Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana,...

33
Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature dynamics of small correlated systems: anomalous properties for cuprates Sherbrooke, July 2005
  • date post

    18-Dec-2015
  • Category

    Documents

  • view

    215
  • download

    0

Transcript of Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana,...

Page 1: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Faculty of Mathematics and Physics, University of Ljubljana,J. Stefan Institute, Ljubljana, Slovenia

P. Prelovšek, M. Zemljič, I. Sega and J. Bonča

Finite-temperature dynamics of small correlated systems: anomalous properties for

cuprates

Sherbrooke, July 2005

Page 2: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Outline

• Numerical method: Finite temperature Lanczos method (FTLM)

and microcanonical Lanczos method for small systems:

static and dynamical quantities: advantages and limitations

• Examples of anomalous dynamical quantities (non-Fermi liquid –like)

in cuprates: calculations within the t-J model :

• Optical conductivity and resistivity: intermediate doping – linear law,

low doping – MIR peak, resistivity saturation and kink at T*

• Spin fluctuation spectra: (over)damping of the collective mode in

the normal state, ω/T scaling, NFL-FL crossover

Page 3: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

quantum critical point, static stripes, crossover ?

Cuprates: phase diagram

Page 4: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

t – J model

interplay : electron hopping + spin exchangesingle band model for strongly correlated electrons

projected fermionic operators: no double occupation of sites

n.n. hopping

finite-T Lanczos method

(FTLM): J.Jaklič + PP

T > Tfs

finite size temperature

n.n.n. hopping

Page 5: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Exact diagonalization of correlated electron systems: T>0

Basis states: system with N sites• Heisenberg model: states• t – J model: states• Hubbard model: states

• different symmetry sectors:

A) Full diagonalization: T > 0 statics and dynamics

me

memory and operations

Page 6: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Finite temperature Lanczos method

FTLM = Lanczos basis + random sampling: P.P., J. Jaklič (1994)

Lanczos basis

Matrix elements: exactly with M=max (k,l)

Page 7: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Static quantities at T > 0

High – temperature expansion – full sampling:

calculated using Lanczos: exactly for k < M, approx. for k > M

Ground state T = 0:

FTLM gives correct T=0 result

Page 8: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Dynamical quantities at T > 0

Short-t (high-ω), high-T expansion: full sampling

M steps started with normalized and

exact

Random sampling:random

>> 1

Page 9: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Finite size temperature

many body levels:

2D Heisenberg model 2D t-J model 2D t-J model: J=0.3 t

optimum doping

Page 10: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

FTLM: advantages and limitations

• Interpolation between the HT expansion and T=0 Lanczos calculation

• No minus sign problem: can work for arbitrary electron filling and

dimension

• works best for frustrated correlated systems: optimum doping

• So far the leading method for T > 0 dynamical quantities in strong

correlation regime - competitors: QMC has minus sign + maximum

entropy problems, 1D DMRG: so far T=0 dynamics

• T > 0 calculation controlled extrapolation to g.s. T=0 result

• Easy to implement on the top of usual LM and very pedagogical

• Limitations very similar to usual T=0 LM (needs storage of Lanczos

wf. and calculation of matrix elements): small systems N < 30

many static and dynamical properties within t-J and other models calculated,

reasonable agreement with experimental results for cuprates

Page 11: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Microcanonical Lanczos method

Long, Prelovsek, El Shawish, Karadamoglou, Zotos (2004)

thermodynamic sum can be replaced with a single microcanonical statein a large system

MC state is generated with a modified Lanczos procedure

Advantage: no Lanczos wavefunction need to be stored, requirement as for T = 0

Page 12: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Example: anomalous diffusion in the integrable 1D t-V model insulating T=0 regime (anisotropic Heisenberg model)

T >> 0:huge finite-size effect (~1/L) !

convergence to normal diffusion ?

