EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may...

90
18-Nov-159-Nov-15 Proprietary Rev. 7.27.1 confidential Page 1 of 90 and Confidential EyeQ3™ Data Sheet

Transcript of EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may...

Page 1: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

18-Nov-159-Nov-15 Proprietary

Rev. 7.27.1 confidential Page 1 of 90 and Confidential

EyeQ3™ Data Sheet

Page 2: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

11/18/201511/9/2015 2

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Important Notice This material describing Mobileye is for general information purposes and may be

modified by Mobileye without notice. This material is the proprietary and/or

confidential information of Mobileye, and may not be disclosed or transferred to any

third party without Mobileye’s prior express consent. Mobileye, its logo and service

names are trademarks of Mobileye.

Mobileye makes no warranty for the use of its products, assumes no responsibility for

any errors that may appear in this document, and makes no commitment to update

the information contained herein. There are no express or implied licenses granted

hereunder to design or fabricate any integrated circuits based on information in this

document.

EyeQ3® is a trademark of Mobileye, N.V. and may be used to identify Mobileye

products only. All other marks are the property of their respective holders.

© Copyright 2006-2015 Mobileye. All rights reserved

Document name:

EyeQ3_DataSheet.doc

Revision History:

Rev Date Author Description

Approved by Date

0.0 14/Jul/10 Mois Preliminary Draft Elchanan 14/Jul/10

1.0 29/Mar/11 Mois First Draft Elchanan 29/Mar/11

2.0 30/May/11 Mois Preliminary Internal Release Elchanan 30/May/11

2.1 14/June/11 Elchanan Update EyeQ3 block diagram, DDR signals name and DDR3, LPDDR2 connections

Elchanan 14/June/11

3.0 26/Sep/11 Mois Preliminary Customer Release Elchanan 26/Sep/11

3.1 27/Sep/11 Mois add SFI timing Elchanan 27/Sep/11

3.2 2/Oct/11 Mois update package info Elchanan 2/Oct/11

3.3 5/Oct/11 Mois Temp Sensor acc. / pull-up to sfi_d2-3 / REXT Elchanan 5/Oct/11

3.4 25/Oct/11 Mois ddr_retention note Updated Ball Outs

Elchanan 25/Oct/11

3.5 30/Oct/11 Mois Remove EyeQ3Lite Usage Col form pinouts Elchanan 30/Oct/11

3.6 3/Nov/11 Mois Spia/b ck/cs are bidirectional; osc is 100ppm Elchanan 3/Nov/11

3.7 14/Nov/11 Mois -remove nmi, tdbgint (nc0,nc1) -spi timing

Elchanan 14/Nov/11

3.8 24/Nov/11 Mois modify spi timing modify i2c timing add pdt and vid out load values remove tdbgack (nc2)

Elchanan 24/Nov/11

3.9 13/Dec/11 Mois modify spi timing add rgmii timing modify video out features

Elchanan 13/Dec/11

Page 3: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

11/18/201511/9/2015 3

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Rev Date Author Description

Approved by Date

4.0 4/Jan/2012 Mois update ac timing mips description update pinouts, balls update pwr/gnd pins various changes throughout

Elchanan 4/Jan/2012

4.1 4/Mar/2012 Mois video channel diagram; pinout diagram; i2c specs; reset deassertion note; various edtis throughout

Elchanan 4/Mar/2012

4.2 28/Mar/2012 Mois clock, reseti, por_vdd notes, mode bits on por_vdd only, pull-up pull-down notes

Elchanan 28/Mar/2012

4.3 5/Apr/2012 Mois 3V3 power note Elchanan 5/Apr/2012

4.4 15/May/2012 Mois Add PowerMode description; RGMII, CKE pulldown recommendations; pck, mclk maxrates, add XTAL specifications

Elchanan 15/May/2012

4.5 6/Jun/2012 Mois Add I2C pad info Elchanan 6/Jun/2012

4.6 17/Jun/2012 Mois Add Max Freq notes; change Ethernet naming; modify RGMII timing

Elchanan 17/Jun/2012

4.7 26/Jun/2012 Mois Modify OSC CL; Update EyeQ3 block diagram; D$=32K w/ECC; Thermal Data

Elchanan 28/Jun/2012

4.8 27/Aug/2012 Mois Add explanation of DC Characteristics Tables; Fix Pinout diagram; IO Default states; Max

SerFin rates; AGND notes; IO Power

Elchanan 27/Aug/2012

4.9 13-Nov-12 Mois Remove defunct comment about vic_d15,vib1_d15 being used for ring voltage select

Add note about IO in tristate when no core voltage present.

