Faculty of Mechanical and Power Engineering Frequency...

91
© Dr inŜ. JANUSZ LICHOTA CONTROL SYSTEMS Frequency response methods Faculty of Mechanical and Power Engineering Wrocław 2007

Transcript of Faculty of Mechanical and Power Engineering Frequency...

© D

r in

Ŝ. J

AN

USZ

LIC

HO

TA

CO

NT

RO

L SY

STEM

S Fre

quency

resp

onse

meth

ods

Faculty of Mechanical and Power Engineering

Wro

cław

2007

CO

NT

ENS

•F

req

uen

cyre

spo

nse

so

fsy

stem

s, n

eed

an

dm

eth

od

•T

yp

es

–B

od

e p

lot

–�

yq

uis

tp

lot

–�

ich

ols

plo

t (c

ha

rt)

–B

lack

plo

t

•F

req

uen

cyre

spo

nse

so

fb

asi

ctr

an

sfer

fu

nct

ion

s

•F

req

uen

cy r

esp

on

ses

-su

mm

ary

•R

ela

tio

n b

etw

een

step

an

d f

req

uen

cyre

spo

nse

•�

on

-min

imu

m p

ha

sesy

stem

s

•R

eal

freq

uen

cy r

esp

on

ses

for

elec

tric

al,

th

erm

al

an

dm

ech

an

ica

l sy

stem

s

Fre

quency

plo

t?W

hat

is

this

?

Fre

qu

ency

resp

on

seo

fa

syst

em i

sd

efin

ed

as t

he

stea

dy

–st

ate

resp

on

se o

f th

e sy

stem

to

a si

nu

soid

al i

np

ut

Why

do

we

nee

d

freq

uen

cy r

espo

nse

plo

ts?

Why

we

need f

requency

resp

onse

plo

ts?

Fre

qu

ency

res

po

nse

can

ex

actl

y i

den

tify

syst

em

(id

enti

fyd

yn

am

ic p

rop

erti

es o

f a

syst

em

)

It i

s u

sed

in

co

ntr

oll

er t

un

ing

–co

ntr

ol

syst

em

mu

st h

ave

go

od

per

form

ance

e.g

. S

usp

ensi

on

in

a

car

mu

st r

edu

ce u

nd

esir

ed n

ois

e an

d r

oad

dis

turb

ance

s.

Dis

turb

ance

s ar

e ch

ang

ing

dir

ecti

on

of

a ro

bo

t m

ov

em

en

t.

Fre

qu

ency

resp

on

sesh

ow

sh

ow

incr

easi

ng

in

pu

t fr

equ

ency

infl

uen

ces

ou

tpu

tsi

gn

al–

the

des

ign

of

a

syst

em

in

th

e fr

equ

ency

do

mai

n p

rov

ides

th

e d

esig

ner

wit

h c

on

tro

l o

f th

e b

and

wid

th o

f a

syst

em

.

Ex

amp

le–

bu

idin

gan

do

uts

ide

tem

per

atu

rech

ang

e.

In t

hat

way

des

ign

er c

anse

lect

ban

dw

idth

and

per

form

ace

of

a co

ntr

ol

syst

em

.

Itsh

ow

sre

son

an

tfr

equ

ency

.

Itis

use

din

sta

bil

ity

anal

ysi

s.

Why

we

need f

requency

resp

onse

plo

ts?

Dis

adv

anta

ge:

in

dir

ect

lin

k b

etw

een

th

e fr

equ

ency

and

th

e ti

me

do

mai

n

HO

W

to o

bta

in f

requ

ency

res

ponse

?

System

u(t)

t

y(t)

t

Input

Output

u(t

)=si

n (ω ωωω

t)y

(t)=

A(ω ωωω

)sin

(ω ωωωt+ϕ ϕϕϕ

(ω ωωω))

ω-

ang

ula

r fr

equ

ency

inra

dia

ns

per

sec

on

d, ϕ

-p

has

ean

gle

, A

-am

pli

tud

e

FR

EQ

UEN

CY

RESP

ON

SEH

ow t

o ob

tain

fre

quency

resp

onse

?

xt

At

()

sin

()

=1

ω

yt

At

()

sin

()

=+

φ

FR

EQ

UEN

CY

RESP

ON

SE

How

toob

tain

fre

quency

resp

onse

?In

pu

t si

gn

alh

asam

pli

tud

eA

1an

d f

req

uen

cyω

Ou

tpu

t si

gn

al h

as a

mp

litu

de

A2

and

ph

ase-

shif

.

Syst

em

Ou

tpu

t si

gn

al

Plo

t

Inp

ut

sign

al

Mu

ltip

lex

er

Inp

ut

sign

al

Inp

ut

sign

al

Ou

tpu

t

sign

al

T

A2

A1

τ

22

fTπ

ωπ

==

Rel

atio

nb

etw

een

ang

ula

r fr

equ

ency

ω,

freq

uen

cyf

and

tim

eco

nst

ant

T

FR

EQ

UEN

CY

RESP

ON

SE

How

toob

tain

fre

quency

resp

onse

?

ph

ase-

shif

2 Tπτϕ=

Inp

ut

sign

al

1 r

ad/s

Ou

tpu

t

sign

al

T

A2

A1

τ

Sy

mb

ols

an

d u

nit

s–

ang

ula

rfr

equ

ency

ωra

d/s

, fr

equ

ency

f,H

z=1

/s,

tim

e co

nst

ant

T, s,

ph

ase-

shif

t

ϕ,

rad

1 r

ad/s

= 2π

rad

/ 6

.28

s

Geometrical description

FR

EQ

UEN

CY

RESP

ON

SE

How

toob

tain

fre

quency

resp

onse

?W

hat

can

we

do

wit

h n

um

ber

sA

1, A

2, ω

, ϕ

?

Mag

nit

ud

e

2

1()

()

AM

A

ωω

=

sho

ws

ho

wou

tpu

tam

pli

tud

eA

2is

ch

ang

ing

, w

hen

fre

qu

ency

in

crea

ses.

