Factorisation

25
FACTORISATION FACTORISATION KONDETI YASHWANT Class – VIII “A”

description

Factorisation

Transcript of Factorisation

Page 1: Factorisation

FACTORISATIONFACTORISATION

KONDETI YASHWANTClass – VIII “A”

Page 2: Factorisation

PREVEIW• PART1 :FACTORS OF NATURAL NUMBERS & AGEBRAIC EXPNS

• PART2 :METHOD OF COMMON FACTORS

• PART3: FACTORISATION BY REGROUPING TERMS

• PART4 :SOLVING SUMS ON FACTORIZING EXPNS

• PART5 :SOLVING SUMS ON FACTORISATION USING IDEN

• PART6 :FACTORS OF THE FORM (x+a)(x+b)

• PART7 :DIVISION OF ALGEBRAIC EXPNS

Page 3: Factorisation

Introduction Factors of natural numbers e.g. 90 = 2 x 3 x 3 x 5

Factors of algebraic expressions Terms are formed as product of factors.e.g. 5xy = 5 x x x y 10x(x+2)(y+3)=2x5xxx(x+2)x(y+3)

Page 4: Factorisation

Method of common factors

• We write each term as a product of irreducible factors. Then take out the common factors of the terms and write the remaining factors to get the desired factor form.

• E.g. 5ab+10a (5xaxb)+(10xa) (5axb) + (5ax2) 5a( b+2 ) (desired factor form)

Page 5: Factorisation

Factorisation by regrouping terms

• Regrouping is re-arranging the terms with common terms.

e.g. 1) a2 + ab + 8a + 8b a(a+b) + 8(a+b) (a+b) (a+8)

2) 15ab – 6a + 5b – 2 3a(5b-2) + 1(5b-2) (3a+1) (5b-2)

Page 6: Factorisation

Let us solve some examples

Page 7: Factorisation

5m2n – 15mn2

5mn ( m -3n)

5 x m x n x(m-3n)

Page 8: Factorisation

Factorise a2bc + ab2c + abc2

Take the common factors abc ( a + b +c )

a x b x c x (a + b + c)

Page 9: Factorisation

Factorise 15pq + 15 + 9q + 25p

• Regrouping like terms to find common factors

15pq + 9q + 25p +15 3q ( 5p + 3 ) + 5 ( 5p + 3 ) (3q + 5) (5p + 3)

Page 10: Factorisation

Factorisation using identities

• Observe the expression.

• If it has a form that fits the right hand side of one of the identities , then the expression corresponding to the left hand side of the identity gives the desired factorisation.

• (a+b)2 = a2+2ab+b2

• (a-b)2 = a2 -2ab+b2

• (a2-b2) = (a+b)(a-b)

Page 11: Factorisation

Few examples

• 1) p2 + 8p + 16 It is in the form of the identity a2+2ab+b2

therefore p2 + 2 (p) (4) + 42

Since a2 + 2ab +b2 = (a+b)2

By comparison

p2 + 8p + 16 = ( p + 4)2

( required factorisation )

Page 12: Factorisation

Factorise

• 49p2 – 36

(7p)2 – (6)2

(7p+6) (7p-6)

•a2 – 2ab +b2 – c2

(a-b)2 – c2

(a-b-c) (a-b+c)

Page 13: Factorisation

Factors of the form (x+a)(x+b)

• In general , for factorising an algebraic expression of the type x2+px+q , we find two factors a and b of q (i.e. the constant term) such that

ab = q

a+b = p

Page 14: Factorisation

4 2 2 4

2 2 2 2 2 2

2 2 2

2

( ) 2 ( )

( )

a a b b

a a b b

a b

Page 15: Factorisation

2

2

2

2

4 8 4

4( 2 1)

4( 1)

4[ ( 1) 1( 1)]

4( 1)( 1)

4( 1)

x x

x x

x x x

x x x

x x

x

Page 16: Factorisation

2

2

6 8

4 2 8

( 4) 2( 4)

( 2)( 4)

p p

p p p

p p p

p p

Page 17: Factorisation

2

2

10 21

7 3 21

( 7) 3( 7)

( 7)( 3)

a a

a a a

a a a

a a

Page 18: Factorisation

Division of algebraic expressions

• Division of monomial by another monomial

• Division of polynomial by a monomial

• Division of polynomial by polynomial

Page 19: Factorisation

Division of monomial by another monomial

36 2x x

Now let us write the irreducible factor forms

3

3

2

3 2

6 2 3

2 2

6 2 (3 )

(2 ) (3 )

6 2 3

x x x x

x x

x x x x

x x

x x x

Page 20: Factorisation

Division of polynomial by a monomial

2(5 6 ) 3

(5 6)

3(5 6)

3

x x x

x x

xx

Page 21: Factorisation

3 2

2

2

( 2 3 ) 2

( 2 3)

2

( 2 3)

2

x x x x

x x x

x

x x

Page 22: Factorisation

Division of polynomial by polynomial

2

2

( 7 10) ( 5)

( 5 2 10)

( 5)

[ ( 5) 2( 5)]

( 5)

( 5)( 2)

( 5)

( 2)

y y y

y y y

y

y y y

y

y y

y

y

Page 23: Factorisation

2

2

( 14 32) ( 2)

( 16 2 32)

( 2)

[ ( 16) 2( 16)]

( 2)

( 16)( 2)

( 2)

( 16)

m m m

m m m

m

m m m

m

m m

m

m

Page 24: Factorisation
Page 25: Factorisation