F100 - Key Facts v2

125
Fokker 100 Key Facts © Nicolas Mollet v2 - Sept 2006

Transcript of F100 - Key Facts v2

Page 1: F100 - Key Facts v2

Fokker 100

Key Facts

© Nicolas Mollet v2 - Sept 2006

Page 2: F100 - Key Facts v2

INTENTIONALLY LEFT BLANK

Page 3: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-3-

Table of contents

TABLE OF CONTENTS....................................................................................... 3

1 INTRODUCTION .......................................................................................... 7

2 AIRCRAFT GENERAL ................................................................................. 9

3 FLIGHT WARNING SYSTEM......................................................................15

4 EMERGENCY EQUIPMENT........................................................................17

5 AUXILIARY POWER UNIT..........................................................................21

6 ELECTRICAL SYSTEM...............................................................................25

7 FUEL SYSTEM............................................................................................31

8 POWER PLANT ..........................................................................................35

9 FIRE PROTECTION ....................................................................................47

9.1 Engine ............................................................................................................................................ 47

9.2 APU................................................................................................................................................ 49

9.3 Cargo and toilet compartments................................................................................................... 50

10 BLEED-AIR SYSTEM ..............................................................................51

11 AIR CONDITIONING / PRESSURIZATION .............................................55

12 ICE AND RAIN PROTECTION ................................................................63

13 HYDRAULIC SYSTEM.............................................................................67

14 LANDING GEAR......................................................................................71

14.1 Landing gear operation................................................................................................................ 71

14.2 Nose-wheel steering ...................................................................................................................... 72

Page 4: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-4-

14.3 Brake control system.................................................................................................................... 74

14.4 Proximity switching / ground-flight control ............................................................................... 76

15 FLIGHT CONTROLS ...............................................................................77

15.1 Primary flight controls................................................................................................................. 77

15.2 Secondary flight controls ............................................................................................................. 81

15.3 Stall prevention system ................................................................................................................ 84

15.4 Take-off configuration warning .................................................................................................. 85

16 FLIGHT / NAVIGATION DATA SYSTEMS..............................................86

16.1 Air data system ............................................................................................................................. 86

16.2 Attitude and heading system........................................................................................................ 87

16.3 Weather radar .............................................................................................................................. 89

16.4 VOR / DME / marker beacon / ILS ............................................................................................ 91

16.5 ADF................................................................................................................................................ 92

16.6 ATC transponder / TCAS............................................................................................................ 93

16.7 Radio Altimeter ............................................................................................................................ 96

16.8 Flight Data Recording .................................................................................................................. 97

17 FLIGHT / NAVIGATION INSTRUMENTS ................................................98

17.1 Electronic Flight Instrument System .......................................................................................... 98

17.2 Secondary & standby instruments ............................................................................................ 100

17.3 Ground Proximity Warning System ......................................................................................... 102

17.4 Avionics Cooling System............................................................................................................ 105

18 FLIGHT CONTROL & AUGMENTATION SYSTEM ..............................106

18.1 General ........................................................................................................................................ 106

18.2 Automatic Flight Control System.............................................................................................. 107

18.3 Autothrottle system .................................................................................................................... 110

18.4 Flight envelope protection.......................................................................................................... 111

Page 5: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-5-

18.5 Flight mode annunciation .......................................................................................................... 114

18.6 Flight augmentation system....................................................................................................... 115

18.7 Wind shear detection & recovery.............................................................................................. 117

19 COMMUNICATION ................................................................................118

19.1 General ........................................................................................................................................ 118

19.2 Cockpit Voice Recorder (CVR)................................................................................................. 121

20 LIMITATIONS ........................................................................................122

20.1 General limitations ..................................................................................................................... 122

20.2 Weight limitations ...................................................................................................................... 122

20.3 Speed limitations......................................................................................................................... 122

20.4 Weather limitations .................................................................................................................... 123

20.5 Powerplant & APU limitations.................................................................................................. 123

20.6 Fuel system limitations............................................................................................................... 123

20.7 AFCAS limitations...................................................................................................................... 123

20.8 Navigations limitations............................................................................................................... 124

20.9 Miscellaneous .............................................................................................................................. 125

Page 6: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-6-

INTENTIONALLY LEFT BLANK

Page 7: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-7-

1 Introduction

This document has been based on personal notes during computer based training and

classroom sessions, experiences shared by instructors and the Aircraft Operating Manual

itself which has been used as backbone for this writing. Its purpose was not to present a

complete writing about the different subjects; it only contains key facts, enrichments and

some further explanation by the diagrams.

This is not an official document meaning that nothing of its contents may be used as

training purpose. In that case, please only refer to an official publication.

No further distribution is allowed as this manual contains copyright-protected material

such as diagrams from the F100 A.O.M.

Enjoy!

Page 8: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-8-

INTENTIONALLY LEFT BLANK

Page 9: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-9-

2 Aircraft general

(± 60 pulses/min)

2 NAV-lights + 1 strobe per unit.

Only 1 NAV-light will be illuminated

when NAV-light is OFF and towing switch

activated.

Figure 2-1: Exterior lighting of the Fokker 100

Page 10: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-10-

Figure 2-2: Exterior lights panel

- Maximum pavement width for a 180° turn is 22,2 m.

- The door is properly locked when the inboard door lock handle is pointing in the

direction of flight.

- An indicator at the top left side of the door shows the door status:

Green indicates locked

Red indicates open

- Mechanically connected to the locking mechanism is a vent flap; when the door is

locked, the flap is closed. The flap will dump the cabin pressure when the door is

unlatched.

- In battery only conditions, the electrical lock of the flight deck door is removed

and the door can be opened from both sides. In this case the door can be locked

with the lock pin. There are 2 parts in the flight deck door. At the flight deck

side, the lower part of the door can be kicked out after the turn knob (under the

doorknob) is removed. The spring plate will drop and the panel can then be

removed.

- In the event of an engine failure, all extended landing/taxi lights will retract

automatically except when the landing gear is down.

- Front and slide windows are electrically heated, side windows are demisted.

- There are 34 windows on the left-hand side and 33 on the right-hand side. The

cabin windows are a Perspex laminate and consist of inner and outer panels.

- There are 5 maintenance access hatches:

• 2 x avionics compartment

• 3 x airco + space beneath flight deck floor

- Cabin layout:

• A total of 100 seats

• 20 seat rows:

o Two on the left side (A, C) of the aisle

o Three on the right side (D, E, F) of the aisle

• The rows are numbered row 1 - 12 and 14 - 21, excluding row 13

• Rows 12 and 14 have self – help emergency exits

Page 11: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-11-

- Seat restrictions:

• < 30 passengers:

symmetrically about row 8; rows aft of row 16 are not used.

• 31-50 passengers:

symmetrically about row 10; rows aft of row 20 are not used.

• >50 passengers:

symmetrically about row 12; all seats are available.

- Overhead stowage compartments are fitted along the length of each side of the

cabin and are stressed to contain 85 kg of luggage each, with the exception of one

small compartment at row 1 (right side) which will take about 20 kg.

- Area call lights are located forward and aft in the cabin ceiling:

• A red light indicates a call from an attendant station

• A blue light indicates a passenger call

• A left or right amber light indicates a call from the left or right hand

toilet

• A green light indicates a cockpit call

Page 12: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-12-

Figure 2-3: Cabin & Ground call p/b

- The F100 is fitted with an audible warning inhibit function below 400 feet. Any

attempt to contact the flight crew over the interphone will result in the call button

illuminating but the audible warning being inhibited.

- Emergency lighting:

Figure 2-4: Location of the emergency lighting

• Exit lights:

- Above the doors, above escape hatches, in the front of the cabin,

and in the passenger compartment aisle.

- ON when landing gear down and when the emergency lights are in

armed position.

• Standby lights:

- In the passenger entrance, in the passenger compartment aisle, and

in the aft cabin area, toilet compartment.

- ON in battery only conditions, except in the toilet compartment

(Standby lights in the toilet compartment are continuously on).

(When the aircraft is on the ground and no external power is available, the

batteries can be switched on so that the standby lights will be illuminated from

the aircraft batteries.)

Page 13: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-13-

• Emergency lights:

- Emergency lights are installed in the following locations:

o 1 in the flight deck

o 1 in the entrance

o 6 in the cabin

o 1 in each toilet compartment

o In the exit signs

o 3 on each side of the fuselage on the exterior

o Extra exit signs under the escape hatches and at the lower

side of the doors

o Floor proximity path markings on the right hand side of the

aisle

- ON automatically when generator power is not available, provided

the guarded emergency lights switch is in the armed position.

- With batteries fully loaded, the lights can illuminate for 30 minutes.

Page 14: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-14-

‘NOT ARMED’ if selector in ON or OFF position

Figure 2-5: Emergency light switch

Page 15: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-15-

3 Flight Warning System

- Two LEVEL 3-alerts cannot be cancelled by depressing either MWL:

• the LG-not-down alert:

o LG not down

o Radio altitude < 1000 ft

o Flaps > 23° OR thrust below MIN TO

• take-off configuration alert

- Alert messages:

• a maximum of 11 alert messages can be displayed

• LEVEL 3 in red, LEVEL 2 in amber

• on LH MFDU

• in descending order of priority

• the last incoming is indicated by a pointer

- If LH MFDU fails, the information is automatically displayed on the RH MFDU.

Secondary page information can be visualized with the XFR p/b except when red

alert messages are displayed.

- If more than 11 alert messages exist, it will be indicated by a ‘PAGE 1’:

• Use ‘CANCEL’-button to remove presented amber alert messages

• Alert message of page 2 will now be displayed

• ‘MSG CANCELLED’ will appear if these amber alert messages are also

cancelled.