Ph

ase-

shif

(ω)

sho

ws

ho

wou

tpu

tsi

gn

alis

del

ayed

ver

sus

inp

ut

sig

nal

.

Th

e au

die

nce

isth

ink

ing

...

FR

EQ

UEN

CY

RESP

ON

SE

Bod

e p

lot

Bo

de

plo

t, 1

92

7, sh

ow

in

tw

o d

iffe

ren

tfi

gu

res

rela

tio

nb

etw

een

ph

ase-

shitϕ

and

freq

uen

cyω

as f

ar

as m

agn

itu

de

M a

nd

fre

qu

ency

ϕ=

ϕ(ω

),

M=

M (ω

)

Mag

nit

ud

eM

ver

sus

freq

uen

cyω

, d

B (

dec

ibel

)

20

lo

g M

(ω)

Matlab command

»bode([1],[1 1])

Ph

ase-

shif

(ω),

An

gu

lar

freq

uen

cyin

log

arit

hm

ic s

cale

ω,

rad/s

(lo

gar

itm

ic s

cal

e p

ort

rayal

s b

road

er b

and

wid

th t

hen l

inea

r sc

ale)

FR

EQ

UEN

CY

RESP

ON

SE

Bod

eplo

t

0.0

1-4

0

0.1

-20

0.3

2-1

0

0.5

-6

0.7

-3

10

1.4

3

26

3.1

61

0

10

20

10

04

0

10

00

60

20

lo

g M

(ω),

dB

M(ω

)

Dec

ibel

-w

hat

is

it??

On

e te

nth

of

the

bel

...

FR

EQ

UEN

CY

RESP

ON

SE

Bod

eplo

t

1 d

ecad

e1

dec

ade

Bo

de

plo

t is

kn

ow

ns

as l

og

arit

mic

char

acte

rist

ic o

fa

mag

nit

ud

ean

dp

has

e

FR

EQ

UEN

CY

RESP

ON

SE

Bod

eplo

t

Ou

tpu

t si

gn

al a

mp

litu

de

dec

reas

es

as a

fu

nct

ion

of

a fr

equ

ency

ω=

10

rad

/s,

-20

dB

,

Ph

ase-

shif

tin

crea

ses

as a

fun

ctio

n o

fa

freq

uen

cy

ϕ=

84

°

Act

ual

rati

oo

fin

pu

tsi

gn

alan

do

utp

ut

sig

nal

am

pli

tud

eatω

=1

0 r

ad/s

is

20

lo

g M

(ω)=

-20

dB

Lo

g M

(ω)

= -

1

M(ω

) =

10

-1

FR

EQ

UEN

CY

RESP

ON

SE

Bod

eplo

t

Act

ual

lyat

ω=

10

rad

/s

We

ob

serv

eM

(ω)

= 1

0-1

.

system

1/(s+1)

FR

EQ

UEN

CY

RESP

ON

SE

Nyq

uis

t plo

t

�y

qu

ist

plo

t –

freq

uen

cyω

isp

aram

eter

. W

e ca

n p

lot

rela

tio

n((

M(ω

), ϕ

(ω)

)

in p

ola

rco

ord

inat

es

ϕ(ω

)

M(ω

)

ω=

0

ω<

0

ω>

0

ω=∞

On

e p

oin

t o

n N

yq

uis

t cu

rve

is o

ne

mea

sure

men

t o

f

inp

ut

and

ou

tpu

t si

gn

al

Matlab command

»nyquist([1],[1 1])

A2=

0.7

5A

1=

1

τ=0

.7 s

M(ω

)=0

.75

FR

EQ

UEN

CY

RESP

ON

SE

Nyq

uis

tplo

t

20

.70

.76

.28

πϕ=

=

T=

6.2

8 s

Rad

= 4

M(ω

)=0

.75

40

°

In F

ig.

ther

e ar

ev

alu

es

�y

qu

ist

plo

t is

cal

led

am

pli

tud

e-p

has

e

char

acte

rist

ic

Matlab command

»nichols([1],[1 1])

FR

EQ

UEN

CY

RESP

ON

SE

Nic

hol

s plo

t�

ich

ols

plo

tis

rela

tio

nb

etw

een

mag

nit

ud

eM

in

dB

and

ph

ase-

shif

tin

deg

rees

FR

EQ

UEN

CY

RESP

ON

SE

Nic

hol

splo

t (c

har

t)N

ich

ols

ch

art

allo

ws

to e

stim

ate

ga

in a

nd

ph

ase

ma

rgin

, m

agn

itu

de

of

clo

sed

-lo

op

co

ntr

ol

syst

em

dis

tan

ce

fro

m1

an

dre

son

an

tm

ag

nit

ud

e(l

oo

kat

aB

od

ep

lot)

on

th

eb

ase

of

op

en-l

oo

pco

ntr

ol

syst

em

fre

qu

ency

res

po

nse

.

Gri

do

fli

nes

wit

h c

on

stan

t

ma

gn

itu

de

M (ω

)an

d

ph

ase

ϕ(ω

)

for

clo

sed

-lo

op

con

tro

lsy

stem

tran

sfer

fu

nct

ion

.

FR

EQ

UEN

CY

RESP

ON

SE

Nic

hol

splo

t (c

har

t)

Mag

nit

ud

e m

arg

in6

dB

ph

ase

mar

gin

30

°.

FR

EQ

UEN

CY

RESP

ON

SE

Bla

ck p

lot

1+

Tse

sTo

()n

Ts

1

1 +

M(ω

)

ϕ(ω

)

M(ω

)

ϕ(ω

)

Bla

ck p

lot

is g

rap

hic

al r

epre

sen

tati

on

of

a fu

nct

ion

M(ϕ

(ω))

in

cart

esia

nco

ord

inat

esy

stem

.

s

kesT

o−

()

1+

Ts

s

k

FR

EQ

UEN

CY

RESP

ON

SE

Bla

ckplo

t

FR

EQ

UEN

CY

RESP

ON

SE P

LOT

SSu

mm

ary

Th

ree

var

iab

lesω

, M

, ϕ

. O

ne

of

them

isp

aram

eter

, an

oth

ertw

o a

rear

eu

sed

infu

nct

ion

.