Add note about reseti_n debounce and effect Add info on power and thermal characteristics

Elchanan 13-Nov-12

5.0 23-Dec-12 Mois -Add note about SFI pins at POR_VDD=0 -Add 6L package data - remove AGND - update mechanical drawings

Elchanan 23-Dec-12

5.1 7-Feb -13 Mois - update pinout diagram - fix testen polarity - In ball out diagrams: label NC pins, change

XINT naming to not use parenthesis - revert back to AGND - GNDE_DDR_1V8_1V5_1V2 now GND - Increased max current draws of VDD (Core) VDDEDDR-LPDDR2

Elchanan 7-Feb -13

5.2 12-Feb-13 Mois - fix ball outs to show nc0-2 - changes to table 18 Steady State current

Power - add note about power up/down seq. - pin list diagram - add NC section - modify Power and GND references

throughout - XINT uses PD - I2C uses 1V8 and 3V3

Elchanan 12-Feb -13

Page 4: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Audience and Scope

11/18/201511/9/2015 4

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Rev Date Author Description

Approved by Date

5.3 25-Feb-13 Mois - FUSE HV can float - note 1ms rise on Power for CUT1 only - note RGMII inputs have internal PD in CUT2 - note that $D in CUT1 is 64K w/o ECC

Elchanan 25-Feb-13

5.4 28-Feb-13 Mois - remove max 1ms power rise time constraint Elchanan 28-Feb-13

5.5 6-Mar-13 Mois - remove 3.3V power sequence from DDR3 sequence

-add note that the mechanical values are preliminary

Elchanan 6-Mar-13

5.6 14-Mar-2013 Mois - add temp info - mark VREG as “0” balls - update package info

Elchanan 14-Mar-2013

5.7 29-Apr-2013 Mois - 2V5 usage explanation - add note that DDR timing at die - add note that DDR timing is referenced to Vref crossing - remove DDR3 derating - remove clock jitter value - remove support of clock input - modify RGMII Tx to use skew only - change 3.3V range

Elchanan 29-Apr-2013

5.8 8-Oct -2013 Mois Change spia reset state to z Add note about PCB solder mask Clarify mode sampling 9.1 Modify Image Sensor connections diagram and add note about sensor placement Add pins to Power Ring Descr. MCLK reset to “1”

Elchanan 8-Oct -2013

5.9 21-Nov-2013 Mois -Modify DDR pin lists -Update Application diagram of the external clock to use pull-down. -Modify 2V5 usage explanation -Change sfi_d(2:3) from reserved mode bits to pcb version indicators. - Change XINT(0:1) to allow use as pcb version indicators. - DDR lane#0 constraint

Elchanan 21-Nov-2013

6.0 14-Jan-2014 Mois - add note about analog clk_in/out - remove DDR3 support

Elchanan 14-Jan-2014

6.1 25-Feb-2014 Mois - update mechanical package info - add DDR pins not documented: DQS(3:0) - update ball outs and pin diagram to reflect removal of DDR3 pins (we, reset,odt) - add three NC pins to ball outs

Elchanan 25-Feb-2014

6.2 26-Feb-2014 Mois Mechanical chart update Elchanan 26-Feb-2014

6.3 4-Mar-2014 Mois Remove 19x19x2.52 mechanical notation; add sec. “Reset”

Elchanan 24-Mar-2014

6.4 11-May-2014 Mois Modify reset notes Add note about SPI_DO Power sequence. DDR, IO (VDDE v VPAD). TMS note

Elchanan 11-May-2014

Page 5: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Audience and Scope

11/18/201511/9/2015 5

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Rev Date Author Description

Approved by Date

6.5 29-Jun-2014 Mois ST comments integrated

Add supported DDR devices

Reseti_n notes.