• Restoring cancelled amber alert messages possible with recall button

(Remark: No red alert messages can be removed)

- FWC generated alerts (in order of descending priority):

1. Cavalry charge (with or without autoland caution lights)

2. Whooler

3. Clacker

4. Repetitive triple chime and MWL

5. Autoland caution lights (without cavalry charge)

6. ‘C’ chord

7. Double chime and MCL

8. Single chime

Page 16: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-16-

- Aural alerts generated by FWC (≠ SAP-generated aural alerts (cavalry charge and

clacker), GPWS) can be inhibited by depressing WARN AUDIO p/b.

Figure 3-1: Warn Audio p/b

- Warning computer inoperative:

• SAP automatically activated and only SAP alerts indicated

• SAP displays all LEVEL 3 alerts and some LEVEL 2 alerts

• ‘FAIL’ displayed on MFDU (provided by MFDS, not by FWC)

• Following alerts no more available:

o MWL, MCL, AUTOLAND caution light

o Overhead panel fault lights

o Aural alerts except AP disconnect (cavalry charge) and overspeed

(clacker)

• MFDS displays only engine indications

• AP, when off, cannot be engaged; when on, the AP remains engaged

• When thrust levers are below MIN TO position and the gear is up, the

SAP will show a red LG warning, independent of flight altitude.

Page 17: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-17-

4 Emergency equipment

- Crew oxygen mask:

• NORMAL (N): mixture of ambient air with oxygen on demand, dependant

on the cabin altitude

• 100%: supply of 100% oxygen on demand.

At 30 000 ft cabin altitude the flow in both modes will be 100%

• EMERGENCY: rotate to supply 100% oxygen continuous flow provided

NORMAL/100% lever is set to 100%

Oxygen is set to 100% position; this is used in all circumstances unless

decided otherwise by the FCM.

Figure 4-1: Oxygen mask

Page 18: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-18-

When mask is activated, the mask microphone becomes hot. Close container

doors and reset reset/test lever before regaining normal communication via

boom.

Table 1: Duration table of cockpit oxygen bottle

- Cabin oxygen system:

• Each passenger drop-out stowage holds a spare mask:

o the unit above the double seats contains three masks

o the unit above the triple seats contains four masks

o units located above all crew seats each contain three masks

o units in each toilet compartment contain three masks

• Drop-out at ± 14 000 ft or manually with MAN OVRD p/b

• non-smoking sign comes on at drop-out

• pulling mask starts oxygen flow for approx 12 min

Figure 4-2: Pax oxygen p/b

Page 19: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-19-

Figure 4-3: Emergency equipment location

Page 20: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-20-

- ELT:

• 121.5 Mhz for 72 hrs

• 243 Mhz for 72 hrs

• 406 Mhz for 24 hrs

Page 21: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-21-

5 Auxiliary power unit

- APU requires for operation:

• Fuel from LH collector tank

• DC electrical power

- When the combination of electrical and bleed-air loads exceeds the APU capacity,

bleed-air supply is decreased.

- In flight the APU shuts down automatically in case of:

• APU fire

• Overspeed

• Starting cycle > 90s

On the ground for any failure (e.g. fire, overspeed, low oil pressure, high oil

temperature, high exhaust gas temperature,…).

- All APU fault on the ground are level 2 + auto shutdown.

- Landing with an APU fault leads to an automatic shutdown 60s after touchdown.

- APU bleed should be switched off during aircraft de-icing.

- Unsuccessful start:

• Start selector to OFF before attempting another start

• Restarting inhibited till 30s after OFF selecting (= till RPM < 10% to

avoid damage), but wait 2 min for draining

• Not more than 3 consecutive APU starts allowed

- If no external power available, wait 70s before switching off the batteries after

APU shutdown.

- Air supplies through air intake door (on top fuselage). Door closed if APU off. If

APU on:

• 15° on the ground

• 10° in flight

- Air for oil cooling and ventilation ducted from inlet on fuselage: controlled with

ventilation (inlet) valve. Closed if:

• APU off

• APU fire

- Exhaust valve at RH side fuselage.

Page 22: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-22-

- Bleed air valve closed when airborne.

LH Collector tank Fuel fire shut-off valve

Bleed air valve

Fuel

Control

Unit APU

Oil Accessory

Cooling Exhaust

Fan valve

gearbox

AC

Gen

Fuel shut-off valve

Figure 5-1: Auxiliary power unit - schematic

- APU start sequence:

• Selector to ON

APU OFF

• After 3sec

APU OFF, DOORS TRAVEL

• Ventilation valve opens

• Air intake opens

APU OFF, READY TO START

• Pull and rotate start to START

APU START IN PROGRESS

• Fuel fire SOV opens

• Power supplied to starter motor

• At 10% RPM: fuel SOV opens and igniter energizes

• At 50% RPM: self sustaining

• At 94,5% RPM:

APU AVAILABLE

• After 2’: bleed air valve opens

Page 23: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-23-

- APU off:

• All air and fuel valves close

• 30sec time delay in start system

- Normal APU fuel flow is 1,44 kg/min or 86 kg/h (AOM 9.02.01 p2)

Figure 5-2: APU start switch

Page 24: F100 - Key Facts v2

INTENTIONALLY LEFT BLANK

Page 25: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-25-

6 Electrical system

- 115 V / 400 Hz three-phase AC power and 28 V DC power electrical system.

- Batteries supply the DC ground handling bus, provided AC and DC external

power are not available.

- As long as the batteries are the only electrical sources, a red AC SUPPLY light on

the SAP is on.

- Total loss of emergency power may occur after 30 minutes.

- When AC external power is connected and within limits, the AVAIL light in the

external power p/b is on and the AC ground service bus is energized.

- Table of priorities:

Automatic AC bus transfer system

Priority AC BUS 1 ESS AC

BUS

EMER AC

BUS

AC BUS 2 AC GND

SERV BUS

1 GEN 1 GEN 1 ESS AC BUS GEN 2 AC BUS 2

2 EXT PWR GEN 2 EMER INV EXT PWR EXT PWR

3 APU GEN APU GEN - APU GEN -

4 GEN 2 EXT PWR - GEN 1 -

DC bus transfer system

Priority DC

BUS 1

BAT

BUS 1

ESS DC

BUS

EMER

DC BUS

BAT

BUS 2

DC

BUS 2

DC GND

SERV

BUS

1 TRU 1 BAT 1 ESS TRU ESS TRU BAT2 TRU 2 DC EXT

PWR

2 TRU 2* - DC BUS 1 DC BUS 1 - TRU 1* GND

SERV TRU

3 - - - BATs - - -

(*) manual operation (DC X-TIE)

Table 2: AC and DC priority table

Page 26: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-26-

- ESS + EMER PWR ONLY:

• power from AC bus 1 and 2 removed

• essential + emergency AC bus remain energized

- In flight during single generator operation, the galley busses are automatically de-

energized.

- Dual DC Bus provides uninterrupted power source in the event of DC Bus 1 or 2

failure during landing for:

• lift dumpers

• anti-skid

• speed brake

- DC Ground Handling Bus supplies power to:

• fuelling panel

• towing

• hydraulic service panel

• engine starter valve

- LOAD is expressed in (%); except for BAT where is mentioned in AMP.

Page 27: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-27-

Figure 6-1: Electrical panel

Page 28: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-28-

Figure 6-2: AC electrical system

Page 29: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-29-

Figure 6-3: DC electrical system

Page 30: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-30-

INTENTIONALLY LEFT BLANK

Page 31: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-31-

7 Fuel system

- The center tank and each wing tank contain 2 electrically driven fuel pumps.

- Wing tank = 4 sections = 3 outboard sections + 1 collector tank.

- Fuel from the center tank is transferred to the wing tanks. When the collector

tank is full, the excess fuel flows into the outer tank.

- With 1 pump operating in the center tank, a normally closed transfer valve will

open to allow fuel transfer from the operating pump to both collector tanks.

FAULT in ����

pump p/b � LoP

Figure 7-1: Fuel system

Page 32: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-32-

- Automatic fuel transfer from center tank to collector tank is possible:

AUTO FEED p/b blank + either center tank pump is ON

AND

Engine fuel flow > 1135 kg/hr

AND/OR

Fuel quantity of both wing tanks below a predetermined value

- AUTO FEED MAN = fuel transfer to collector tank as soon as a center tank pump

is switched ON.

Note:

We can select CTR TK fuel pumps on before departure when operating in

AUTOFEED. Even with full wing tanks. CTR TK pumps will only start operating

when the fuel level in the wing tanks is below a predetermined level. So no fuel will

be pumped overboard.

- Each pump in the collector tank has sufficient capacity to supply one engine in all

thrust conditions or both engines in climb and cruise conditions.

- Fuel asymmetry alert if �> 350 kg and disappears if �< 250 kg.

Page 33: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-33-

- Indication in case of a pulled fire shut-off valve:

Figure 7-2: System shut-off indicator

- Pump L1 or R1 inop: 14 kg unusable fuel

- Pump L2 or R2 inop: 120 kg unusable fuel

- Fuel is measured with:

• 10 capacitive-type probes / wing tank

• 2 capacitive-type probes in center tank

- Main tanks, collector tanks & center tank incorporate:

• Water drain

• Ventilation vents at outbound flap track fairings

- 1 wing tank = 4 sections:

• 3 main tanks

• 1 collector tank

- 18 jet-pumps maintain maximum collector tank level.

- Flapper valves provide gravity feed if the jet-pumps fail. Level in the collector

tank will be equal to that of the main tanks.

- LEVEL 1 alert if collector tank < 600 kg.

- When the fuel quantity drops < 100 kg, LO + numerals (flashing) will be shown

on the corresponding fuel quantity display.

- Digital fuel quantity indicator receives information from CPT (= Combined

Processor Totalizer).