�y

qu

ist

plo

t(

|G (ω

) |, ϕ

(ω)

) =

((

M(ω

), ϕ

(ω)

)

(plo

t in

circ

ula

r(p

ola

r) c

oo

rdin

ate

syst

em

)

Bo

de

plo

= ϕ

(ω)

ora

z M

=M

)

�ic

ho

ls p

lot

M (ϕ

(ω))

, d

B

Bla

ck p

lot

M(ϕ

(ω))

(car

tesi

anco

ord

inat

esy

stem

)

Mathematical models

FR

EQ

UEN

CY

RESP

ON

SE

Mat

hem

atic

al m

odels

u(

)(0

)j

tt

=u

Lin

ear

syst

ems

are

des

crib

edb

y l

inea

rD

E

Let

us

inv

esti

gat

etr

ansf

orm

atio

ns

of

the

equat

ion

wh

enin

pu

tsi

gn

alis

a si

ne

wav

e.

Ou

tput

sign

alw

ill

be

sin

e w

ave

too

, bu

t an

gle

wil

l b

e sh

ifte

d.

()

y(

)(0

)(0

)j

tj

tj

t=

ye

ye

ϕω

ϕ+

=

..

()

(1)

()

(1)

11

01

10

...

...

nn

mm

nm

my

ay

ay

ay

bu

bu

bu

bu

−−

−−

++

++

=+

++

+

Th

at’s

wh

yw

eca

nuse

dif

fere

nti

alop

erat

or

acti

ng

on D

E1

1

11

01

10

11

(0)

...

(0)

...

nn

mm

jj

tj

t

nm

mn

nm

m

dd

dd

dd

ye

ea

aa

ue

bb

bb

dt

dt

dt

dt

dt

dt

ϕω

ω−

−−

−−

++

++

=+

++

+

Usi

ng

Lap

lace

tra

nsf

orm

()

()

()

()

()

()

()

()

1

11

0

1

11

0

(0)

...

(0)

...

nn

jj

t

n

mm

jt

mm

ye

ej

aj

aj

a

ue

bj

bj

bj

b

ϕω

ω

ωω

ω

ωω

ω

++

++

=+

++

+

FR

EQ

UEN

CY

RESP

ON

SEM

athem

atic

al m

odels

We

obta

intr

ansf

er f

un

ctio

nG

()

()

()

()

()

()

()

()

()

1

11

0

1

11

0

...

(0)

(0)

(0)G

...

mm

mm

j

nn

n

bj

bj

bj

by

eu

uj

ja

ja

ja

ϕω

ωω

ωω

ωω

++

++

==

++

++

()

()

()

()

()

()

()

1

11

0

1

11

0

...

(0)

Gu

(0)

...

mm

mm

j

nn

n

bj

bj

bj

by

je

ja

ja

ja

ϕω

ωω

ωω

ωω

−−

++

++

==

++

++

()

()

()

()

()

()

()

1

11

0

1

11

0

...

G...

mm

mm

j

nn

n

bj

bj

bj

bj

Me

ja

ja

ja

ϕω

ωω

ωω

ωω

−−

++

++

==

++

++

FR

EQ

UEN

CY

RESP

ON

SEM

athem

atic

al m

odels

j G Im(s)

0ReG(s)

Fig

. O

ne

po

int

of

Fo

uri

er t

ran

sfer

fun

ctio

no

n G

auss

pla

ne

M ϕ

sz

jz

ω−

=−

FR

EQ

UEN

CY

RESP

ON

SEM

athem

atic

al m

odels

j G Im(s)

0ReG(s)

Fig

. O

ne

po

int

of

Fo

uri

er t

ran

sfer

fun

ctio

no

n G

auss

pla

ne

z –

zero

of

Fou

rier

tra

nsf

er f

un

ctio

n

Wh

at m

ean

s n

ota

tio

n

on

Gau

ss p

lan

e ?

z

ϕ

j G Im(s)

0ReG(s)

z

jω ϕ

sz

jz

ω−

=−

sz

jz

ω+

=+

sz

jz

ω+

=+

[,

]zω

geo

met

rica

l

Fou

rier

tra

nsf

er f

un

ctio

n(

)(

)(

)s

j

Yj

Gs

Uj

ω

ω ω=

=

[]

0

()

()

()

stL

ft

Fs

ft

edt

∞−

==∫

Pie

rre-

Sim

on

de

Lap

lace

Jean

Bap

tist

eJo

sep

h F

ouri

er

0

()

()

jt

Fj

ft

edt

ωω

∞−

=∫

FR

EQ

UEN

CY

RESP

ON

SEM

athem

atic

al m

odels

()

()

()

()

()

()

()

1

11

0

1

11

0

...

G...

mm

mm

nn

n

bj

bj

bj

bj

ja

ja

ja

ωω

ωω

ωω

ω

−−

++

++

=+

++

+

()

1

11

0

1

11

0

...

G..

