Families of Gröbner degenerations

22
Families of Gr¨ obner degenerations Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo N´ ajera Ch´ avez) Universidad Nacional Aut´onoma de M´ exico, IM-Oaxaca ICERM “Algebraic Geometry and Polyhedra” April 15 2021 arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo N´ ajera Ch´ avez) 0/ 18

Transcript of Families of Gröbner degenerations

Page 1: Families of Gröbner degenerations

Families of Grobner degenerations

Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez)

Universidad Nacional Autonoma de Mexico, IM-Oaxaca

ICERM “Algebraic Geometry and Polyhedra” April 15 2021

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 0/ 18

Page 2: Families of Gröbner degenerations

Motivation

X a projective variety, a toric degeneration of X is a flat morphism⇡ : X ! Ad with generic fibre isomorphic to X and special fibre ⇡�1(0) atoric variety.

Example: X = V (xy � x2 + ty2) ⇢ P1x ,y ⇥ A1

t

Question: How are di↵erent toric degenerations of X related?

Have seen similar questions in other talks:

Laura Escobar: How are di↵erent Newton–Okounkov polytopesrelated?

Alfredo Najera Chavez: Many toric degenerations of Grassmanniansfrom cluster algebras.

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 1/ 18

Page 3: Families of Gröbner degenerations

Toric degenerations from valuations

A =L

i�0 Ai graded algebra and domain, v : A \ {0} ! Zd a valuationwith image(v) a finitely generated semigroup of rank d := dimKrull A.

[Anderson] Exists a toric degeneration of Proj(A) with special fibreTV (�(A, v)), where

�(A, v) := conv

0

@[

i�1

⇢v(f )

i: f 2 Ai

�1

A Newton–Okounkov polytope

A set {b1, . . . , bn} ⇢ A of algebra generators is a Khovanskii basis for v ifv(b1), . . . , v(bn) generate image(v).

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 2/ 18

Page 4: Families of Gröbner degenerations

Grobner toric degenerations

Reminder: f = x2 + y 2 C[x , y ] and w = (1, 1), then inw (f ) = y and forJ ⇢ C[x1, . . . , xn] ideal inw (J) := (inw (f ) : f 2 J)

Trop(J) := {w 2 Rn : inw (J) 63 monomials}

Let A := C[x1, . . . , xn]/J with J homogeneous prime ideal andw 2 Trop(J) such that inw (J) is binomial and prime (i.e. toric).

Then exists a flat family with generic fibre Proj(A) and special fibre thetoric variety Proj(C[x1, . . . , xn]/inw (J)), called a Grobner toricdegeneration.

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 3/ 18

Page 5: Families of Gröbner degenerations

Motivating result

Theorem (Kaveh–Manon, B.)

Let A be a positively graded algebra and domain, v : A \ {0} ! Zd fullrank valuation with finitely generated value semigroup. Then there existsan isomorphism of graded algebras

C[x1, . . . , xn]/J ⇠= A

such that the toric variety of the Newton–Okounkov polytope is isomorphicto the toric variety of a Grobner toric degeneration for some w 2 Trop(J):

TV (�(A, v)) ⇠= Proj(C[x1, . . . , xn]/inw (J)).

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 4/ 18

Page 6: Families of Gröbner degenerations

Motivating result

Idea of Proof: Choose a finite Khovanskii basis b1, . . . , bn 2 A. Take

⇡ : C[x1, . . . , xn] ! A, xi 7! bi

and J := ker(⇡). Then by [B, Main Theorem] exits wv 2 Trop(J) such that

inwv(J) is toric , image(v) is finitely generated.

Moreover, C[image(v)] ⇠= C[x1, . . . , xn]/inwv(J). ⌅

Question: Given a family of full rank valuations with finitely generatedvalue semigroups, can we find one ideal J that works for all valuations?

Recall: v defines a filtration on A: Fm;v := {f 2 A : v(f ) m} for allm 2 Zd and a fixed total order. A vector space basis B of A is adaptedto v if B \ Fm;v is a vector space basis for each Fm;v.

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 5/ 18

Page 7: Families of Gröbner degenerations

Example: Grassmannian cluster algebraLet Ak,n be the homogeneous coordinate ring of Gr(k ,Cn) under itsPlucker embedding.