Page 34: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-34-

Figure 7-3: Fuel panel

Page 35: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-35-

8 Power plant

- Twin spool, bypass turbofan engines:

Figure 8-1: Rolls Royce Tay twin spool, bypass turbofan engine

LP-spool 1-3-3 N1 (LP rpm)

Single-stage fan, three-stage Intermediate Pressure (IP) compressor, three-stage LP turbine

Figure 8-2: Low speed gearbox

Page 36: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-36-

HP-spool 12-2 N2 (HP rpm)

Twelve-sage HP compressor, two-stage turbine

Figure 8-3: High speed gearbox

- The LP shaft passes through the HP shaft.

- Fan output: ¼ is directed to the engine core, ¾ is bypassed.

- The engine is started by an air starter motor which drives the HP shaft via the high

speed gearbox.

- 10 combustion chamber, 2 igniter plugs (chamber 4 & 8).

- 2 bleed air tappings on HP compressor.

Page 37: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-37-

- Self-contained oil system:

Oil which is too thick (cold)

passes the by-pass valve

Oil pump Engine and IDG oil Filter Engine bearings

cooler

� and

Single pressure Temp. bulb

Pump driven by high (info to FWC + MFDS) gear boxes

speed gear box

� Oil-fuel cooler

Scavenge

Pumps

Filters

Oil �

Tank de-aerator chip detector

Figure 8-4: Self contained oil system

Starting:

- Supply:

• pneumatic power

• electrical power (AC power or batteries)

- Air can be supplied to starter motor when the electrically operated starter valve is

open =

� system electrically armed via START p/b

� engine selector operated

- If fuel lever opened:

• Fuel shut-off valve opens � fuel to nozzles

• Igniter activated

Page 38: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-38-

- At 43% N2: starter cut-out:

• starter valve closes (if not: alert)

• ignition de-activated

- Upon moving the start selector, the air conditioning packs are shut-off and the

output of hydraulic and pneumatic power from the respective engine is inhibited.

During engine start with battery power only, hydraulic and pneumatic power

inhibit, and automatic air conditioning shut-off is not provided.

- Start sequence:

1. Ignition switch in NORMAL

2. START p/b ON (electrical power is available on the start system)

3. Start selector 1 or 2. This will open the starter valve (= air entering from

APU, EXT or other engine to starter motor)

4. HP spool starts rotating

5. At min 15% N2, select fuel lever open (= fuel + ignition)

6. At 43% N2: starter valve shuts (red & amber limit jump on TGT)

7. After starting both engines: START p/b OFF

HP shaft

High Speed

Gearbox

APU

EXT Air Starter

Motor

Control Valve

Other engine single stage turbine

Figure 8-5: Starter system

Page 39: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-39-

- Ignition:

43% N2

Figure 8-6: Ignition system

Page 40: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-40-

NORM igniter plug 1 activated during start when FUEL

lever opened; de-activated at starter cut-out

EMER DC BUS

CONT 1

ESS DC BUS

CONT 2

continuous ignition of selected plug

EMER DC BUS

ESS DC BUS

RELIGHT

continuous ignition of both igniter plugs

Table 3: Ignition system

Figure 8-7: Engine start panel

- FAULT in engine START p/b: starter valve not closed after engine start.

- The fuel system is a mechanical all-speed governing system which controls fuel

flow automatically to maintain a selected N2.

- To reduce engine acceleration time from idle to go-around, thrust idle N2 is

increased to 70% when the landing gear is lowered (approach idle). Normal (low)

idle is regained five seconds after touchdown.

- When the flight control lock is on, forward thrust lever movement is limited to

approx 80 % N2.

- MAN EPR: if both AT channels fail or if both AT p/b’s are manually selected off,

an EPR target (for pilot reference) can be set manually.

Page 41: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-41-

Pressure differential

switch

- TLA

- N2

- HP compressor inlet & outlet pressures

Figure 8-8: Engine fuel system

Page 42: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-42-

- N1 governer:

F

U

E

L

FUEL �

Nozzle

N1 turns the governer. In case of N1 overspeed; fuel is inhibited

Figure 8-9: N1 Governer

Figure 8-10: Reverse thrust lever

Page 43: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-43-

- EMUX/EFSU (Engine Multiplexer / Engine Failure Sensing Unit)

N2 < 43%

OR EMUX ‘Engine Out’

GLC (Generator Line Contactor) open

� L & R N1 > 30%

AND

Drop N1 > 50 RPS EFSU ‘Engine Fail’ (rapid detection of thrust loss)

AND

Both TLA ≥ MIN TO

- Engine indications:

• Wedges: Maximum EPR for selected thrust rating. Wedge is not

presented during manual control of EPR target.

• Lazy T: EPR target:

� Blue: automatically controlled (not in descent or in AFCAS)

� White: manually controlled.

• Oil Quantity is displayed from 15 min after both engines out till START

p/b has been depressed.

• Fuel Used is set to zero when on the ground the START p/b is depressed

OR when secondary page MFDU is turned OFF and ON on the ground.

- When an engine has to be shut down, depress either AT disconnect button before

retarding the thrust lever. When the engine has been shut down, ATS can be re-

engaged after positioning the thrust lever of the inoperative engine adjacent to the

thrust lever of the live engine.

Page 44: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-44-

- The max range speed for engines out is the green dot speed. The green dot speed

increases with weight and/or altitude and is equal to VFTO and above 15000 ft

increased by 2 kt/1000 ft.

- For the max range speed the still air descent distance (engines out) is approx 3 nm

for each 1000 ft altitude lost.

- With the VIB p/b set to ALTN a subsequent high vibration will only be indicated

by a single chime and the MFDS, the VIB HI light on the overhead ENGINE

panel will not come on.

- If TGT start limit (740° C) has not been exceeded, a second start may be

attempted. Normal use of the starter is limited to 4 attempts with a maximum of 2

minutes per attempt. Observe 30 seconds rundown time between each attempt.

After 4 attempts delay use of the starter for at least 15 minutes.

- Light-up should normally occur within 5 to 10 seconds after selecting the fuel

lever to OPEN.

- APU bleed air pressure required for engine starting: 25 – 35 PSI at sea level.

Page 45: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-45-

- In case of a high TGT during start, shut the fuel lever and select START p/b OFF

after 30 seconds.

- In case an engine fails during take-off in PROF, MCT is set automatically via

ATS upon reaching the single-engine climb speed.

- Above FL250: CLB EPR = MCT EPR.

- Icing conditions are present when visible moisture is present, such as clouds or

fog with low visibility, rain, snow, sleet, ice crystals or with standing water, ice or

snow present on the ground and when:

OAT (TAT) is below +6° C down to and including -25° C on the ground (in

flight)

- Bleed air requirement for starting:

• External air: 30 – 50 PSI

• Cross bleed starting: advance thrust lever till approx 30 PSI

Page 46: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-46-

INTENTIONALLY LEFT BLANK

Page 47: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-47-

9 Fire protection

9.1 Engine

- Dual sensing element loops. Both loops must report a fire condition to the FWC

before triggering an alert.

- 2 extinguisher bottles behind rear pressure bulkhead:

• Bromo-trifluro-methane gas

• Nitrogen as propellant

- Rupture disc: fracture in the event of overpressure.

- Electrically detonated cartridges to let detonate rupture disc to fire the bottle.

- If a predetermined temperature is reached, a fire warning is presented.

- Pulling a fire handle closes:

• The respective fire shut-off valves in the fuel system

• The respective fire shut-off valves in the hydraulic system

• Over Pressure and Shut-Off Valve (OP/SOV) in the bleed-air system

- When pulling the handle, check ‘Agent Low Pressure’ on. Also ON when rupture

disc is broken due to e.g. overpressure (caused by e.g. high ambient

temperatures).

- During fire warning test, the white fuel lever warning light will not come on if in

SHUT position.

- In case of a faulty loop; fire detection will be inoperative as long as faulty loop

has not been switched OFF manually.

Figure 9-1: Engine fire panel

Page 48: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-48-

Engine Fire Panels

(red light in handels)

Flight Deck FWC MFDS

Alert

Fuel levers

(white light)

SENSOR

ELEMENTS FDCU � Fire Detection

Control Unit (aft avionics bay)

� Temperature sensitive material

If T � � R �

Figure 9-2: Engine fire detection

Figure 9-3: Test panel: engine & APU fire test

Page 49: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-49-

9.2 APU

- Single sensing element loop.

- Fire shut-off valve in the fuel system closes automatically and APU shuts down.

- If the aircraft is on the ground a warning horn, located in the nose wheel well,

sounds also (inhibited during APU fire test).

- Bottle discharged 5 seconds after the warning in order to close the APU inlet door

and vent valve.

Figure 9-4: APU fire panel

Page 50: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-50-

9.3 Cargo and toilet compartments

- Both incorporate a smoke detection and a fire-extinguishing system.

- Fwd and aft cargo compartment each have dual smoke detectors.

- Toilet compartments each have a single (hidden) smoke detector.

The call that is suggested for use by the FCM is (twice):

“Attention cabin crew, check right/left toilet”

“Attention cabin crew, check right/left toilet”

- Two extinguisher bottles are installed for the fwd and aft cargo compartment:

• Agent 1: high rate discharge bottle

• Agent 2: low rate discharge bottle

- Selecting DISCH 1 causes immediate total discharge of agent 1 into the selected

compartment. Simultaneously agent 2 is discharged into the selected

compartment at a reduce flow rate to maintain a minimum extinguishing agent

concentration.

Selecting DISCH 2 will discharge the same agent 1 and agent 2, however the

power supplies for discharging are interchanged for redundancy.

The agent 1 low pressure light (LO1) comes on within seconds after selecting

DISCH 1 or DISCH 2 and the agent 2 low pressure light (LO2) remains off for

approx 60 min due to the reduced flow rate.

- One fire-extinguisher bottle is installed in the waste container area in each toilet

compartment. If there is a fire in the waste container, the agent will discharge

automatically into the waste container.

