Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James...

69
Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute for Precipitation Systems Saint Louis University Dept. of Earth & Atmospheric Sciences (with tweaks by SMR)
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    224
  • download

    0

Transcript of Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James...

Page 1: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Factors Affecting Mesoscale Convective System Propagation

with Illustrations from Case Studies

James T. Moore and Charles E. Graves

Cooperative Institute for Precipitation SystemsSaint Louis University

Dept. of Earth & Atmospheric Sciences

(with tweaks by SMR)

Page 2: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Modes of Propagation 1• Discrete propagation

• Development of new cells

• Produced from enhanced convergence in the boundary layer

• Caused by downdrafts from the main storm

• New cells typically form 4-10 km away from the main storm

• Increases total storm area

• Multicellular storms (socialist approach)

Page 3: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Modes of Propagation 2• Continuous propagation

• newly formed cells (and associated updrafts) continuously feed the main updraft of the primary storm (maintenance)

• (cf. discrete propagation new development)

•Supercell storms (capitalist approach)

Page 4: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Modes of Propagation 3

• Forward propagation• new cells form downstream from existing convection

• Regenerative• new cells form in the same location • move in the same direction as the earlier cells

• Backward propagation • new cells form upstream from the existing convection

• During regenerative/backward-propagating convection:

• cells tend to move repeatedly over the same area• echo training, a serious heavy rainfall threat

•MCSs can exhibit different propagation types during its lifetime

Page 5: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Forward Propagating MCS

Rod Scofield, NESDIS

Page 6: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Favorable Environmental Conditions for

Forward-Propagating MCSs 1

• Maximum CAPE values coincident with MCS and extend downstream

• 850 hPa e ridge extends northward toward and downstream from MCS location

• Moving frontal or outflow boundary

• Moderate-strong 850-250 hPa mean winds that have a significant cross-frontal component toward warm air

• Moderate-strong thickness gradient with little/no diffluence

Page 7: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Favorable Environmental Conditions for

Forward-Propagating MCSs 2

• Low-level jet (LLJ) coincident with MCS location

• LLJ veers with time as dictated by motion of short-wave trough

• “Progressive” short-wave trough, translating eastward

• 250-300 hPa upper-level jet is oriented west-east and positioned north of MCS

• Strongest LL moisture transport/convergence located near and downstream from MCS location

Page 8: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Severe Convective Storms Monograph (AMS 2001) Chapter 12

Forward Propagating MCS

Page 9: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Backward Propagating MCS

Rod Scofield,NESDIS

Page 10: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Favorable Environmental Conditions for Backward-Propagating/Regenerative MCSs 1

• Maximum CAPE values are coincident with and upstream from MCS location (typically to the W-SW)

• 850 hPa e ridge extends northward and upstream from MCS location

• Quasi-stationary west-east surface boundary (old front, outflow boundary, cloud boundary, etc.)

• Weak 850-250 hPa mean winds with slight component directed toward the cold air

Page 11: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Favorable Environmental Conditions for Backward-Propagating/Regenerative MCSs 2

•LLJ: • quasi-stationary and directed upstream from MCS location• LLJ nearly normal to surface boundary• diurnally-forced, veers inertially with time

• Diffluent thickness pattern for 850-250 hPa layer

• Typically a mid-tropospheric ridge aloft (indicative of weak winds)

• Winds veer and strengthen with height (up to ~1.5 km/850 hPa) and weaken above with little veering (especially in the warm season)

• Strongest low-level moisture transport/convergence at and upstream from MCS location • Quasi-stationary area of upper-level divergence (most MCSs form to the S-SW of the maximum upper-level divergence)

Page 12: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

(Kelsch 2001)

Regenerative Convection:

Often near or within the upper ridge; relatively weak flow

Steering flow carries new echoes slowly away from regeneration area

Watch for intersection of low-level jet with pre-existing boundary and storm-generated boundary

Consider whether regeneration will be fast enough to balance cell movement

An approaching shortwave causes surface pressure falls, which helps enhance local low-level flow that supplies the storm

Characteristics of Backward-Propagating Regenerative Convection

Mean flow

Page 13: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Severe Convective Storms Monograph (AMS 2001) Chapter 12

Backward-Propagating/Regenerative MCSs

Page 14: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Factors Associated With Warm-Season Training Events