.

mm

mm

nn

n

bs

bs

bs

bs

sa

sa

sa

−−

−−

++

++

=+

++

+

FR

EQ

UEN

CY

RESP

ON

SEM

athem

atic

al m

odels

In c

ase

of

real

fun

ctio

ns

()

()

Gj

ϕω

ω=∠

()

u(

)(0

)cos

t=

ut

ω(

)y(

)(0

)cos

t=

yt

ωϕ

+

amp

litu

de

rati

ois

den

ote

das

()

()

Gu(

)

yj

jjω

ωω

=

Ph

ase-

shif

tis

den

ote

das

Gj

PjQ

()

()

()

ωω

ω=

+

22

()

()

()

MP

ωω

=+

φω

ω ω(

)(

)

()

=

arc

tgQ P

cos

sin

φφ

φ+

=j

ej

Gj

Me

j(

)(

)(

ωφ

ω=

MA A

=2 1

()

()

ω ω

In c

ase

of

po

lar

coo

rdin

ate

syst

em w

e ca

nuse

rela

tion

Itis

resu

ltof

Eu

ler

form

ula

and m

agn

itud

eM

def

init

ion

FR

EQ

UEN

CY

RESP

ON

SEM

athem

atic

al m

odels

–N

yquis

tplo

t

Po

int

on

pla

ne

has

two

coord

inat

esP

(ω)

and

Q(ω

)

P

Q

Pyth

agore

anth

eore

m (i

n a

rig

ht-

angle

d t

rian

gle

th

e ar

ea o

f th

e sq

uar

e

wh

ose

sid

e is

hyp

ote

use

cis

eq

ual

to

th

e su

m o

f th

e ar

eas

of

the

squ

ares

of

the

oth

er

two

sid

esa

and

b)

On

e po

int

of

a cu

rve

Gca

nb

e re

pre

sen

ted

by

com

ple

x n

um

ber

P

QP

=R

e G

(jω

)

Q=

Im G

(jω

)

FR

EQ

UEN

CY

RESP

ON

SEM

athem

atic

al m

odels

–Nyq

uis

t plo

t

Sym

bo

lsu

sed

to r

epre

sent

mag

nit

ud

e an

dp

has

ean

gle

()

()

()

()

()

arg

MG

j

Gj

Gj

ωω

ϕω

ωω

= =∠

=

Gj

Me

j(

)(

)(

ωφ

ω=

()

()

()

Gj

Gj

Gj

ωω

ω=

FR

EQ

UEN

CY

RESP

ON

SEM

athem

atic

al m

odels

–Nyq

uis

t plo

t

P

QP

=R

e G

(jω

)

Q=

Im G

(jω

)

Sym

met

ry o

f a

Nyqu

ist

curv

e is

res

ult

of

com

ple

x n

um

ber

s pro

per

ties

()

()

Gj

Gj

ωω

−=

FR

EQ

UEN

CY

RESP

ON

SE

Exa

mple

1 –

Nyq

uis

t plo

tF

ind

a fr

equen

cyre

spo

nse

of

firs

tord

er D

E

dy

yu

dt+

=

Inpu

tsi

gn

alh

asfo

rm a

nd

an

gu

lar

freq

uen

cy

()

cos

ut

=1

0 r

ad/s

, y(0

)=0

So

luti

on

Non

-ho

mo

gen

ous

DE

is

tran

sform

edb

y L

apla

ce t

ransf

orm

1(

)1

Gs

s=

+U

sing

giv

enan

gula

rfr

equ

ency

()(

)1

11

10

11

0(

)1

10

11

10

11

09

99

9

jG

sj

PjQ

jj

jj

ω−

==

==

+=

++

++

−−

We

obta

inm

agn

itu

de

and

ph

ase-

shif

t

22

()

()

()

0.1

0M

PQ

ωω

ω=

+=

(Ch

eck

ou

tth

ere

sult

inB

od

ep

lot)

()

()

1.4

784

()

oQ

arc

tgra

dP

ωφω

ω

=

=−

=−

Gs

k

Ts

()=

+1

Pk

T=

+2

21

ωQ

kT

T=

+ωω

22

1

Mk

T=

+2

21

ωφ

ω=

−a

rctg

T(

)

FR

EQ

UEN

CY

RESP

ON

SE

Exa

mple

2 –

Nyq

uis

tplo

tC

anw

e h

ave

a g

raph

ical

port

rayal

of

a fi

rst

ord

er D

E?

So

luti

on

)(

)(

1)

(1

ωω

ωω

jQP

jT

kj

G+

=+

=

Tra

nsf

er f

un

ctio

n

Fou

rier

tra

nsf

er f

un

ctio

n

FR

EQ

UEN

CY

RESP

ON

SE

Mat

hem

atic

al m

odels

–Bod

eplo

tB

od

e p

lot

are

ad

dit

ive

inca

seof

seri

esco

nnec

tion

.

()

11

2(

)...

()

()

()

()

12

1(

)(

)(

)..

.(

)(

)...

()

nn

jj

jj

nn

Gj

Me

Me

Me

MM

ωφ

ωφ

ωφ

ωφ

ωω

ωω

ωω

ω+

+=

=E

qu

ival

ent

tran

sfer

fun

ctio

nof

n f

un

ctio

ns

Lo

gar

ith

m o

f G

()

12

()

20

log

()

20

log

()

log

()

...

log

()

nL

MM

MM

ωω

ωω

ω=

=+

++

Matlab command

» bode([1], [1 1])

Matlab command

» bode([1], [1 2 1])

1(

)1

Gs

s=

+(

)()

1(

)1

1G

ss

s=

++

An

gle

s su

m

Lo

gar

ith

m o

f m

agn

itu

de

sum

-20

dB

90

o1

80

o

-40

dB

Bo

de

plo

t fo

r m

agn

itud

e

)(

log

20

)(

ωω

ML

=In

our

case

1lo

g20

log

20

)(

22

1+

−=

ωω

Tk

L

Bec

ause

12

21

11

01

20

log

120

log(

)1

for

TT

Tfo

rT

ωω

ωω

<<

+=

>>

1

11

20

log

1(

)2

0lo

g2

0lo

g(

)1

kfo

rT

Lk

Tfo

rT

ωω

ωω

<<

=

−>>

FR

EQ

UEN

CY

RESP

ON

SE

Exa

mple

2 -

conti

nued

Th

us

FR

EQ

UEN

CY

RESP

ON

SE

Exa

mple

2 -

conti

nued

ω=1/T

Break frequency

or

corner frequency

1 d

ecad

e1

dec

ade

1 d

ecad

e =

rang

e of

freq

uen

cies

fro

m

ω1

to ω

2, w

her

e

ω2=

10

ω1

Th

e sl

op

e of

a as

ym

pto

tic

lin

e

for

this

fir

st-o

rder

tra

nsf

er

fun

ctio

n i

s –

20

dB

/dec

ad

e.