Page 13: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Resistivity and optical conductivity of cuprates

Takagi et al (1992) Uchida et al (1991)

ρ ~ aT

pseudogap scale T*

mid-IR peak at low doping

universal marginal FL-type conductivity

resistivitysaturation

normal FL: ρ ~ cT2 , σ(ω) Drude form

Page 14: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Low doping: recent results

Ando et al(01, 04)

1/mobility vs. doping

Takenaka et al (02)

Drude contribution at lower T<T*

mid – IR peak at T>T*

Page 15: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

FTLM + boundary condition averaging

t-J model: N = 16 – 261 hole

Zemljic and Prelovsek, PRB (05)

Page 16: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Intermediate - optimum doping

van der Marel et al (03)

BSCCO

t-J model: ch = 3/20

ρ ~ aT

reproduceslinear law

Page 17: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

deviation from the universal law

Origin of universality:

assuming spectral function ofthe MFL form

increasing function of ω !

Page 18: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Low doping

mid- IR peak for T < J: related to the onset of short-range AFM correlations

position and origin of the peak given by hole bound by a spin-string

resistivity saturation

onset of coherent ‘nodal’ transport

for T < T*N = 26, Nh = 1

Page 19: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Comparison with experiments

underdoped LSCO intermediate doping LSCO

Ando et al.Takagi et al.

normalized resistivity: inverse mobility

• agreement with experiments satisfactory both at low and intermediate doping

• no other degrees of freedom important for transport (coupling to phonons) ?

Page 20: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Cuprates – normal state: anomalous spin dynamics

LSCO: Keimer et al. 91,92Zn-substituted YBCO: Kakurai et al. 1993

Low doping:

inconsistent with normal Fermi liquid

~

normal FL: T-independent χ’’(q,ω)

Page 21: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Spin fluctuations - memory function approach

goal: overdamped spin fluctuations in normal state +

resonance (collective) mode in SC state

Spin susceptibility: memory function representation - Mori

‘mode frequency’ ‘spin stiffness’ – smoothly T, q-dependent at q ~ Q

fluctuation-dissipation relation

Less T dependent,saturates at low T

damping

function

Page 22: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

large damping:

FTLM results for t-J model: N=20 sites

J=0.3 t, T=0.15 t > Tfs ~ 0.1 tNh=2, ch=0.1

Argument: decay into fermionic electron-hole excitations ~ Fermi liquid

collective AFM mode overdamped

Page 23: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

scaling function: ω/T scaling for ω > ωFL

Zn-substituted YBCO6.5 : Kakuraidifferent energies

Normal state: ω/T scaling – T>TFL

parameter

‘normalization’ function

cuprates: low doping

Fermi scale ωFL

PRL (04)

Page 24: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Crossover FL: NFL – characteristic FL scale

ch < ch* ~ 0.15:

ch > ch* :

non-Fermi liquid

Fermi liquid

t-J model - FTLM N=18,20

PRB(04)

FTLMT=0 Lanczos

NFL-FL crossover

Page 25: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Re-analysis of NMR relaxation

spin-spin relaxation

+ INSUD

OD

Berthier et al 1996

+ CQ

from t-Jmodel

UD

OD

Balatsky, Bourges (99)

Page 26: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Summary

• FTLM: T>0 static and dynamical quantities in strongly correlated systems

advantages for dynamical quantities and anomalous behaviour• t – J model good model for cuprates (in the normal state)• optical conductivity and resistivity: universal law at intermediate doping,

mid-IR peak, resisitivity saturation and coherent transport for T<T* at low

doping, quantitative agreement with experiments• spin dynamics: anomalous MFL-like at low doping,

crossover to normal FL dynamics at optimum doping• small systems enough to describe dynamics in correlated systems !

Page 27: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.
Page 28: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.
Page 29: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

AFM inverse correlationlength κ

Balatsky, Bourges (99)

κ weakly T dependent and not small even at lowdoping

κ not critical

Page 30: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Inelastic neutron scattering: normal + resonant peak

Bourges 99: YBCO

q - integrated

Doping dependence:

Page 31: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Energy scale of spin fluctuations = FL scale

characteristic energy scale of SF:

T < TFL ~ ωFL : FL behavior

T > TFL ~ ωFL: scaling

phenomenological theory:

simulates varying doping

Kondo temperature ?

Page 32: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Local spin dynamics

‘marginal’ spin dynamics

J.Jaklič, PP., PRL (1995)

Page 33: Faculty of Mathematics and Physics, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia P. Prelovšek, M. Zemljič, I. Sega and J. Bonča Finite-temperature.

Hubbard model: constrained path QMC