Figure 9-5: Cargo smoke panel

Page 51: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-51-

10 Bleed-air system

TAIL

Single walled ANTI-ICE

duct - incorporating check valve

See GND SRV + bleed valve - connected to source 2

SO and modulating valve X

ENG 1 MANIFOLD ENG 2

APU GND SRV

ENG 1 STARTING ENG 2 STARTING

ENG 1 ANTI-ICE ENG 2 ANTI-ICE

SO and regulating valves

AIR COND WING WATER HYDRAULIC

& ANTI-ICE RESERVOIR RESERVOIR

PRESS

Pack valves SO and modulating valves

Double walled duct

(additional protection in

pressurized areas)

Figure 10-1: General bleed air distribution

- LP bleed is used in any flight condition except idling. During idling, the HP

bleed valve opens fully to supply pressure while the LP valve is closed.

- At take-off when thrust increases; HP bleed valve closes.

- Any anti-icing system ON: activation of the temperature modulating function of

the HP bleed valve to admit HP bleed-air to the LP bleed flow that the required

temperature is maintained.

Page 52: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-52-

Inhibition:

• 60 seconds after TOGA selection

• Continuously when either thrust lever is selected to maximum take-off

position

- Conclusion:

HP valve open:

During idling (N2 range up to 80%)

Anti-ice ON

- PR/SOV:

• Pressure Regulating and Shut-Off Valve

• Will limit downstream pressure

• Controls 55 ± 5 PSI

• Controlled by bleed p/b

- OP/SOV:

• Over Pressure and Shut-Off Valve

• Will limit downstream pressure in case of a failure of the OP/SOV

• Closes if pressure > 70 ± 2.5 PSI

• Closes if fire handle is pulled

- Overheat:

• closes respective HP bleed

• closes respective PR/SOV

• Level 1 – alert: Bleed 1(2) remark: OP/SOV remains open to provide bleed-air from the other engine anti-icing

- Leakage:

• closes respective HP bleed

• closes respective PR/SOV

• closes respective OP/SOV

• Level 1 – alert: Bleed 1(2) duct leak remark: Engine anti-icing on the affected side will be inoperative although airframe anti-icing

remains available.

- Temperature in the common duct (where it is measured) will be maintained at

250° C.

Page 53: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-53-

12

th stage 7th

stage

���� to prevent reverse flow

To control

temperature

250° ± 15° C

Page 54: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-54-

Figure 10-2 (previous page): Bleed air system

- On the ground APU supplies air to both engine starters if both:

• APU bleed valve open

• OP/SOV open

- APU delivers air as long as pressure is greater than 12th stage. Increasing thrust

lever decreases APU supply.

- A single bleed system will meet all bleed-air demands.

- Bleed air pressure:

• Normal operating range: 15 – 49 PSI

• Recommended minimum for engine start: 25 PSI

Page 55: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-55-

11 Air conditioning / pressurization

- The airflows from pack 1, servicing the flight deck, and pack 2, servicing the

cabin, pass into a manifold. The excess airflow from the flight deck system

supplements the cabin airflow.

PACK 2

Cabin (70 %)

Flight Deck (30 %)

PACK 1

- Pack valve is open when relevant p/b is blank + following conditions are met:

• Bleed-air pressure > 10 PSI

• No pack overheat condition

• No Auto Shut-off has occurred

� - During engine start (except in battery power only)

- When both thrust reversers are unlocked

- Engine failure detected during take-off or in flight

at altitudes below 13 500 ft and a thrust lever

setting above MIN TO is selected (*). Ventilation

now by recirculation fans

(*) Auto shut-off function due to engine failure can be manually deactivated with the Air

Conditioning Auto Shut p/b.

- Flow control:

• Normal flow:

• Economy flow:

o Manual selection (with ECON p/b):

- Both pack valves must be open

- Automatically controlled cabin temperature is within a preset

range from the selected temperature

Page 56: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-56-

o Automatic selection

- During take-off, normal flow is restored approx one minute

after lift-off

- When TOGA is activated the economy flow is maintained for

60 seconds

- Inhibited when both temperature control p/b’s are in manual

mode.

- If an engine fails/shut down above 13 500 ft with thrust lever

> MIN TO

- As long as max T/O thrust is selected

• Augmented flow:

Only available when one pack is manually switched OFF. The

remaining pack valve will open fully.

- Example of a normal sequence:

• APU Ops: normal (or ECON if selected)

• Engine start: Auto Shut-OFF, then back to normal (or ECON if selected)

• MIN TO pos: ECON

• 1’ after lift-off: back to normal (or ECON if selected)

• Thrust reverse: Auto Shut-OFF till reversers are stowed

• Engine failure:

< 13 500 ft: thrust > MIN TO Auto Shut-OFF

> 13 500 ft: thrust > MIN TO ECON

Figure 11-1: Airconditioning auto shut & ram air p/b

- LP conditioned air ground connection at forward right section of the aircraft

Page 57: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-57-

NORM ECON

Augmented mode

AUGM

CLSD

Pre-cooling fan (ram air)

+

Air cycle machine

LP

Conditioned air

� Right fwd side of a/c

Only pack 2 intake has

a RAM AIR connection

Figure 11-2: Airconditioning system

Page 58: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-58-

- In AUTO the control valves are automatically modulated to obtain the selected

temperature. In MAN the selector knob directly controls the valve position.

There is no temperature control, so the pilot has to monitor the temperature and

adjust the control knob as necessary.

Remark: There is no indication of a failure of the AUTO-mode. Only a too

high/low temperature.

- ECON:

• Reduces APU fuel consumption + APU TGT

• Reduces fuel consumption in flight by ± 0.5 %

Figure 11-3: Aircondtioning panel

Page 59: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-59-

- Protections:

• Automatic:

. The controller limits the differential pressure to 7.46 PSI

. A cabin altitude of 8000 ft can be maintained at 35 000 ft.

• Manual:

. The outflow valves limit the max differential pressure to 7.65 PSI

. Altitude limiting is provided at 13 500 ± 1500 ft.

. The cabin alt limiter will close both outflow valves.

- Excessive cabin altitude warning at 10 000 ft.

- 2 outflow valves; primary valve is controlled by pressurization controllers while

secondary is controlled by the primary.

- 2 inward pressure relief valves prevent negative cabin pressure.

- Dual channel pressurization controller of which one active and one inactive.

Alternated:

• After each landing

• After each power interruption

• Manually by pressing PRESS CONTROL p/b twice

• Should the active channel fail

Figure 11-4: Pressurization control p/b

Page 60: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-60-

- Regulated maximum rate of cabin pressure change:

• Aligned with datum: maximum 500 FPM in climb and 300

FPM in descent

• Fully INCR: maximum 2500 FPM in climb and 1575 FPM in

descent

• Fully DECR: no change, 0 rate

Figure 11-5: Cabin pressurization panel

Page 61: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-61-

- Operation:

1. Select land altitude (cabin altitude will now be established for different

flight phases)

2. Door closed + engines running: airport elev. – 70 ft

3. Thrust levers forward: airport elev. – 200 ft

In case of RTO

4. Cabin climbs to airport elevation – 70 ft in 20 seconds

5. Cabin depressurizes 1 minute later

Normal TO

If destination elevation > departure elevation

4. Cabin climbs at selected rate to the selected (land) altitude

5. Maintains this cabin altitude till climb schedule is intercepted

6. Climbs according to climb schedule

If destination elevation < departure elevation

4. Cabin descends to selected (land) altitude at dwell rate (= ½ of the selected

rate; e.g. 150 FPM if rate selector is neutral)

5. --

6. At selected altitude: cabin climbs according to climb schedule

In case of aborted flight (return to base)

7. Cabin altitude returns to departure airport altitude if aircraft loses 1000 ft

• Within 10’ after take-off

OR

• Before aircraft reaches 6000 ft

Page 62: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-62-

Normal cruise

8. When the aircraft reaches cruise altitude, cabin reaches cruise altitude

(according to schedule) and remains steady for 10 minutes.

9. After 10 minutes cabin descends towards destination airport altitude:

• limited by max diff. pressure � stabilizes at this altitude

Once aircraft starts descent, the cabin descents according to the

descent schedule (differential pressure and cabin altitude

decreases).

Rate of cabin altitude change is determined by pressurization

controller with a maximum of 300 FPM if rate selector is in

neutral

OR

• selected altitude is reached

10. Touchdown: cabin altitude = airport elevation – 200 ft

11. Within 1 minute: airport elevation – 70 ft

12. Thereafter: cabin depressurized

- Avionics compartment, main instrument panel, glare shield and pedestal are

cooled by the avionics cooling system:

• 3 blower fans

• 3 suction fans

• 1 emergency cooling fan

- The EFIS emergency cooling fan will automatically be activated in case of:

• an inoperative avionics cooling

• when operating on battery power only

Page 63: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-63-

12 Ice and rain protection Inhibited:

- till 60s after lift-off

- till 60s after TOGA selection

- continuously while either T/L in max TO POS

FAULT in p/b LO CPTY (*) LO CPTY (*)

Nacelle L/E Leading edge

horizontal

(Flexible tip) Leading edge stabilizer

= wing bay overheat

or

duct overpressure FAULT

in �

p/b

(*) No local lights, only MFDU message

Page 64: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-64-

Figure 12-1 (previous page): Engine and airframe anti-ice system

- Airframe anti-icing is not available on the ground but can be pre-set.

- Tail and/or Wing LO CPTY can be caused by a low bleed-air pressure.

Increasing thrust may correct the situation.

- Static ports heated in combination with pitot heads.

- In battery-power-only condition only pitot head 1 is heated.

- Level 1alert when:

• Pitot heat system is OFF AND

• Aircraft on the ground AND

• PARK BRAKE released AND

• Engines running AND

Page 65: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-65-

This alert in only available from engine start till T/O-power. This allows

switching of pitot heat during taxi-in.