FR

EQ

UEN

CY

RESP

ON

SE

Exa

mple

3F

ind

mag

nit

ude

M a

nd

ph

ase-

shif

tfo

r o

utp

ut

sig

nal

y(t

) if

DE

is

2

22

22

dy

dy

du

yu

dt

dt

dt

++

=+

And

in

pu

t si

gnal

is

()

2co

s3

ut

t=

y(0

)=1

, d

y(0

)/d

t=

2

So

luti

on

We

fin

dF

ouri

er t

ran

sfer

fu

nct

ion

22

22

32

()

22

22

96

2

sj

jG

ss

sj

j

ωω

ω+

++

==

=+

+−

++

−+

+A

nd

inv

esti

gat

epo

int

atknow

nan

gu

lar

freq

uen

cy

23

43

3(3

)7

68

5

jj

Gj

j

+−

==

−+

Mag

nit

ud

ean

dph

ase-

shif

tis

eq

ual

22

(3)

()

()

0.3

9M

PQ

ωω

=+

=33

(3)

83

4

oa

rctg

φ−

=

=−

Basic transfer functions

frequency responses

FR

EQ

UEN

CY

RESP

ON

SE B

ASI

C T

RA

NSF

ER

F.

Gai

n

Transfer

function

Transfer

function

FR

EQ

UEN

CY

RESP

ON

SE B

ASI

C T

RA

NSF

ER

F.

Inte

gral

jω=j Im(s)

0σ=Re(s)

s=σ+ jω

Pole

lo

cus

Fig

. N

yq

uis

t plo

tF

ig. P

ole

lo

ci o

f a

tran

sfer

fu

nct

ion

2

1(

)i

Gs

Ts

=S

erie

sco

nn

ecti

on

of

two

inte

gra

ltr

ansf

er f

un

ctio

ns

Do

ub

lep

ole

in

ori

gin

σ=

0(s

=0

)

FR

EQ

UEN

CY

RESP

ON

SE B

ASI

C T

RA

NSF

ER

F.

Gai

n a

nd inte

gral

Wh

ere

isp

ole

? T

he

audie

nce

isth

inkin

g...

FR

EQ

UEN

CY

RESP

ON

SE B

ASI

C T

RA

NSF

ER

F.

Real

inte

gral

()

()

1

kG

jT

jT

ωω

=+

ReG(s)

Im G(s)

()

kG

jT

ω=

()2

()

1

kG

jT

jT

ωω

=+

()3

()

1

kG

jT

jT

ωω

=+

()4

()

1

kG

jT

jT

ωω

=+

FR

EQ

UEN

CY

RESP

ON

SE B

ASI

C T

RA

NSF

ER

F.

Gai

n,

inte

gral

, fi

rst

order

k

ReG(s)

Im G(s)

()

11

()

1

i

kj

TG

sj

Tω ω

+

=

+

1(

)1

i

Gs

kj

=+

()2

11

()

1

i

kj

TG

sj

Tω ω

+

=

+

FR

EQ

UEN

CY

RESP

ON

SE B

ASI

C T

RA

NSF

ER

F.

Dif

fere

nti

al T

F

jω=j ImG(s)

0σ=ReG(s)

FR

EQ

UEN

CY

RESP

ON

SE B

ASI

C T

RA

NSF

ER

F.

Gai

n a

nd d

iffe

renti

alT

F

FR

EQ

UEN

CY

RESP

ON

SE B

ASI

C T

RA

NSF

ER

F.

Dif

fere

nti

alre

alT

F

()

()

1

Tj

Gj

Tj

ωω

ω=

+(

)G

jT

ω=

()2

()

1

Tj

Gj

Tj

ωω

ω=

+

()3

()

1

kG

jT

jT

ωω

=+

()4

()

1

kG

jT

jT

ωω

=+

FR

EQ

UEN

CY

RESP

ON

SE B

ASI

C T

RA

NSF

ER

F.

Gai

n a

nd d

iffe

renti

al r

eal

TF

kReG(s)

Im G(s)

1(

)1

dT

jG

sk

Tj

ω ω+

=+

()2

1(

)1

dT

jG

sk

Tj

ω ω

+=

+

()3

1(

)1

dT

jG

sk

Tj

ω ω

+=

+

Mo

vin

gd

iffe

renti

altr

ansf

er f

un

ctio

nk

un

its

we

get

Nyq

uis

t plo

t

FR

EQ

UEN

CY

RESP

ON

SE B

ASI

C T

RA

NSF

ER

F.

Dela

y

Gs

eT

s(

)=

−0

Eule

r fo

rmu

la e

xp

ansi

on

Sho

ws

that

geo

met

rica

lly

itis

circ

le

j Im G(s)

0ReG(s)

Fig

.N

yq

uis

t plo

t o

f th

e d

elay

1-1

FR

EQ

UEN

CY

RESP

ON

SE B

ASI

C T

RA

NSF

ER

F.

Dela

y an

d f

irst

ord

er

Arc

him

edes

cu

rve

00

()

11

Ts

Tj

kk

Gs

ee

Ts

Tj

ω

ω−

−=

=+

+

()

Gs

se

o

s=

+−

3

1()

Gs

se

o

s=

+−

2

1

SU

MM

AR

Y :

step

an

dfr

equ

ency

res

po

nse

s

SUM

MA

RY

Nyq

uis

t p

lot

Bo

de

plo

tS

tep

res

po

nse

Tra

nsf

er

fun

ctio

n

Nam

eB

lock

sym

bo

l

SUM

MA

RY

Nyq

uis

t p

lot

Bo

de

plo

tS

tep

res

po

nse

Tra

nsf

er

fun

ctio

n

Nam

eB

lock

sym

bo

l

Fre

qu

ency

and

step

res

po

nse

rela

tio

n

FR

EQ

UEN

CY

AN

D S

TEP R

ESPO

NSE

RELA

TIO

NH

owto

obta

infr

equency

resp

onse

from

step r

esp

onse

?