[Scott] Ak,n is a cluster algebra, i.e. recursively generated by1 seeds: maximal sets of algebraically independent algebra generators,

its elements are called cluster variables (c.v.’s);2 mutation: an operation to create a new seed from a given one by

replacing one element.

Example: A2,4 = C[p12, p13, p14, p23, p24, p34]/(p13p24 = p12p34 + p14p23)

1 2

34

p12

p23

p34

p14p13

s = {p12, p23, p34, p14, p13}

smut = {p13}

p12p34+p14p23p13

= p24

exchange relation

1 2

34

p12

p23

p34

p14p24

s 0 = {p12, p23, p34, p14, p24}

s 0mut = {p24}

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 6/ 18

Page 8: Families of Gröbner degenerations

Example: Grassmannian cluster algebra

Alfredo’s talk: 8 seed s of Ak,n 9 full rank valuation gs : Ak,n \ {0} ! Zd

and the #-basis is adapted to all of them simultaneously. Let Aprin,sk,n be the

flat C[tx : x 2 smut]-algebra defining the toric degeneration.

[Fomin–Zelevinsky]/[Reading]: 9 flat C[tx : x m.c.v.]-algebra Aunivk,n and

projections prs : C[tx : x m.c.v] ! C[tx : x 2 smut] for all seeds s thatextend to

prs : Aunivk,n ! Aprin,s

k,n

called coe�cient specialization.

Example: Aprin,s2,4 = C[t13][p12, p23, p34, p14, p13, p24]/(p13p24 = t13p12p34 + p14p23),

Auniv2,4 = C[t13, t24][p12, p23, p34, p14, p13, p24]/(p13p24 = t13p12p34 + t24p14p23).

For each seed s we can apply the Motivating Theorem and get an ideal Jsand a Grobner toric degeneration of Js corresponding to Aprin,s

k,n .

Question: How are di↵erent Js related and what is Aunivk,n in this context?

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 7/ 18

Page 9: Families of Gröbner degenerations

Grobner fan and standard monomial bases

Definition

For a homogeneous ideal J ⇢ C[x1, . . . , xn] its Grobner fan GF (J) is Rn

with fan structure defined by

v ,w 2 C �, inv (J) = inw (J).

Notation: inC (J) := inw (J),w 2 C � and AC := C[x1, . . . , xn]/inw (J)

For C 2 GF (J) a maximal cone inC (J) is generated by monomials. Forevery face ⌧ ✓ C we define

BC ,⌧ := {x↵ 2 A⌧ | x↵ 62 inC (J)}.

Then BC ,⌧ is a vector space basis for A⌧ called standard monomial basis.

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 8/ 18

Page 10: Families of Gröbner degenerations

ExampleTake J = (x21x

22 + x41 + x2x33 ) ⇢ C[x1, x2, x3]. Then GF (J) is R3 with the

fan structure:

w1

w2

w3 = 0

⇥L = h(1, 1, 1)i

(x41 )

(x2x33 )

(x21 x22 )

(x21 x22 + x41 )

(x21 x22 + x2x33 )

(x41 + x2x33 )

E.g. Bhr1,r2i = {xa : x2x33 6 | xa} gives a basis for A,Ar1 ,Ar2 and Ahr1,r2i.

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 9/ 18

Page 11: Families of Gröbner degenerations

Family of ideals

Let C 2 GF (J) be a maximal cone and choose r1, . . . , rm representativesof primitive ray generators of C 2 GF(J)/L. Let r be the matrix with rowsr1, . . . , rm. Define for f =

P↵2Zn

�0c↵x↵ 2 J

µ(f ) := (minc↵ 6=0

{r1 · ↵}, . . . , minc↵ 6=0

{rm · ↵}) 2 Zm.

In C[t1, . . . , tm][x1, . . . , xn] the lift of f is

f := f (tr·e1x1, . . . , tr·enxn)t

�µ(f ) =X

↵2Zn�0

c↵x↵tr·↵�µ(f ).

Definition/Proposition

The lifted ideal J := (f : f 2 J) ⇢ C[t1, . . . , tm][x1, . . . , xn] is generated by{g : g 2 G}, where G is a Grobner basis for J and C .