- In case of a PITOT 1 (2) FAULT, switch on the other AP, switch ADC and FCC

to ALTN and select AT and STAB TRIM switches on FAC of the affected side

OFF.

In flight, icing conditions are present when TAT is below +6° C down to and

including -25° C and visible moisture is present

- In case of late engine anti-ice system activation, select RELIGHT ignition prior to

wing anti-icing activation.

- Level 1 alert triggered as soon as ice deposit on ice detector reaches 0.5 mm.

Figure 12-2: Engine & Airframe Anti-ice System p/ b

Page 66: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-66-

INTENTIONALLY LEFT BLANK

Page 67: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-67-

13 Hydraulic system

1 2

LH Aileron RH Aileron

Rudder

Elevator

Stabilizer

Priority Valve Speed brake Normal braking

Thrust reversers system

Landing gear

Nose-wheel steering

Alternate braking (incl. parking brake)

Flaps

Lift dumpers

Figure 13-1: Basic hydraulic system

- To equalize the fluid level in the tanks on the ground a transfer system is installed.

In the fluid transfer line a transfer valve is installed.

- To ensure equal air pressure in the tanks, the top of the tanks are interconnected.

In the tank air pressure connection line a shut-off valve is installed.

� Both valves normally closed and will open for a pre-set time with the aircraft

on the ground and both:

o At least one engine running

o Parking brake set

Page 68: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-68-

- Minimum fluid level for dispatch: 70 %.

- Normal system pressure 2800 – 3200 PSI.

Tank air pressure connection line

QTY (%) 100

Fluid transfer line

LO QTY

FAULT

System pressure:

3000

- Smooth out shock loads

- Emergency hydraulic power

- Nitrogen pressurized to 1000 PSI

Figure 13-2: Functional diagram of the hydraulic system

- Hydraulic system operation is not affected during single-engine operation.

- Reservoir capacity:

• System 1: 23 L

• System 2: 4 L

Page 69: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-69-

- Priority valve:

All systems below the priority valve incorporate an alternate system.

• Priority valve activated if pressure < 2300 PSI

• Priority valve de-activated if pressure > 2650 PSI

- LO QTY – alert if :

• System 1: if < 37 % tank capacity

• System 2: if < 20 % tank capacity

- FAULT in ENGINE PUMP p/b if pump output pressure is < 2400 PSI (≠ system

pressure).

- OVHT if fluid temperature > 90° C.

- Electrically driven pumps:

• For maintenance use

• To pressurize hydraulic systems prior to engine start (e.g. use of parking

brake on the alternate braking system (sys 1))

If prior engine start the alternate brake pressure is below 1000 PSI,

switch ELEC PUMP of HYDR SYS 1 on until pressure is approx 3000 PSI

Page 70: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-70-

Figure 13-3: Hydraulic panel

Page 71: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-71-

14 Landing gear

14.1 Landing gear operation

- Gear extension: ± 26s

Gear retraction: ± 9s

- Operation of the alternate LG selector dumps the LG hydraulic system pressure.

The LG will then free-fall and mechanically lock down.

The main-gear inboard doors will stay open and

are protected against serious damage on landing

by slide strips.

Nose-wheel steering becomes inoperative after

alternate gear extension.

- During alternate gear extension, the blue transit

light will remain on till the LG selector is selected

down.

- LG unsafe – warning (after down selection): if the

gear fails to lock down within approx 35 sec.

- L (R) (NOSE) LG DOWNLOCK SW – warning:

After gear retraction and with a speed > 200 kt,

this alert may result in either a RUD 1 or RUD 2

fault as the rudder limiter does not switch

automatically from LO to HI speed. Manual

switching is not effective. The affected rudder

channel should be switched off.

After gear extension this alert may result in a

RUD LMTR fault: the applicable procedure

should be applied (= Manual rudder limiter

procedure).

Figure 14-1: Landing Gear Lever

Page 72: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-72-

14.2 Nose-wheel steering

- Nose-wheel steering angles (either side):

• Rudder 7°

• Steering tiller 76°

• Towing 130°

- When the LG is selected up, the nose wheels are hydraulically centered.

- Upon LG down selection, the steering system will be depressurized to prevent

inadvertent steering angles while using rudder pedals. Steering pressure will be

restored approx 5 seconds after touchdown of the LH main gear.

- Towing switch depressurizes the nose-wheel steering system.

Page 73: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-73-

(1) Steering system Depressurizes system

depressurized for towing

purposes

(2) Steering pressure > 76°

restored

after ± 5 sec depressurizes system

till again < 76°

(hydraulically)

Figure 14-2: Functional diagram nose-wheel steering

Page 74: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-74-

14.3 Brake control system

- Automatic change-over to alternate brake operation (system 1) occurs when the

pressure of hydraulic system 2 drops < 1500 PSI.

- Alternate brake operations provides skid protection on paired wheels on either

side.

- In the event of loss of system 1 pressure, the accumulator in the alternate brake

system will provide 6 brake applications.

= Alternate brake system pressure indicator

- Brake unit:

• Carbon fibre

• Self adjusting

• Brake wear indicator

• Thermocouple (temperature measurement)

• Speed sensors for anti-skid system

Page 75: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-75-

Figure 14-3: Brake temperature indicator

- Anti-skid control box:

• Touchdown protection circuit: in flight no brake fluid to brakes � no

landing with brakes possible

• Locked wheel protection: reduces possible aquaplaning during landing

• Skid detector circuit at positive wheel rotation: gives maximum wheel

braking when needed

Page 76: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-76-

14.4 Proximity switching / ground-flight control

- After takeoff, the gear selector cannot be moved up:

No actions below 400 ft

> 400 ft:

No GND/FLT CTL alert GND/FLT CTL alert

failure anti-retraction lock ESS / EMERG PWR

ONLY condition

anti-retraction solenoid is

powered by dual DC bus

unextended main landing

gear strut.

GND/FLT CTL relay

remains in ground position

use OVRD button do not retract gear – see

GND/FLT CTL fault effects

Page 77: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-77-

15 Flight controls

15.1 Primary flight controls

15.1.1 General

PILOT

Actuator moves Surface moves

SERVO

- Control input stops:

• Hydraulic pressure difference ceases

• Movement of control surface stops when input stops

- Artificial feel:

• Incorporated in ailerons and rudder

• Proportional to rate of input

• Not required in horizontal stabilizer and elevator (aerodynamic load

already felt)

- Flight control lock:

• Lock linked with thrust levers to prevent take-off thrust being selected

• The rudder is hydraulically dampened

- If hydraulic system 1 or 2 should fail, the local FAULT lights of the respective

flight controls are inhibited. The lights are not inhibited for a complete hydraulic

system failure.

15.1.2 Ailerons

- Outbound trailing edge.

- 20° in either direction.

- If one aileron actuator becomes depressurized, the servo tab will unlock to assist

in manual operation of the affected aileron.

Page 78: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-78-

If hydraulic pressure is not available, both servo tabs are unlocked and are

operated by control wheel movement. The ailerons are then operated by the servo

tabs.

- In manual, control forces increase at low speeds.

15.1.3 Rudder

- Rudder normally operated by hydraulic system 2 (n° 1 actuator depressurized). If

system 2 hydraulic pressure is not available the rudder will be operated by

hydraulic system 1.

- 33° in either direction.

- Rudder authority at high speed is reduced by a rudder limiter which uses airspeed

information from both ADC’s to reduce the hydraulic pressure at the rudder

actuator.

• Automatic mode:

o < 200 kts: actuator hydraulic pressure: 3000 PSI

o > 200 kts: limiter reduces actuator hydraulic pressure to 1100 PSI

• Manual mode:

In the event of a rudder limiter failure, a low or a high speed mode can

be manually selected when the rudder limiter p/b is depressed to MAN:

The system will default to:

o low speed mode LO if the landing gear is down

o high speed mode HI if the landing gear is up (= reduced hydraulic

pressure

Figure 15-1: Flight augmentation panel

Page 79: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-79-

15.1.4 Elevator

- Left actuator powered by system 1 and right actuator by system 2

- Either system capable of operating of operating the elevator, interconnected by

torque tube.

- 25° up and 15° down

- In manual, elevator forces increase to approx 5 times normal.

15.1.5 Stabilizer

- Left actuator powered by system 1 and right actuator by system 2

- Either system capable of operating of operating the stabilizer, interconnected by

torque tube.

- 9° ANU and 3° AND

- Mach trim active > M 0.75

Page 80: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-80-

Controlled by FAS

(automatically in AP ON or with stabilizer trim switches on steering column)

(FAS fails)

Stabilizer trim wheel

(hydraulic pressure n/a)

Alternate stabilizer (electric) trim switch

- Runaway stabilizer: There is not checklist; by recall switch both STAB trim

switches on FAP to OFF.

Figure 15-2: Alternate Stab trim switch + wheel Figure 15-3: Stab Trim switch

Page 81: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-81-

15.2 Secondary flight controls

15.2.1 Flaps

- 2 flaps (outer and inner) per wing.

- Flaps fully extended:

• 20 sec hydraulically

• 90 sec electrically

- A feedback system will de-activate the flap drive when the

flaps reach the selected position.

- When asymmetry between the LH and the RH flap positions

is detected, hydraulic operations will be de-activated and an

alert presented.

- When use of alternate flaps:

• hydraulic operations de-activated

• disagreement alert inhibited

• asymmetry protection not provided; i.e. when an

asymmetry is detected, the alert is presented, but

alternate operation is not de-activated

- During flap asymmetry, DO NOT use alternate flaps (may

aggravate the asymmetry).

Figure 15-4: Flap Lever & Altn Flap Switch

Figure 15-5: Speedbrake

15.2.2 Speed brake

- Can be extended when:

• The thrust levers < MIN TO

• Gear is down (except in TO or GA mode)

- Automatic retraction:

• When TOGA triggers activated

• Maximum forward thrust position is select (wind shear

recovery)

Page 82: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-82-

• A thrust lever advanced > MIN TO with landing gear up

• The landing gear is selected up with both thrust levers > MIN TO

(manual go-around)

- After TOGA activation in the air, lift dumper arming is inop for 60 sec.