•Weak mid-upper level wind shear

•Low-level jet normal to the upper-level jet

•Weak low pressure circulation anchored west of the region of heavy rain

•Moderate-high CAPE values (>2000 J kg-1) south of the region of heavy rain

•Slow-moving training echoes

•PW values > 130% of normal

•Diurnally varying moderate low-level jet (>30 kt)

•Often weak short-wave trough upstream of the region of heavy rain

Page 15: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Maddox “Frontal Type” Heavy Rain Scenario 1

Surface conditions

Maddox et al. (1979)

Annual Distribution

Page 16: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Maddox “Frontal Type” Heavy Rain Scenario 2

850 hPa Flow Maddox et al. (1979)

500 hPa Flow

Page 17: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Factors Associated With Cool Season Training Events

• Moderate-strong wind shear in mid-upper troposphere

• LLJ parallel to the upper-level jet

• Weak low pressure center along a quasi-stationary frontal boundary

• Weak CAPE (< 1000 J kg-1)

• Fast-moving training echoes

• Precipitable water (PW) values over 200% of normal

• Strong persistent LLJ (> 50 kt)

• Persistent long wave trough west of heavy rain region

Page 18: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Maddox “Synoptic Type” Heavy Rain Scenario 1

Surface conditionsMaddox et al. (1979)

Annual Distribution

Page 19: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Maddox “Synoptic Type” Heavy Rain Scenario 2

850 hPa Flow Maddox et al. (1979)

500 hPa Flow

Page 20: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Storm-Scale Effects on Propagation 1

Internal mechanisms:

• Storm Rotation

• rotation (in supercells) non-hydrostatic perturbation low pressure updraft

• Interaction of Updraft w/Env. Vertical Wind Shear

• non-hydrostatic perturbation high on upshear side of storm downdraft

• non-hydrostatic perturbation low on downshear side of storm updraft

Page 21: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Storm-Scale Effects on Propagation 2

Internal mechanisms:

• Outflow Boundaries

• enhance low-level convergence/vertical motion

• leads to new convection in preferred zones

• Cold Pools

• induces horizontal circulation

• interaction of CP circulation with VWS circulation enhances lift in preferred zones

Page 22: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Environmental Effects on Propagation 1

External mechanisms:

• Low-level jet (LLJ)

• often dictates location of preferred low-level convergence and new cell generation

• key to the Corfidi (Vector) Method.

• Synoptic-scale Boundaries

• orientation and strength of boundary influences location of new convection

• Magnitude/orientation of LL e ridge axes

• convective instability

• high moisture

Page 23: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Environmental Effects on Propagation 2

External mechanisms:

• Magnitude/orientation of system-relative LL moisture convergence

• determines preferred regions of new convection

• good as short-term forecast tool

• Regions of instability and lids

• new convection preferred in regions of high CAPE and low convective inhibition CIN (weak lid or “cap”)

• modest cap needed to prevent premature ‘firing’ of convection

Page 24: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Initiation of Convection by Outflow Boundaries

(COMET)

Page 25: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Gust Front Conceptual Model

• Leading edge of LL thunderstorm cold outflow

• Outflow depth ~1 km• Forced ascent at head

(Droegemeier and Wilhelmson 1987)

Page 26: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Cold Pool/Low-Level Wind Shear Balance

(after Rotunno et al. 1988)

• Little/no LL VWS: gust front moves away from storm storm dissipates

• LL VWS balances gust front optimal for cell propagation and long-lived systems

Page 27: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

(Klemp 1987)

• Development of positive and negative centers of rotation (via tilting of vortex tube by updraft)

• negative perturbation pressures

• enhanced UVM to north and south of storm

• cell splitting

Non-Hydrostatic Perturbations Pressures Due to Rotation (e.g., HP supercells)

LL

LL

Page 28: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

(Klemp 1987)

• Interaction between VWS and storm’s updraft:

• perturbation highs/low

• enhanced UVM

• altered propagation

HH

H

H

L

L

L

L

LH

Straight-line hodograph: forward propagation

Clockwise-turning hodograph: rightward propagation

Non-Hydrostatic Perturbation Pressures Due to Vertical Wind Shear Interacting with Storm-Scale Updraft

Page 29: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Corfidi’s “Vector Method” for MBE Movement

(Corfidi et al. 1996)

PROPCLMBE VVV

• Where: VMBE MBE motion vector

VCL mean cloud-layer wind flow (850-300 hPa)