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 10/ 18

Page 12: Families of Gröbner degenerations

Example

L⇥(x2x33 )

(x21 x22 + x2x33 )

(x41 + x2x33 )

Take f = x21x22 + x41 + x2x33 2 C[x1, x2, x3] and consider

in GF ((f )) the maximal cone C spanned by the rows ofr :=

�1 4 01 �2 0

�and L. We compute

f (t1, t2) = f (t1t2x1, t41 t

�22 x2, x3)t

�41 t22

= t61x21x

22 + t62x

41 + x2x

33

f (0, 0) = x2x33 = inC (f ),

f (0, 1) = x41 + x2x33 = inr1(f ),

f (1, 0) = x21x22 + x2x33 = inr2(f ),

f (1, 1) = f .

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 11/ 18

Page 13: Families of Gröbner degenerations

Theorem

Let A := C[t1, . . . , tm][x1, . . . , xn]/J and recall A⌧ = C[x1, . . . , xn]/in⌧ (J).

Theorem (B.–Mohammadi–Najera Chavez)

A is a free C[t1, . . . , tm]-module with basis BC and so the morphism

⇡ : Spec(A) ! Am

is flat. In particular, ⇡ defines a flat family with generic fiber Spec(A) andfor every face ⌧ ✓ C there exists a⌧ 2 Am and a special fiber⇡�1(a⌧ ) ⇠= Spec(A⌧ ).

Example: A = C[t1, t2][x1, x2, x3]/(t61x21x22 + t62x41 + x2x33 ).

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 12/ 18

Page 14: Families of Gröbner degenerations

Toric degenerations

The tropicalization Trop(J) is a subfan of GF (J) of dimension dimKrull A.

Corollary (B.–Mohammadi–Najera Chavez)

Consider the fan ⌃ := C \ Trop(J). If there exists ⌧ 2 ⌃ with in⌧ (J)binomial and prime, then the family

⇡ : Spec(A) ! Am

contains toric fibers isomorphic to Spec(A⌧ ) (a�ne toric scheme) and thestandard monomials BC are a basis for A⌧ .

Question: How are A and Aunivk,n related?

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 13/ 18

Page 15: Families of Gröbner degenerations

Back to cluster algebras

A cluster algebra A is of finite type if it has finitely many seeds. Such Ahas finitely many cluster variables x1, . . . , xN and a presentation

C[x1, . . . , xN ]/J ⇠= A

where J is the saturation of the ideal generated by exchange relations.[Fomin–Williams–Zelevinsky, §6.8]

Grassmannians: Ak,n is of finite type for k = 2 or k = 3 and n 2 {6, 7, 8}.For A2,n all cluster variables are Plucker coordinates and J = J2,n is thePlucker ideal.

The cluster variables of A3,6 are Plucker coordinates and two more, so

A3,6⇠= C[X ,Y , p123, . . . , p456]/J3,6

and J3,6 \ C[p123, . . . , p456] is the Plucker ideal.

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 14/ 18

Page 16: Families of Gröbner degenerations

Theorem for Grassmannians

Reminder: J ⇢ R[x] is totally non-negative if J \ R�0[x] = ? and

Trop+(J) := {w 2 Trop(J) : inw (J) totally non-negative}.

Theorem (B.–Mohammadi–Najera Chavez)

For (k , n) 2 {(2, n), (3, 6)} there exists a unique maximal cone C in theGrobner fan of Jk,n such that

1 we have a canonical isomorphism Ak,n⇠= Auniv

k,n identifying universalcoe�cients with rays of C ;

2 the standard monomial basis BC for Ak,n (and A) coincides with the#-basis for Ak,n (and Auniv

k,n );

3 C \ Trop(Jk,n) = Trop+(Jk,n) and there’s a bijection between seeds sand maximal cones ⌧s 2 C \ Trop(Jk,n) such that the toric varietyTV (�(Ak,n, gs)) is isomorphic to Proj(A⌧s ).