Imp

uls

res

po

nse

g(t

) an

dst

ep r

esp

on

seh

(t)

()

()

dh

tg

td

t=

Init

ial

con

dit

ion

s ar

e ze

ro h

(0)=

0

00

()

()

()

jt

jt

dh

tG

jg

te

dt

ed

td

t

ωω

ω∞

∞−

−=

=∫

11

1

1

21

22

21

1 1

0 0

...

kk

kk

kk

htg

t hh

tgt

t

hh

tgt

t

βα

βα

βα

− −

−=

=− −

==

− −=

=−

Ser

ies

coef

fici

ents

11

11

kk

kkt

tj

tn

nj

t

kk

kk

tt

ee

dt

jωω

ββ

ω−

−−

==

≈=

−∑

∑∫ (

)1

1

kk

nj

tj

tk

k

je

ωβ ω

−−

=

=−

We

are

app

rox

imat

ing

step

res

po

nse

by

#li

nes

()

()

()

()

()

()

11

11

sin

sin

cos

cos

nn

kk

kk

kk

kk

tt

jt

βω

ωω

ωω

ω−

−=

=

=−

+−

∑∑

(Usi

ng

Eu

ler

form

ula

)

()

()

PjQ

ωω

=+

FR

EQ

UEN

CY

AN

D S

TEP R

ESPO

NSE

RELA

TIO

NH

owto

obta

in m

athem

atic

al m

odelf

rom

fre

quency

resp

onse

?

Let

us

assu

me

that

we

hav

ed

ata

fro

mex

per

imen

t. D

ata

are

in B

od

e p

lot.

We

are

loo

kin

g f

or

a m

od

el

()

1

11

0

1

11

0

...

G..

.

mm

mm

nn

n

bs

bs

bs

bs

sa

sa

sa

−−

−−

++

++

=+

++

+

Co

effi

cien

tsa

, b

fix

ed. W

e ch

oo

seq

ual

ity c

rite

rio

ne.

g.

...a

nd

use

op

tim

izat

ion

met

ho

ds.

Matlab command

» bode([5 0.5], [0.01 0.2 0.1 0.2])

()

()

()

mo

del

u

1

,n

ii

ii

i

Qa

bG

jG

ω=

=−

No

n-m

inim

um

ph

ase

syst

ems

Def

. A

sys

tem

is c

all

eda

min

imu

mp

ha

sesy

stem

if a

ll i

ts p

ole

s a

nd

zer

os

are

in

th

e le

ft h

alf

pla

ne.

Min

imu

m p

has

e sy

stem

s ar

e ea

syto

con

tro

l.

Def

.S

yste

ms

tha

t a

ren

ot

min

imu

mp

ha

se a

re c

all

ed n

on

min

imu

m p

ha

se.

At

leas

t o

ne

zero

or

po

le l

ies

on

RH

P (

rig

ht-

han

d p

lan

e).

Th

e p

rop

erty

of

no

n-m

inim

um

ph

ase

imp

ose

s se

ver

e li

mit

atio

ns

tow

hat

can

be

ach

iev

edb

y

con

tro

l.

Wh

atca

nw

e sa

yab

ou

tst

ep r

esp

on

seo

fa

such

syst

em

? T

he

aud

ien

ceis

thin

kin

g...

NO

N-M

INIM

UM

PH

ASE

SY

STEM

S

()

0

G(

)s

sts

ht

ed

t

∞−

=∫

On

e ze

ro i

s o

n R

HP

, so

s =

s1

> 0

. T

hu

s fo

r s

= s

1 ()

1

1

G0

s

s=

Ste

p r

esp

on

seo

fsu

chsy

stem

co

nta

ins

po

siti

ve

and

neg

ativ

ev

alu

es.

NO

N-M

INIM

UM

PH

ASE

SY

STEM

SExa

mple

1 –

syst

em

ste

p r

esp

onse

jω=j Im G(s)

0σ=ReG(s)

Pole

lo

ci

Fig

.P

ole

and

zer

o o

f G

(s)

1-1

Fig

. P

roce

ssst

ep r

espo

nse

Fig

. S

imu

link

dia

gra

m

Zer

o l

oci

0 -1+1

NO

N-M

INIM

UM

PH

ASE

SY

STEM

SExa

mple

2 –

syst

em

ste

pre

spon

se

Fig

.P

roce

ssst

ep r

espo

nse

Fig

.S

imu

link

dia

gra

m

Ou

tput

sign

alte

nd

sat

the

beg

innin

gto

th

e o

ppo

site

sid

eth

anin

pu

tsi

gn

al. T

hat

’sw

hy

syst

em i

sm

ore

dif

ficu

ltto

contr

ol

than

min

imu

m-p

has

esy

stem

.

0

-0.2+1

NO

N-M

INIM

UM

PH

ASE

SY

STEM

SO

rigi

nof

a nam

eP

has

e-sh

ift

inn

on

-min

imu

m p

has

esy

stem

is

less

th

anin

min

imu

mp

has

esy

stem

.

Zer

os,

wh

ich

lie

on

op

po

site

sid

es o

f an

ax

is o

fsy

mm

etry

, d

oes

n’t

cau

se p

has

e-sh

ift.