VPROP propagation vector (= -VLLJ)

• Use upstream LLJ vector to approximate inflow into MCS

Page 30: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

(Corfidi 2002)

Original “Corfidi Vector Method” for Upwind-Propagating MCSs

Page 31: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Echo training (episodic MCSs)

Quasi-stationary (upwind propagating) MCSs

Hybrid MCSs

Page 32: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Modification to the “Vector Approach”

• Corfidi (2003) noted similarities between environments of back-building convection and bow echoes/derechoes – bow echoes are distinctly forward propagators– opposite of back-building convection

• Forward propagation favored by the presence of unsaturated air ahead of the developing MCS.– mid-levels or sub-cloud layer– strong downdraft potential strong mesohigh forms– mesohigh maximizes system relative convergence

downstream of MCS– main threat from strong straight-line winds

• Quasi-stationary/back-building MCSs are associated with (nearly) saturated lower troposphere– main threat from +RA/flash flooding

Page 33: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

QUASI-STATIONARYPORTION

PROGRESSIVEPORTION

Idealized Plan View of Temporal Elongation of Cold Pool/ Gust Front in Largely Unidirectional Environmental

Flow

Page 34: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

(Corfidi 2002)

Updated “Corfidi Vector Method” for Upwind- and Downwind-Propagating

MCSs

Page 35: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

(Corfidi 2002)

Thermodynamic profile supportive of upwind propagation:

• Unidirectional VWS

• “Skinny” CAPE

• Moist profile throughout

Thermodynamic profile supportive of downwind propagation:

• Unidirectional VWS

• “Fat” CAPE

• Dry mid-level air

Page 36: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Top: Quasi-stationary/backward propagating MCS--preferred inflow and new cell development on upwind end of MCS (flash flood threat).

Bottom: Forward propagating MCS (bow echo)--new cells develop on leading edge where rear inflow jet converges with SR inflow (wind damage threat; FF threat exists if rainfall rates are high and if trailing stratiform precipitation exists.

Summary Schematic: Similar Wind Profiles, Different Gust Front-Relative Flows

Page 37: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Weak Mesohighs and Backbuilding

• Weak mesohighs associated with:– Modest positive pressure anomalies slightly greater

than ambient pressure, leading to weak isallobaric flow– Weak ambient surface flow (< 10 m s-1)– High mean surface-500 mb RH

• reduced ability to form strong convective downdrafts• low DCAPE (downdraft CAPE)

– Weak mid-level (~700-500 hPa) flow• limited downward vertical momentum transfer • weak convective downdrafts and weak momentum (see above)

• System-relative inflow:– from the south-southwest for +RA-producing MCSs

• surface outflow boundary does not move downstream

– from the east-southeast for fast-moving bow echoes• surface outflow boundary moves quickly downstream

Page 38: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

(Miller 1978)

Unidirectional shear + dry mid-layer air

= bow echo/derecho

Veering winds + deep moist layer

= heavy rain

(esp. noted in elevated thunderstorms)

Page 39: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Categories for Midwest 1993 Heavy Rainfall Events

(Junker et al. 1999)

Page 40: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Length of Moisture

ConvergenceAxis

Junker et al. 1999

Page 41: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

06 UTC 09 UTC

Surface Analyses for 26 July 1998

Indicates thunderstorm or heavy rain

Page 42: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

IR Loop from 1815 UTC 25 July to 1515 UTC 26 July 1998: Forward

Propagation

Page 43: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

24 hour rain gauge analysis for the period ending

12 UTC 26 July 1998

Page 44: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Corfidi Vector Method: Downwind Approximation

Corfidi Vector Method: Diagnostic

Approximation

Corfidi vectors worked well for forward propagation across Kansas

Page 45: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

900-800 hPa Average Moisture Convergence: 03 UTC 26 July 1998

X

Page 46: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

900-800 hPa Average Moisture Convergence: 06 UTC 26 July 1998

X

Page 47: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

900-800 hPa Average Moisture Convergence: 09 UTC 26 July 1998

X

Page 48: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

GOES-8 Infrared Satellite Loop for 1815 UTC 6 May to 1815 UTC 7 May 2000:

Regenerative Convection

Page 49: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

FORECAST ACTUAL

Prognostic and Diagnostic Corfidi Vector Diagrams Valid 0600 UTC 7 May

2000

Gagan (2001)