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 15/ 18

Page 17: Families of Gröbner degenerations

The Stanley–Reisner ideal of the cluster complex

For A a cluster algebra of finite type, seeds are maximal simplicies in asimplicial complex called cluster complex �(A). Its Stanley–Reisner ideal is

I�(A) = (xi1 · · · xit : {xi1 , . . . , xit} 6⇢ s 8s seed) ⇢ C[x1, . . . , xN ]

Corollary (B.–Mohammadi–Najera Chavez, Ilten)

For (k , n) 2 {(2, n), (3, 6)}, Ak,n, Jk,n and C as in the Theorem. Then

1 inC (Jk,n) = I�(Ak,n) and C \ Trop(Jk,n) is a geometric realization ofthe cluster complex;

2 �(Ak,n) is unobstructed [Ilten et al.], so Proj(C[x]/I�(Ak,n)),Gr(k ,Cn) and TV (�(Ak,n, gs)) for all seeds s lie on the samecomponent of their Hilbert scheme.

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 16/ 18

Page 18: Families of Gröbner degenerations

Final remarks

1 For finite type cluster algebras of rank 2 many results still hold(all but the identification with Auniv and the unobstructedness).

2 [Escobar–Harada] For Gr(2,Cn) the flip of Newton–Okounkovpolytopes is the algebraic wall-crossing.

From the cluster structure we obtain tropical mutation maps whichcoincide with the flip in this case.

3 [Kaveh–Manon] construct toric families : X ! TV (⌃) from subfans⌃ ⇢ Trop(J): for ⌧ 2 ⌃ and any p⌧ 2 O⌧ ⇢ TV (⌃) we have �1(p⌧ ) ⇠= Spec(A⌧ ).

If ⌃ ⇢ C for C 2 GF (J) maximal with m rays, then our flat family isthe pull back of theirs along the universal torsor Am

! X⌃ (Coxconstruction).

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 17/ 18

Page 19: Families of Gröbner degenerations

Thank you!

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 17/ 18

Page 20: Families of Gröbner degenerations

References

BMN Lara Bossinger, Fatemeh Mohammadi, Alfredo Najera Chavez. Grobner degenerations of Grassmannians and universalcluster algebras. arxiv preprint arXiv:2007.14972 [math.AG], (2020)

Gr(3,6) Lara Bossinger. Grassmannians and universal coe�cients for cluster algebras: computational data for Gr(3,6).https://www.matem.unam.mx/~lara/clusterGr36

B20a Lara Bossinger. Full-Rank Valuations and Toric Initial Ideals. Int. Math. Res. Not. rnaa071 (2020)

EH20 Laura Escobar and Megumi Harada Wall-crossing for Newton-Okounkov bodies and the tropical Grassmannian. Int.Math. Res. Not. rnaa230 (2020)

FZ02 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497–529, 2002.

FZ07 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. IV. Coe�cients. Compos. Math. 143, no. 1, 112–164 (2007)

GHKK18 Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. J. Amer. Math.Soc., 31(2):497–608 (2018)

Ilten Nathan Ilten. Type D Associahedra are Unobstructed. Slides of online talk 13/08/2020http://magma.maths.usyd.edu.au/~kasprzyk/seminars/pdf/Ilten.pdf

KM19 Kiumars Kaveh and Christopher Manon. Khovanskii bases, higher rank valuations, and tropical geometry. SIAM J.Appl.Algebra Geom., 3(2):292–336 (2019)

KM Kiumars Kaveh and Christopher Manon. Toric bundles, valuations, and tropical geometry over semifield of piecewiselinear functions. arXiv preprint arXiv:1907.00543 [math.AG], (2019)

Reading Nathan Reading. Universal geometric cluster algebras. Math. Z. 277(1-2):499–547 (2014)

Scott Joshua S. Scott. Grassmannians and cluster algebras. Proc. London Math. Soc. (3) 92 (2006), no. 2, 345–380.

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 18/ 18

Page 21: Families of Gröbner degenerations

A minimal generating set of J3,6 ⇢ C[p123, . . . , p456,X ,Y ]:

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 18/ 18

Page 22: Families of Gröbner degenerations

The reduced Grobner basis of J3,6 for C consists contains the minimalgenerating set and additionally contains the following elements:

arXiv:2007.14972 Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Najera Chavez) 18/ 18