- Retraction in case of a failure:

• Electrical failure: speed brake will retract automatically but very slowly

• Hydraulic failure: speed brake remains in selected position. At IN

selection, speed brake will retract very slowly by aerodynamic air load

- Can be deployed at any speed:

• > 190 kts: until air load and hydraulic forces balanced

• < 190 kts: to maximum 60°

- No memo message on MFDU, only 2 speed brake lights on main instrument

panel.

15.2.3 Lift dumpers

- Armed before take-off:

• System is automatically disarmed at lift-off

• In the event of a rejected take-off the lift dumpers will extend when the

thrust levers are retarded and the speed is above approx 50 kts

- Armed in flight (before landing):

• Automatic operation of lift dumpers:

o Wheel spin-up AND

o Thrust levers idle

• Retraction when thrust levers are advanced

• Disarmed when TOGA triggers are activated or either thrust lever

advanced to max TLA

Note: At any moment the lift dumpers can be disarmed or retracted by depressing

the arming p/b.

- Manual operation of lift dumpers: when reverse thrust levers are raised.

- Accumulators provide pressure to extend and retract the lift dumpers once in case

of hydraulic failure.

Page 83: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-83-

- Lift dumper p/b on hydraulic panel to inhibit lift dumper operation.

- LIFTD FAULT: manual operation (thrust reverse ops) still available.

Page 84: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-84-

15.3 Stall prevention system

- Stick shaker activation:

• < 20 250 ft

- Controlled by stall protection computers

- Activation in function of angle of attack and flap position

• > 20 250 ft

- Controlled by stall protection enhancement units

- Activation when airspeed drops to VSS (calculated by the FCC’s)

- If both protection enhancement units fail, the stick shaker function

would still be performed by the stall protection computers. In this

case the margin between the moment of stick shaker actuation and

actual stall will be reduced

- Stick pusher:

• Pneumatic operated stick shaker

• Both stall protection computers must detect a stall condition

• Inhibition:

- Till 10 sec after lift-off

- During wind shear recovery

Page 85: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-85-

15.4 Take-off configuration warning

- Level 3 alert when aircraft on the ground an either thrust lever advanced to MIN

TO position (or TOGA triggered) and following conditions are not met:

• Flight control lock on

• Parking brake set (*)

• Stabilizer not in TO range

• Speed brake not in

• Flaps not in TO position or in the alternate mode

• Lift dumper unlocked

• One elevator hydraulic system depressurized

(*) will not initiate the alert in case of the TAKE-OFF CONF test.

Figure 15-6: T/O configuration Test Button

Page 86: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-86-

16 Flight / navigation data systems

16.1 Air data system

- Pitot-static 1 feeds ADC 1

Pitot-static 2 feeds ADC 2

Pitot-static 3 feeds:

• combined altimeter-airspeed indicator (P+S)

• stand-by altimeter (S)

• cabin differential pressure indicator (S)

• air conditioning pack auto shut-off control (S)

- Pitot vanes + static ports + vanes are electrically heated.

- 2 temperature probes.

- Dashes on Barometric reference display indicated that the offside ADC supplies

the onside system.

- Never transfer to offside ADC (source select P/B) for electrical problems (or

smoke).

Figure 16-1: Source select switches

Page 87: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-87-

16.2 Attitude and heading system

- TAS information is provided by the ADC’s (both to both IRS’s).

- Initialization is possible with both the FMS CDU and the ISDU.

- During alignment and when the mode selector at the ISDU is in HDG/STS, the

time to nav is displayed from 7 to 0 minutes.

- A flashing ALIGN-light on the MSU means that a position needs to be entered.

Notes:

1. The mode selector should remain in ALN when entering a new

position.

2. As long as the ALIGN-light remains on, the aircraft should not be

moved.

Page 88: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-88-

- Use of ATT-mode:

• Fly straight and level (as long as the ALIGN-light is on)

• Put IRS mode selector (MSU) in ATT

• When attitude information is restored, put the following information in

the ISDU:

o Select the SYS DSPL on L or R

o Enter ‘H’ and the corresponding magnetic heading on the keyboard

o Press ENTER

- A yaw rate sensor provides information for AFCAS to ensure yaw damper

operation in case of an IRS failure.

- All directions are based on True North.

- Never transfer to offside ATT/HDG (source select P/B) for electrical problems (or

smoke).

- IRS 1 is connected to the EMER DC BUS and can be battery powered. IRS 2

uses battery power only for power-down in the OFF mode.

- During IRS shutdown (OFF mode), the IRS’s store ‘status’ and ‘PPOS’ – data in

non-volatile memory.

Figure 16-2: Inertial System

Display Unit & Mode Select Unit

Page 89: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-89-

16.3 Weather radar

- Level 1 alert if flight control lock is on and WX Radar not off.

- WX-info can also be displayed on the RH MFDU. Either captain’s (WXR L) or

the F/O’s (WXR R) control setting can be selected.

Figure 16-3: MFDS / TRP

- Activation with either:

• WX control knob at EFIS control panel (OR)

• WXR page p/b at MFDS panel.

- Order of intensity:

•••• green

•••• yellow

•••• red

•••• magenta (in WX/T only to indicated turbulence within 50 nm)

Page 90: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-90-

- WX/T only possible if range 60 is selected and can only detect < 50 NM.

- IDNT button: ground clutter suppression to reduce intensity of ground returns

when operating in the WX modes.

- MAP: ground mapping (green, yellow, red).

- TFR: to display offside WXR info (with selected mode, gain and tilt).

- Receiver Gain: for optimum weather and terrain mapping details (in WX, WX/T

and MAP).

- Gain UCAL (uncalibrated) light: receiver sensibility below the calibrated

sensitivity.

Figure 16-4: Weather radar control panel

- Antenna is stabilized for pitch and roll by a drive mechanism using data from IRS

1 + manual selection for 15° up/down.

Page 91: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-91-

16.4 VOR / DME / marker beacon / ILS

- VOR frequency range: 108.00 MHz to 117.95 MHz with 0.05 MHz or 50 kHz

spacing.

- ILS frequency range: 108.00 MHZ to 111.95 MHz with 0.05 MHz or 50 kHz

spacing.

- 1 ILS panel but 2 localizer antennas, 2 glide slope antennas and 2 receivers.

- GPWS receives data from ILS 1 and 2.

- In the event of an ILS failure, the offside ILS can be selected with the source

select p/b.

- ILS frequency tuning is inhibited when LAND mode is activated.

- Glide slope pointer flashes if:

• deviation > 1 dot

• altitude < 500 ft and > 100 ft

• AP engaged

- Localizer pointer flashes if:

• deviation > 0.3 dot

• altitude < 500 ft and > 5 ft

• AP engaged

- OM = blue, MM = amber and airway (fan) marker = white.

Figure 16-5: VOR/DME Selector Box

Page 92: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-92-

16.5 ADF

- Only 1 receiver is installed.

- ADF frequency range is between 190 kHz and 1750 kHz and can be selected in

steps of 0.5 kHz.

- A1 (= BFO mode): provides 1000 Hz (= 1 kHz) tone for ease identifying

unmodulated signals.

- NORM: for reception of modulated signals.

Figure 16-6: ADF Selector Box

Page 93: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-93-

16.6 ATC transponder / TCAS

- XPNDR transmits replies when interrogated by ATC ground stations or TCAS

equipped aircraft. Once every second the transponder transmits a beacon signal

for traffic collision avoidance purposes.

- Mode A and mode C replies are inhibited whilst the aircraft is on the ground.

- A new code becomes active 5 seconds after entering except when pushing IDENT

where the new ATC-code will be transmitted immediately.

- TCAS surveillance range: ±40 nm, vertical range 9900 ft above and below the

aircraft.

- TCAS categories:

→ Resolution Advisory (RA) traffic:

� predicted to get too close within approx 25 sec

� displayed at PFD

� detected in TA/RA only

� Solid red square

� Type of RA’s:

o Corrective RA

Change vertical path of aircraft

• aural advisory

• red band + green ‘fly to’ on vertical speed scale

• ‘get out of red box’ + arrow pointing

o Preventive RA

Maintain a present vertical speed

• aural advisory

• red band on vertical speed scale

• ‘do not fly into’ cue(s) + arrow pointing

� Other warnings:

TRAFFIC OFF SCALE on ND

TRAFFIC on ND (= traffic display not selected on EFIS ctl panel or

ARC/PLAN selected)

Page 94: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-94-

→ Traffic Advisory (TA) traffic:

� predicted to get too close within approx 40 sec when in TA/RA

� predicted to get too close within approx 20 sec when in TA Only

� displayed at PFD

� detected in TA/RA & TA

� Solid amber dot

� Other warnings:

TRAFFIC OFF SCALE on ND

TRAFFIC on ND (= traffic display not selected on EFIS ctl panel or

ARC/PLAN selected)

→ Proximate traffic:

� Non-threat traffic within 6 nm horizontal and 1200 ft vertical

� detected in TA/RA & TA

� Solid blue diamond

→ Other traffic:

� Non-threat traffic outside Proximate traffic range but within approx 2700

ft vertical

� detected in TA/RA & TA

� Open blue diamond

� Altitude limits can be selected:

o ABV: from 9900 ft above to 2700 ft below current altitude

o N: from 2700 ft above to 2700 ft below current altitude

o BLW: from 2700 ft above tot 9900 ft below current altitude

- Aircraft on ground or < 380 ft are considered as non-threat traffic. Optionally,

aircraft on ground are never displayed.

- Flight Identification light (FID): if FID selected and flashing when entering a FID

code.

- In case of RA, disconnect AP and follow PFD pitch cue (do not use FD in V/S).