An

dw

e h

ave

alte

rnat

ive

def

init

ion

of

no

n-m

inim

um

ph

ase

syst

em

G2,

wh

ich

has

zer

os

in R

HP

G1

has

sym

met

rica

l ze

ros

in L

HP

()

()

21

GG

ϕω

ϕω

>(

)(

)1

2G

Gj

ω=

j Im G(s)

0ReG(s)

Po

le

1-1

Zer

o

Zer

o o

f

G1

Zer

o o

f

G2

Po

le f

or

bo

th

tran

fer

fun

ctio

ns

j Im G(s)

0ReG(s)

1-1

Po

le f

or

bo

th

tran

fer

fun

ctio

ns

ϕG

1

ϕG

2

Phas

e-s

hif

G1

is

less

than 9

0°,

ϕG

2is

gre

ater

th

an 9

Matlab command

» bode([1 1], [1 2])

Matlab command

» bode([1 -1], [1 2])

NO

N-M

INIM

UM

PH

ASE

SY

STEM

SO

rigi

n o

fa

nam

e

()

1

1G

2

ss

s

+=

+()

2

1G

2

ss

s

−=

+

()

()

21

GG

jj

ωω

=

()

()

21

GG

ϕω

ϕω

>

NO

N-M

INIM

UM

PH

ASE

SY

STEM

SO

rigi

n o

fa

nam

e

Fo

r m

inim

um

ph

ase

syst

em

s th

e p

has

e cu

rve

is g

iven

by

th

e g

ain

cu

rve

and

vic

ev

ersa

.A

n

app

rox

imat

e re

lati

on

is

()

()

log

2lo

g

dG

jG

jd

ωπ

ωω

∠≈

A s

lop

e o

fo

ne

for

the

gai

n c

urv

e co

rres

po

nd

sto

90

deg

. p

has

e.T

he

exac

t re

lati

on

s ar

e ca

lled

Bo

des

rel

atio

ns.

No

n-m

inim

um

ph

ase

syst

em

can

be

con

ver

ted

inm

inim

um

-ph

ase

syst

em

by

seri

esco

nn

ecti

on

wit

hsy

stem

des

crib

edb

y t

ran

sfer

fu

nct

ion

()

()(

)(

)(

)()

()

12

12

...

G..

.

n n

ss

ss

ss

ss

ss

ss

s

±±

±=

mm

m

()

Gj

=

Mag

nit

ud

eo

fth

atsy

stem

is

con

stan

t an

d z

ero

s/p

ole

s ar

e sy

mm

etri

cal

on

LH

P a

nd

RH

P (

jω-

axis

)

NO

N-M

INIM

UM

PH

ASE

SY

STEM

S

No

n-m

inim

um

ph

ase

cau

ses

-ze

ro o

rp

ole

in

RH

P

-n

egat

ive

gai

n

-d

elay

OBIE

KT

Y N

IEM

INIM

ALN

OFA

ZOW

EPrz

ykła

d –

sam

olot

X-2

9

()

26

G6

ss

s−=

NO

N-M

INIM

UM

PH

ASE

SY

STEM

SA

irpla

ne

NO

N-M

INIM

UM

PH

ASE

SY

STEM

SExa

mple

–ai

rpla

ne

X-2

9T

he

tran

sfer

fun

ctio

n f

rom

ele

vo

nto

hei

gh

to

f an

air

pla

ne

wit

h e

lev

on

s in

th

e re

ar a

re a

lway

s n

on

-

min

imu

m p

has

e.T

he

Wri

gh

t b

roth

ers

avo

ided

th

isb

yan

ele

vo

n i

nfr

on

t. M

od

ern

fig

hte

r p

lan

es h

ave

can

ard

s in

th

efr

on

tan

d e

ven

jet

th

rust

ers

toav

oid

th

ep

rob

lem

. X

-29

is a

n e

xp

erim

enta

l ai

rcra

ft.

In o

ne

op

erat

ing

co

nd

itio

n t

he

syst

em

is

app

rox

imat

ely

des

crib

edb

yth

etr

ansf

erfu

nct

ion

()

26

G6

ss

s−=

−O

ne

po

lean

do

ne

zero

in t

he

rig

ht

hal

f p

lan

e.T

his

pla

ne

is d

iffi

cult

toco

ntr

ol

wel

l.

NO

N-M

INIM

UM

PH

ASE

SY

STEM

SExa

mple

–ai

rpla

ne

X-2

9

Fig

.B

od

e p

lot

of

X-2

9 a

irp

lan

eF

ig.N

yq

uis

t p

lot

of

X-2

9 a

irp

lan

e

()

()(

)2

22

626

26

15

62

0G

63

63

6

jj

jj

jj

ωω

ωω

ωω

ωω

ω+

−−

−−

−=

==

−−

−−

Ho

wto

mea

sure

freq

uen

cyre

spo

nse

of

a ai

rpla

ne?

Wh

yF

ou

rier

tra

nsf

er f

un

ctio

nis

for

cert

ain

co

nd

itio

ns?

Th

eau

die

nce

isth

ink

ing

...

NO

N-M

INIM

UM

PH

ASE

SY

STEM

SExa

mple

–busi

ness

jet

resp

onse

Nyq

uis

t p

lot

Bo

de

plo

tS

tep

res

po

nse

Tra

nsf

er

fun

ctio

n

Nam

eB

lock

sym

bo

l

NO

N-M

INIM

UM

PH

ASE

SY

STEM

SExa

mple

–busi

ness

jet

resp

onse

NO

N-M

INIM

UM

PH

ASE

SY

STEM

SH

elico

pte

r

Lo

ok

bac

kin

pre

vio

us

lect

ure

.

NO

N-M

INIM

ALP

HA

SE S

YST

EM

SExa

mple

–w

ater

leve

lin

dru

m

Lev

el d

yn

amic

s in

bo

iler

s is

no

n-m

inim

um

ph

ase

bec

ause

of

the

shri

nk

an

d s

wel

l

ph

eno

men

a.T

he

tran

sfer

fun

ctio

n f

rom

tub

e op

enin

gto

pow

er i

sfo

r a

hy

dro

ele

ctri

c

po

wer

syst

em.