Page 50: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

24-Hour Precipitation Analysis for the Period Ending 1200 UTC 7 May

2000

Page 51: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

GOES-8 IR Imagery for 1215 UTC 21 July to 1215 UTC 22 July 1998: Forward and

Backward Propagation

Page 52: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

4-km RFC Analysis - 24 hr Accumulation Ending at 1200 UTC 22 July 1998

Page 53: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Overview of Kansas Turnpike Event

• Evening hours, 30 August 2003– I-35 near Emporia, KS received 6-8 inches of

rain in about 3 hours– Slow storm movement (< 5 m s-1)

• Elevated thunderstorm formed on cool side of inverted trough

• Low-centroid echo system– IR imagery revealed warm top thunderstorm– not very tall, would not raise much suspicion– standard Z-R relationship from Topeka

WSR-88D underestimated rainfall amounts

Page 54: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Kansas Turnpike Flooding

• From 6 pm to 9 pm CDT:– 6-8 inches of rainfall– Jacob Creek becomes a river

• Water flowed onto northeast-bound lanes – cars were wedged up against concrete

barriers– 20 feet long, 10,000-20,000 pounds– seven cars swept away– six fatalities

Page 55: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.
Page 56: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

0000 UTC 31 August 2003 Surface Map

Page 57: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Wichita, KS WSR-88D (ICT) Reflectivity 2246 UTC 30 August 2003 - 0130 UTC 31

August 2003

Page 58: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

26 Kft

19 Kft

12 Kft

‘surface’

Page 59: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

0100 UTC 31 August 2003 Radar Cross-section

3 km

6 km

9 km

12 km

Page 60: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

850-hPa Wind Barbs and IsotachsRUC-2 Initialization: 0000 UTC 31 August

2003

Page 61: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

950-850 hPa Average Moisture Convergence

RUC-2 Initialization: 0000 UTC 31 August 2003

Page 62: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Surface Moisture Convergence 0000 UTC 31 August 2003

Page 63: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Springfield, MO sounding 0000 UTC 31 August 2003

Page 64: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Diagnostic Corfidi Vector Diagram 0000 UTC 31 August 2003

• Storm motion estimate from radar

• Cell motion estimate from 850-300 hPa mean wind

Page 65: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Upwind Corfidi Vector Diagram 0000 UTC 31 August 2003 (east of

+RA)

• Cell motion estimate from 850-300 hPa mean wind

• VPROP = -VLLJ

• VLLJ = 100° @ 12.5 m s-1

Page 66: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Upwind Corfidi Vector Diagram 0000 UTC 31 August 2003 (south of

+RA)

• Cell motion estimate from 850-300 hPa mean wind

• VPROP = -VLLJ

• VLLJ = 145° @ 6.0 m s-1

Page 67: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Catastrophic Consequences of “Training”

Page 68: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Summary: Determining MCS Propagation Mode in Environments of Largely Unidirectional Cloud Layer

Flow 1

• Strong, unidirectional wind regimes can yield vastly different MCS propagation modes

• Mode dependent upon thermodynamic conditions and the orientation of the storm initiation mechanism:

• Upwind-propagation environmental characteristics (+RA threat):

• deep moisture

• comparatively weak convective downdrafts

• weak vertical momentum transfer

• Downwind-propagation environmental characteristics (wind threat):

• dry air somewhere in vertical profile

• strong (i.e. cold) convective-scale downdrafts

• strong momentum transfer elongation of cold pools in direction of the mean cloud-layer (850-300 hPa) flow

(Corfidi 2002)

Page 69: Factors Affecting Mesoscale Convective System Propagation with Illustrations from Case Studies James T. Moore and Charles E. Graves Cooperative Institute.

Summary: Determining MCS Propagation Mode in Environments of Largely Unidirectional Cloud Layer

Flow 2

• Propagation will most likely occur along portion of cold pool’s edge (gust front) with:

• strongest system-relative inflow• highest surface-based convective instability• i.e. most favorable region for new convective development

• Upwind-developing MCSs are most favored along quasi-stationary portions of the gust front

• Downwind-developing MCSs are most favored on the more ‘progressive’ parts of the boundary

• It is possible to have multiple propagation modes in the same MCS (mainly at different points of the system’s life cycle)

(Corfidi 2002)