- When ‘CLEAR OF CONFLICT’, select AP on. The AP will engage in either the

default V/S mode or ALT capture. Do not select LVLCH as the aircraft will first

accelerate before intercepting the desired vertical path.

Page 95: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-95-

Figure 16-7: ATC transponder - TCAS box

Page 96: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-96-

16.7 Radio Altimeter

- 2 radio altimeter systems are installed.

- FDR systems receives data from radio altimeter 1.

- Range from 0 ft to 2500 ft.

- In case of a failure, the offside RA can be selected with source select p/b.

Page 97: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-97-

16.8 Flight Data Recording

- Flight data recording system compromises:

o Flight Data Recorder (FDR)

o Flight Data Acquisition Unit (FDAU)

o underwater locator beacon:

� 3568m operating range

� from -7° C to 37,8° C

� lasts for 30 days

o ground control p/b

- Operates automatically whenever 1 fuel lever is open. Before engine start, the

system may be operated by depressing FDR/CVR GND CTL p/b. Operation is

indicated by an ON light in the p/b till engine start.

Figure 16-8: FDR/CVR GND control p/b

Page 98: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-98-

17 Flight / navigation instruments

17.1 Electronic Flight Instrument System

- The display units from EFIS 1 provide a DH passage output to the GPWS.

- PLAN mode is true north up oriented.

- MAP symbols may be added in both MAP and PLAN modes.

- FPA, M/DA, DH –selector set to:

M/DA DH

> 2500 ft AGL

< 2500 ft AGL > 2500 ft AGL < 2500 FT AGL

Selected DH

= 0

Selected DH

≠ 0

Selected

M/DA = 0

Selected

M/DA ≠ 0

M/DA displayed at PFD

DH displayed at PFD

M/DA displayed at

PFD

DH displayed at PFD

= Flight Path Target

= Flight Path Vector

= Ground Reference Pointer (indicates absolute altitude reference above

terrain). Appears at approx 500 ft RA.

= Arrow; indicates the direction of the required pitch change

(TCAS correction)

Page 99: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-99-

= Indicates pitch angles to avoid (TCAS correction)

- Wind direction on the ND is referenced to true north in cruise and to magnetic

north in take-off or landing.

Figure 17-1: EFIS control panel

Page 100: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-100-

17.2 Secondary & standby instruments

- Radio Magnetic Indicator:

o Magnetic heading supplied by onside attitude and heading system

o Power supply:

Right RMI: 115V AC-bus

Left RMI: 28V DC emergency bus

o In case of a flag (failure); pointer will be fixed in last position

Figure 17-2: RMI

Page 101: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-101-

- Clock:

o The clock installed at the captain’s side provides a GMT output to the

flight data recording and flight management system

o Electrically powered by 28V DC emergency bus

Figure 17-3: Clock

- Combined stand-by altimeter / airspeed indicator

- Stand-by horizon

o Powered when either FUEL lever is opened.

o The gyro reaches operational speed approximately one minute after power

has been applied.

- Stand-by compass

o Compass light powered by 28V DC emergency bus

Page 102: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-102-

17.3 Ground Proximity Warning System

17.3.1 Basic GPWS

� Based on radar altimeter; effective between 30 ft and 2450 ft RA.

Mode Event Aural warning Visual

warning

Mode 1 Excessive sink rate “SINKRATE SINK RATE”

– “PULL UP”

Mode 2 Excessive terrain closure rate “TERRAIN TERRAIN” –

“PULL UP”

Mode 3 Descent after take-off “DON’T SINK DON’T

SINK”

Mode 4 Inadvertent proximity to terrain

Inhibit:

Guarded FLAP OVERRIDE switch;

when a landing has to be made with less

than landing flaps

.

“TOO LOW TERRAIN”

or “TOO LOW GEAR” or

“TOO LOW FLAPS”

Two red

GPWS-lights

Mode 5 Descent below ILS glide slope

Inhibit:

Warning can be inhibited when a/c is

deliberately flown below the glide slope

during final approach

< 1000 ft RA. Mode rearms passing

1000 ft RA in a climb,

30 ft RA in descent or when other ILS

frequency selected.

“GLIDE SLOPE GLIDE

SLOPE”

Two amber

GS-lights

Mode 6 Descent below DH, bank angle (if bank angle > 10° at 30 ft AGL. Then

linearly till > 40° at 150 ft AGL and

above) and RA callouts before

touchdown

“MINIMUMS”, “FIVE

HUNDRED”, “ONE

HUNDRED”, “FIFTY”,

“FORTY”, “THIRTY”,

“TWENTY”, “TEN” or

“BANK ANGLE BANK

ANGLE”

N/A

Page 103: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-103-

17.3.2 Terrain Awareness and Warning System

Event Description Warning

Terrain Ahead Alerting Warning envelope generated 1

minute ahead of a/c based on

the internal database +

predicted flight path

Caution (40-60 sec ahead):

“CAUTION TERRAIN

(OBSTACLE), CAUTION

TERRAIN (OBSTACLE)”

Warning (30 sec ahead):

“TERRAIN (OBSTACLE),

TERRAIN (OBSTACLE), PULL

UP”

+ Two red GPWS-lights

Terrain Clearance Floor

(TCF)

- Protects against premature

descent during non-prec. appr.

- Based on current position, RA

and distance to center point of

nearest runway in database.

- Envelope around rwy directly

related to the distance from

that runway

- T/O, cruise, final approach

- More restrictive than Mode 4

“TOO LOW TERRAIN”

+ Two red GPWS-lights

Runway Field Clearance

Floor (RFCF)

- As TDC except that RFCF is

based on current a/c position

and height above destination

rwy based on geometric

altitude.

- Active within 5 nm

“TOO LOW TERRAIN”

+ Two red GPWS-lights

Terrain Awareness Display

(TAD)

Graphic display of surrounding

terrain on the EFIS navigation

displays.

Terrain above current aircraft true

altitude

Medium density red

Medium density yellow

Terrain at and below current

aircraft true altitude

Light density yellow

Page 104: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-104-

Medium density green

Light density green

Terrain penetrating caution

envelope

High density yellow

Terrain penetrating warning

envelope

High density red

Flying at high altitude above

terrain (improving situational

awareness)

High density green

Medium density green

Light density green

- In case of terrain awareness caution or warning the terrain awareness display will

automatically pop-up, provided ARC or MAP mode is selected and the WX

control knob at the respective EFIS control panel is out of the OFF position.

- TAWS inhibit p/b at each pilot’s instrument panel will not inhibit the basic

GPWS mode 1 thru 6.

Page 105: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-105-

17.4 Avionics Cooling System

See chapter 10 Airconditioning & pressurization.

Page 106: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-106-

AFCAS

Automatic Flight

Control and

Augmentation

System

AFCS

Automatic Flight

Control System

ATS

Autothrottle System

FAS

Flight

Augmentation

System

Autopilot Flight Director Altitude Alerting Yaw Damping Stabilizer Trim

18 Flight Control & Augmentation System

18.1 General

Page 107: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-107-

18.2 Automatic Flight Control System

- At engagement of AP 1 or 2 during takeoff, both AP’s will engage if in TO mode

or when below 1500 ft AGL. (Leaving TO mode is possible by e.g. selection of

LVLCH or using vertical speed).

- Basic AP modes: vertical speed & heading hold.

- Upon LAND capture (= established on the beam and below 1500 ft AGL), both

AP’s will engage:

• no ILS frequency and localizer course changes are possible

• no LAND engagement if glide is intercepted below 1000 ft AGL

• below 500 ft AGL, speed window will be dashed

- Using AP disconnect bar directly interrupts the FCC output to the AP servo’s.

Note: During manual flight with both FD’s on, FD 1 will capture VOR 1, FD 2

will be biased out of view.

Table 4: Side in control

Page 108: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-108-

- ALT Hold: amount of altitude over/undershoot amounts to approx 10 per cent of

the vertical speed existing at ALT hold selection.

- LVLCH: climbing or descending to a preselected altitude with (pre)selected speed

(or with existing speed when no speed (pre)selected).

Activation:

• In AFCAS:

→ LVLCH p/b

→ pulling ALT knob

• In PROF:

→ LVLCH p/b

In LVLCH climb: CLB (rating selected at TRP) Speed controlled by elevator

In LVLCH descent: LL (Low idle Limit)

- AFCAS climb at constant Mach number (same procedure for descent):

• push IAS/M p/b to activate IAS hold

• depress IAS/M select button (Mach number is displayed)

• select required Mach number

• where the IAS equals the Mach number, the aircraft will continue to

climb on that Mach number (= at crossover altitude)

- When in ARC/ROSE and VOR selected; selecting MAP at the side in control

after VOR capture results in a VOR mode failure.

- If NAV is armed on the ground, it will capture on 30 ft AGL.

- If PROF is armed on the ground, it will capture upon reaching Thrust Reduction

Altitude.

- PROF may not be used independently of NAV during descent and initial

approach.

- Go-around mode by TOGA selection:

• maintaining existing heading at TOGA selection

• initially TOGA thrust, thereafter, thrust to maintain 2000 ft a minute rate

of climb (1000 ft a minute in single engine conditions) or 200 kts

- Maximum bank angle in TO and GA (irrespective of bank selector):

• < 50 ft AGL: 5°

• 50 – 400 ft AGL: 15°

Page 109: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-109-

Note: bank limit selector is only effective in HDG-mode.

- FD command during TO: 18° pitch or V2+10; whichever comes first.

- AFCAS TARGET:

AFCAS unable to reach or maintain selected value.

- AFCAS MODE:

AFCAS reverted to basic mode (VS and HDG). The affected mode will flash

amber at the FMA, both FD’s will be flagged and the AP reverts tot the HDG

and V/S mode. To regain the FD’s and to cancel the flashing amber mode at

the FMA, pull or push the HDG knob at the FMP.

