for  ‘truth’  •  A[ribuPon  to  deficiencies  in  ocean  physics?  Atmospheric  physics?  •  If  a[ribuPon  to  biology,  is  it  external  inputs,  physiology,  ecology,  or  biogeochemistry?  •  Depending  on  a[ribuPon,  decision-­‐making  on  possibiliPes  to  change  assumpPons.  

Page 8: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Removal  

GFDL’s  Tracers  of  Phytoplankton  with  Allometric  Zooplankton  (TOPAZ)  

Small  phyto.  

Large  phyto.  

ProJst  Filter  feeder  

semilabile  semirefract.  DOM   Detritus  New  

nutrients  

Recycled  nutrients  

N2-­‐fixer  DOM  cycling  

ParJcle  sinking  

Gas  exchange  

Atm.  DeposiJon  

River  Input  

Sediment  Input  Scavenging  

Carbon   Oxygen   Phosphorus  

CaCO3  

Nitrogen   Iron   Alkalinity   Lithogenic  Silicon  

Biogeochemistry   Phytoplankton  ecology  

Diatoms  and  Other  Large  Phytoplankton  Flexible  N:P:Si:Fe:Chl  Aragonite  and  Calcite  

Heterotrophs  

30  Tracers  

Dunne  et  al.  (2005;2013)  

Page 9: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Many  groups  are  exploring  alternaJve  verJcal  coordinates  

9  

Dunne  et  al.  (2012,  2013);  Winton  et  al.  (2013);  Hallberg  et  al.  (2013);  Froelicher  et  al.  (submiXed)  

Soil  1339  

Atmosphere  607  

VegetaJon  1003  

Surface  Ocean  874      

DOC  697  

Intermediate  and  Deep  Ocean  36855  

SedimentaJon  

81  141   60  

0  

82  Rivers  0.12  

85   85  

72  

8  

0.10  

0.12  Weathering  

2  

66   76  

60  

GFDL-­‐ESM2M  Soil  1341  

Atmosphere  607  

VegetaJon  997  

Surface  Ocean  883      

DOC  695  

Intermediate  and  Deep  Ocean  37231  

SedimentaJon  

82  143   61  

0  

68  Rivers  0.12  

85   85  

61  

5  

0.04  

0.12  Weathering  

2  45   53  

61  

GFDL-­‐ESM2G  

Reservoirs  in  PgC  Fluxes  in  PgC  a-­‐1  

Reservoirs  in  PgC  Fluxes  in  PgC  a-­‐1  

2  

Biota  1.1  Biota  1.2  

2  

z   ρ  

z*  (MOM4.1):        -­‐  Depth-­‐based  verJcal  coordinate  -­‐  Over  40  years  of  experience  

 

ρ  (GOLD):        -­‐  Density-­‐based  verJcal  coordinate  -­‐  Easy  to  preserve  water  masses  

Page 10: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Taylor  Diagrams  of  CMIP5  X-­‐Y  Pa[erns  

10  

SST  

pH  NPP  

O2  

Models  get  SST,  under  esJmate  pH  variability,  and  vary  widely  on  NPP  Bopp  et  al.  (2013)  

Page 11: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

‘Labile’  DOC  in  CMIP5  (Anderson  et  al  2015)  

11  

Page 12: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Carbon  a  Key  CMIP5  ContribuPon  

12  

Hoffman  et  al.,  2014  

Page 13: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Southern  Ocean  Key  to  Carbon  

13  

Frölicher,  T.,  J.  Sarmiento,  J.  Dunne,  D.  Paynter,  M.  Winton,  in  press:  Heat  and  carbon  uptake  in  the  CMIP5  models:  The  dominance  of  the  Southern  Ocean.  

Page 14: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

ESM  ensembling  and  inter-­‐comparison  provide  powerful  constraints  insofar  as  the  models  agree  (i.e.  SST  and  pH  changes)  

 

14  14  

Bopp,  L.,  L.  Resplandy,  J.  C.  Orr,  S.  C.  Doney,  J.  P.  Dunne,  M.  Gehlen,  P.  Halloran,  C.  Heinze,  T.  Ilyina,  R.  Séférian,  J.  Tjiputra,  and  M.  Vichi,  2013:  MulJple  stressors  of  ocean  ecosystems  in  the  21st  century:  projecJons  with  CMIP5  models,  Biogeosciences,  10,  6225-­‐6245,  doi:10.5194/bg-­‐10-­‐6225-­‐2013.  