()

0 0

()

12

G(

)1

PP

ssT

sA

sA

sT

−=

=+

NO

N-M

INIM

ALP

HA

SE S

YST

EM

SExa

mple

–Bic

ycle

con

trol

θ θθθα ααα

β βββx

y

ab

v

y

z

Fig

No

tati

on

, U

pv

iew

Fig

.N

ota

tio

n,

fro

nt

vie

w

()

0

0

2

()

G(

)

vs

am

lvs

as

mg

ls

bJ

sJ

θ β

+=

=−

m –

mas

s(b

icycl

e+cycl

ist=

syst

em

)

a –

dis

tance

rear

wh

eel

–ce

nte

ro

fgra

vit

y

b -

dis

tan

ce f

ront

wh

eel

–ce

nte

r o

f gra

vit

y

l –

dis

tance

bet

ween

OX

axis

and

cen

ter

of

gra

vit

y

J –

syst

em

iner

tia

ver

sus

OX

axis

v0-

init

ial

vel

oci

ty

Frontwheel steering

NO

N-M

INIM

ALP

HA

SE S

YST

EM

SExa

mple

–Bic

ycle

con

trol

Typ

ical

par

am

eter

sfo

r b

ike

m=

80

kg

a= 0

.3 m

l= 1

.2 m

b=

0.7

J=1

20

kg

m3

v0=

5 m

/s

()

2

()

16

.6G

1.7

()

7.8

ss

ss

s

θ β+

==

Frontwheel steering is non-m

inimumphase because of the right half planepole

NO

N-M

INIM

ALP

HA

SE S

YST

EM

SExa

mple

–Bic

ycle

con

trol

Bic

ycl

e co

ntr

ol

isn

’tea

sy..

.

Frequencyplots

ofelectricalsystems

FR

EQ

UEN

CY

PLO

TS

Meas

ure

ments

–os

cillos

cope

Devicefor observingofelectricalsygnalas a function of a tim

e

CH

AR

AK

TER

YST

YK

I C

ZĘST

OT

LIW

OŚC

IOW

EPom

iary

-os

cylo

skop

Yel

low

colo

r–

yel

low

plo

t

Blu

eco

lor

–b

lue

plo

t

Au

to-s

cale

Ch

ann

el 1

, ca

nse

rve

e.g.

fo

r

ob

serv

ing o

fin

pu

tsi

gn

alto

a

syst

em

Ver

tica

l p

osi

tio

n o

fa

yel

low

plo

t

Sca

leo

fa

yel

low

plo

t, y

-co

ord

ian

te(o

ro

rdin

ate)

Mat

hem

atic

al o

per

atio

ns

on

in

pu

t si

gn

als

e.g

. su

m

Ch

ann

el1

,ca

n s

erv

ee.

g.

fo

r

ob

serv

ing o

f o

utp

ut

sign

alfr

om

a

syst

em

Ver

tica

lp

osi

tio

no

fa

blu

ep

lot

Ex

tern

altr

igg

erfo

r

sign

al l

og

gin

g

Ch

ann

el

men

u

FR

EQ

UEN

CY

PLO

TS

Meas

ure

ments

–sp

ect

rum

anal

yzer

Cat

ho

d r

ay o

scil

losc

op

e

All

ow

s si

gn

al

vo

ltag

esto

be

vie

wed

as t

wo

-dim

ensi

on

al

gra

ph

plo

tted

as

a

fun

ctio

n o

f ti

me

3rd

ord

er s

yst

em

Sp

ectr

um

an

alyzer

Rea

l p

art

mea

sure

men

tIm

agin

ary p

art

mea

sure

men

t

Fre

qu

ency

of

anin

pu

tsi

gn

al,

Hz

Sh

ape

of

a w

ave

Inp

ut

sign

alO

utp

ut

sign

al

Inp

ut

sign

alto

pro

cess

Fre

qu

ency

scal

e1

0 k

Hz,

10

00

Hz,

10

0 H

z, 1

0 H

z

Sta

teb

ias

of

anam

pli

tud

e

Osc

illa

tio

n d

amp

ing

+

-gro

un

d

Ou

tpu

tsi

gn

alfr

om

a p

roce

ss

ente

rs

Sca

le

Po

wer

On

Am

pli

tud

e

En

ter

the

sign

al

Osc

illo

sco

pe

wo

rk c

on

dit

ion

s

1 c

han

nel

, 2

ch

ann

els,

su

m

Tim

e sc

ale

Ver

tica

l sh

ift

Ho

rizo

nta

l sh

ift

Imag

eq

ual

ity

Sh

arp

Bri

gh

t et

c.

Tri

gg

ersi

gn

al

Cu

rren

t fr

equ

ency

Real frequency responsesfor

therm

al systems

Mil

l

CH

P p

lant

80

0 M

W, S

chw

arz

e P

um

pe

Mo

tor

Venti

lato

r

Flu

e g

ases

Air

and

co

al p

ulv

er

FR

EQ

UEN

CY

PLO

TS

Therm

al s

yste

ms

Rafa

ko

burn

ers

Kanał

recyrk

ula

cji

spal

in

Mai

n b

urn

ers

Ad

dit

ional

bu

rner

s

FR

EQ

UEN

CY

PLO

TS

Obie

kty

ciepln

eE

xam

ple

. In

flu

ence

of

fuel

on

fre

shst

eam

An

gu

lar

vel

oci

tyo

fv

enti

lato

ris

chan

ged

.

Real frequency responsesfor

mechanical systems

FR

EQ

UEN

CY

PLO

TS

Exa

mple

–ca

rIn

pu

t–

stee

rin

g w

hee

l

Ou

tpu

t –

dir

ecti

on

T

hro

ttle

Lo

ok

ou

t o

n t

raff

ic r

egu

lati

on

s. N

ext

tim

e th

e p

oli

ce w

ill

sto

p y

ou

, ju

st s

ay t

hat

yo

u a

re d

raw

ing

Bo

de

plo

t...

FR

EQ

UEN

CY

PLO

TS

Exa

mple

–ca

r

FR

EQ

UEN

CY

PLO

TS

Exa

mple

–ca

r

Thank you for

your attention