- AFCAS SPEED:

Selected or actual speed too high for autoland.

Figure 18-1: Flight Mode Panel

Figure 18-2: Thrust Rating Panel (TRP)

Page 110: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-110-

18.3 Autothrottle system

- Each AT channel drives its own thrust lever. If one AT channel fails the

operative channel will drive both thrust levers via a tie-clutch.

- Automatic engagement in flight occurs when:

• the alpha mode becomes active

• maximum speed is exceeded

• when TOGA triggers are pulled

- Indication on FMA: AT, AT 1 or AT 2.

- LL is variable and depends on bleed air demand for pressurization and anti-icing.

- When both channels engaged: ATS synchronizes the EPR’s except:

o during TO and GA

o EPR < 1.2

- Thrust levers incorporate force override. When released, thrust levers restore

previous position except in LVLCH descent when adjusting throttles forward.

- At 80 kts during TO: throttle declutch (‘D’):

Goal: to prevent possible thrust lever retardation caused by a system failure

during the critical part of the TO.

Note: During TO in strong headwind conditions, 80 kts may be reached before

engines reached TO EPR. In this case the engines should be manually

accelerated to 1.30 EPR before pulling TOGA triggers.

Reclutch:

• change of thrust rating (to CLB)

• capturing of FMP altitude or selection of V/S

• windshear

- During emergency descent, ATS must be selected OFF to avoid LL to be selected.

- When both ATS channels are inop:

• VMA protection, alpha mode protection and max speed protection is inop

• automatic gust correction during approach is inop

• automatic full throttle thrust selection in case of windshear warning is

inop

Page 111: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-111-

18.4 Flight envelope protection

18.4.1 Minimum speed protection

VMA protection

- VMA displayed at top of amber scale and depends on:

o weight

o flap setting

o cg

o flight phase

o altitude

- TO and GA 1,20 VS

Other phases 1,30 VS

Transition is 20s after LVLCH or PROF capture in TO

At 15250 ft 1,45 VS

Linear increase to FL 350 1,62 VS

- No speed selection below VMA possible

Alpha mode protection

- Where VMA protection is not available:

• AP + ATS off + idle thrust + ALT hold or V/S climb

• AP off + FD off + ATS off

• AP off + LVLCH descent + FD commands not followed

- Activation at VMA - 5 kt (provided AT p/b at FAC panel are on):

• ATS engages

• Thrust limit at TRP becomes TOGA

• The force override switches are de-activated

Drift down control

Page 112: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-112-

18.4.2 Maximum speed protection

- Bottom of red checker bar

- ATS engages automatically and reduces thrust preventing exceeding VMAX

18.4.3 Excessive vertical speed protection

Page 113: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-113-

18.4.4 Flight path angle protection

If:

• < 1000 ft AGL

• flap 25 or 42

• ATS engaged

• Flight path angle in excess of 3,5°

=> to speed that is 8 kts/degree in excess of 3,5° higher than VMA

18.4.5 Automatic gust correction

During approaches in gusty wind conditions ATS will control to a speed not below

VMA + 8 kts.

18.4.6 Altitude alerting

Altitude exit alert at ± 250 ft except:

• GS captured

• gear down

• drift down

• reacting to TCAS RA (only aural altitude alert is inhibited, altitude scale

still amber)

Page 114: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-114-

18.5 Flight mode annunciation

- A triangle affixed to the annunciation of a mode is used to indicate a capture

phase.

- When a target or a requested flight path cannot be maintained or reached, the

following takes place (AFCAS TARGET):

• The annunciation of the parameter that is no longer controlled or cannot

be reached will flash.

• The annunciation of the parameter that is at its limiting value, and which

causes the situation will be shown in magenta.

- Failures resulting in loss of armed or active modes are indicated by an amber

flashing annunciation in the particular window. Both FD’s will be flagged and

the AP reverts to the HDG and V/S mode. To regain the FD’s and to cancel the

flashing amber mode at the FMA, push or pull the HDG knob at the FMP

(AFCAS MODE).

Page 115: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-115-

18.6 Flight augmentation system

18.6.1 Yaw damping & turn coordination

- Available with AP on or off.

- Controls for yaw dampers are located at the Flight Augmentation Panel (FAP).

18.6.2 Stabilizer trim operation

1. Automatic stabilizer trim (AP on)

- Stabilizer trim switches at control column de-activated.

- In LAND mode, an automatic nose up trim bias will ensure a safe pitch

attitude upon AP disconnect close to the ground.

2. Manual stabilizer trimming by the pilot (AP off)

- Trim rate is function of speed (trim rate high at low speed and vice versa).

- Whooler when trim switches operated for more than 2.5 sec when airborne

or 1 sec on the ground.

- If pilot operates erroneously only one half of the stabilizer trim switch for

more than 15 sec, the monitoring circuit will interpret this as a fault in the

trim switch wiring. This condition will result in a non resettable STAB

TRIM 1 AND 2 fault the next time the trim is operated.

- ‘Stabilizer trim double-channel fault’:

• STAB TRIM 1 AND 2 – indication

• Automatic AP disengagement

3. Mach trim compensation

Page 116: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-116-

Figure 18-3: Flight augmentation panel

Page 117: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-117-

18.7 Wind shear detection & recovery

- Wind shear detection operative:

• T/O from lift-off up to 1500 ft AGL

• Approach from 1500 ft AGL to 30 ft AGL

• No detection in case of an engine failure

- Annunciation:

o Performance increasing shear:

- WINDSHEAR caution at PFD + AMI (Alpha Margin Indicator).

- only in approach.

o Performance decreasing shear:

- WINDSHEAR warning at PFD + AMI (Alpha Margin Indicator).

- triple “wind shear” via loudspeakers.

- take-off and approach.

- activation of recovery mode:

� automatically during TO and GA

� upon selection of TOGA during approach

� FD guidance

� HDG hold mode becomes active with 5° bank limit

� full throttle

Remark: When ATS is inop (FAP AT p/b’s OFF) full throttle thrust

must be selected manually and reduced to TOGA thrust when passing

1500 ft AGL and the warning is no longer present.

Page 118: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-118-

19 Communication

19.1 General

- When the oxygen-mike is operative (automatically through oxygen flow), both

hand- and boom-microphones are inoperative. To restore communication with

hand- or boom-microphones, the doors of the oxygen-mask container must be

closed and the reset/test lever must be operated.

- Two loudspeakers are installed in the flightdeck ceiling. When the hand-mike or

boom-mike is used, both loudspeakers are muted. The loudspeakers are not

muted when oxygen-mask mike is in use.

Figure 19-1: Communication panel

Page 119: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-119-

- As long as one microphone switch at either audio panel is in the OPEN IC

position, which is a maintained position, both loudspeakers remain muted.

- Frequency range of VHF COM box: 118.00 to 136.990 MHz with 8.33 kHz

channel spacing.

Figure 19-2: VHF communication box

Page 120: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-120-

Figure 19-3: Avionics panel

Page 121: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-121-

19.2 Cockpit Voice Recorder (CVR)

- Records last 30 minutes of flight deck audio (+ audio from remote area

microphone) on a continuous magnetic tape.

- Automatic from engine start (or upon pressing FDR/CVR GND CTL p/b) until 5

minutes after shutdown.

- By pressing the FDR/CVR GND CTL p/b, the ON light comes on till either

engine is started.

- ERASE button can only be used on the ground with the parking brake set.

Figure 19-4: CVR panel

Page 122: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-122-

20 Limitations

20.1 General limitations

- maximum operating pressure altitude: 35000 ft

- maximum takeoff and landing pressure altitude: 8000 ft

20.2 Weight limitations

- MTW: 44 680 kg

- MTOW: 44 450 kg

- MLW: 39 915 kg

- MZFW: 36 740 kg

20.3 Speed limitations

- VMO/MMO: 320 kt / M 0.77

- VRA/MRA: 250 kt / M 0.65

- VFE: Flaps 8 250 kt

Flaps 15 & 25 220 kt

Flaps 42 180 kt

Maximum altitude for flap extension: 20000 ft

- VLO/VLE: 200 kt

Maximum altitude for gear extension: 25000 ft

- Maximum lift dumper extension speed: 170 kt

- Maximum flight speed with open slide window: 160 kt

Page 123: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-123-

20.4 Weather limitations

- Maximum crosswind component: 35 kt

- Maximum tailwind component: 10 kt

20.5 Powerplant & APU limitations

Condition Max TGT Time limit

During start 740° C momentary

Max takeoff 850° C 5 minutes (*)

Max continuous 795° C unrestricted

(*) In the event of an engine failure, the remaining engine may be operated at takeoff thrust for a maximum

total period of 10 minutes.

20.6 Fuel system limitations

- Maximum allowable fuel asymmetry:

� in flight: 1000 kg

� on the ground: depending on aircraft weight and actual fuel in the wing

tanks

- Usable fuel tank capacity:

� wing tanks: 7 744 kg (= 2 x 3872)

� center tank: 2 512 kg

� total: 10 256 kg

20.7 AFCAS limitations

- Autopilot engagement: 35 ft

Page 124: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-124-

20.8 Navigations limitations

- The FMS may not be used:

� above 70° north latitude

� below 60° south latitude

- BRNAV equipment required:

The BRNAV operation shall not be continued if the FMS CDU message ‘LOW

POS ACCURACY’ is displayed.

Page 125: F100 - Key Facts v2

Fokker 100 © NM

Key Facts

-125-

- RVSM

Approval for flight in airspace above FL 290 where a 1000 ft vertical separation

minima is applied.

Required equipment:

20.9 Miscellaneous

- Do not arm liftdumpers before gear is down and locked.

- The WX radar may not be used on the ground except to assess takeoff flight path

conditions provided the distance to ground vehicles, aircraft, buildings or

personnel is more than 10 meters.

- The IRS may not be used:

� above 73° north latitude

� below 60° south latitude