RCP8.5  at  2100  -­‐  SPppling  indicates  sign  agreement  among  models  

Page 15: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Major  challenges  remain  in  resolving  areas  where  ESM’s  disagree  

 

15  

RCP8.5  at  2100  -­‐  SPppling  indicates  sign  agreement  among  models  

Bopp,  L.,  L.  Resplandy,  J.  C.  Orr,  S.  C.  Doney,  J.  P.  Dunne,  M.  Gehlen,  P.  Halloran,  C.  Heinze,  T.  Ilyina,  R.  Séférian,  J.  Tjiputra,  and  M.  Vichi,  2013:  MulJple  stressors  of  ocean  ecosystems  in  the  21st  century:  projecJons  with  CMIP5  models,  Biogeosciences,  10,  6225-­‐6245,  doi:10.5194/bg-­‐10-­‐6225-­‐2013.  

Page 16: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Largest  Ocean  AcidificaPon  in  Tropical  Mode  Waters  

16  

ESM2M  Pacific  SecJon  (190°E)  

Resplandy,  L.  L.  Bopp,  J.  Orr,  and  J.  Dunne  (2013)  

The  achievement  in  GFDL’s  ESMs  illustrates  the  importance  of  including  dynamical,  chemical  and  biogeochemical  interacJons  

Page 17: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Digging  into  Mechanisms:  Without  CirculaJon  Change,  Heat  Uptake  Would  Look  Much  Like  Carbon  Uptake  

Winton  et  al.,  2013  

17  

ΔTemp  

ΔDIC  

Page 18: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Pugng  the  puzzle  pieces  together:  Mechanisms  of  Ocean  Biogeochemical  Change  in  CMIP5  ESMs  

•  Warming  increases  straJficaJon  –  Ven;la;on  and  nutrient  supply  decreases  globally  –  Increase  in  maximum  rates,  shi@  to  microbial  loop  

•  Poleward  expansion  and  slow-­‐down  of  subtropical  gyres  –  Shoaling  nutricline  in  the  subtropical  gyres  –  Enhanced  nutrients,  hypoxia  and  acidifica;on  in  some  areas  

•  Intensified  hydrological  cycle  reduces  North  AtlanJc  overturning  –  Shoaling  Northern  Subpolar  Atlan;c  and  deepening  tropics  

•  and  many  more  pieces…  Overall,  a  changing  balance  of  processes  creates  intense  regional  structure.  

18  

Page 19: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Moving  forward  with  GFDL’s  ESMs  •  ApplicaJon:  MulP-­‐member  ensembles  for  detecPon  and  a[ribuPon,  centennial-­‐millennial  scales,  idealized  sensiPvity,  diverse  impacts  applicaPon.  

•  Comprehensiveness:  beyond  closing  the  CO2  cycle  to  fully  comprehensive  and  self  consistent  representaPon  of  aerosol,  Fe,  CH4  and  N  cycles,  and  ecosystems  

•  ResoluJon:  Resolving  regional  atmosphere-­‐land  interacPons  and  the  ocean  mesoscale  for  improved  base  state  and  change,  and  the  human  and  marine  applicaPons  

•  PredicJon:  IntegraPon  with  seasonal-­‐decadal  climate  predicPon  effort,  exploring  opportuniPes  for  experimental  biogeochemistry  predicPon  

19  

Page 20: Fasham, Ducklow$and$McKelvie(1990) ·  · 2014-12-22– Oxygencycle$ – Iron$cycle$(HNLC)$ – Silicic$Acid$(diatoms)$ – Calcificaon$( forams, coccoliths) – NitrogenWPhosphorus$interacPons$

Dec  13,  2014   Ocean  Biogeochemistry  in  CMIP5  

Pushing  the  envelope:  Decadal  high  resoluJon  prototype  with  next  generaJon  biogeochemisty    

Satellite  

ESM2.6-­‐COBALT  ESM2M  

1.5    1    0.5    0  

Chlorophyll  (mg  Chl  m-­‐3)  

California  Current  Upwelling  Signature  vastly  improved  from  1°  to  1/10°  ResoluJon