BGA Ball Material

Elchanan 29-Jun-2014

6.6 7-Aug-14 Mois Add CTE info;

Add Storage Temp Min.

Elchanan 7-Aug-14

6.7 19-Oct-14 Mois

Dvir, Roei

- Update JTAG descriptions; remove unecc. SFI timing

- Update LPDDR2 533MHz timing

- Add DDR Routing Considerations to Maintain Good Signal Integrity

Dvir 19-Oct-14

6.8 11-Feb-15 Mois - modify LPDDR timing

- remove clock in details

Roei/Elchanan 11-Feb-15

6.9 1-Apr-15 Mois Remove references to clk in.

Add OSC power on sequence diagram

Elchanan 1-Apr-15

7.0 1-Sep-15 Mois Add clock stretching to I2C;

PowerUp Timing Diagram

DDR timing to 500MHz (from 533MHz)

Elchanan 1-Sep-2015

7.1 7-Sep-15 Mois Modify DDR VIH/VIL Meir 1-Nov-15

7.2 17-Nov-15 Mois Insert mechanical data without watermark

Fix Pin Diagram (pwrmode8)

Elchanan 17-Nov-15

Page 6: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Audience and Scope

11/18/201511/9/2015 6

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Table of Contents

1. Audience and Scope ............................................................................................... 11

2. Acronyms and Abbreviations.................................................................................. 12

3. EyeQ3® Overview .................................................................................................... 13

4. EyeQ3® Architecture ............................................................................................... 14

4.1 MIPS1004K CPU Sub-System .......................................................................................................... 15

4.1.1 MIPS Cores Configuration ............................................................................................. 15 4.1.2 Coherence Manager Configuration .......................................................................... 16

4.2 Vector Microcode Processor (VMP) ........................................................................................... 16

4.3 Arteris Interconnect Block ............................................................................................................. 17

4.4 Video Input Interfaces ................................................................................................................... 17

4.5 Video Output Interface ................................................................................................................. 18

4.6 1Gb Ethernet / AVB ........................................................................................................................ 19

4.7 On-chip memory ............................................................................................................................ 19

4.8 Off-chip memory ............................................................................................................................ 19

4.9 Peripherals ........................................................................................................................................ 20

5. EyeQ3® Development Tools kit ............................................................................... 21

5.1 EyeQ3® Software Development Kit (SDK) Tools ....................................................................... 21

5.2 EyeQ3® Development platform .................................................................................................. 21

5.3 EyeQ3® Debug Configurations ................................................................................................... 24

6. Pin List ........................................................................................................................ 25

6.1 DDR-SDRAM connectivity ............................................................................................................. 31

6.2 Serial Flash Interface (SFI) .............................................................................................................. 32

6.3 Video Input Interface .................................................................................................................... 33

6.4 Video Output (and alternate Video Input) Interface ............................................................. 34

6.5 PDTrace Interface .......................................................................................................................... 35

6.6 1Gb Ethernet / AVB Interface ...................................................................................................... 35

6.7 I2C (a/b) Interfaces ........................................................................................................................ 36

6.8 UART (a/b) Interfaces (with alt. GPIO connectivity) ................................................................ 37

6.9 CAN (a/b) Interfaces (with alt. GPIO connectivity) ................................................................ 37

6.10 SPI (a/b) Interfaces (with alt. GPIO connectivity) .................................................................... 38

6.11 General Purpose Input Output (GPIO) and Timer I/O ............................................................. 39

6.12 Clocks, Reset, Controls Interface ................................................................................................ 41

Page 7: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Audience and Scope

11/18/201511/9/2015 7

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

6.13 JTAG Interface ................................................................................................................................ 45

6.14 Power Interface .............................................................................................................................. 45

6.15 No Connects ................................................................................................................................... 46

7. Electrical Specifications ........................................................................................... 48

7.1 Absolute Maximum Ratings .......................................................................................................... 48

7.2 Power Supply Specifications ........................................................................................................ 48

7.2.1 Power Up/Down Sequence ......................................................................................... 49 7.2.2 IO Power Sequence ....................................................................................................... 50

7.3 DC I/O Characteristics................................................................................................................... 51

7.3.1 Special cases .................................................................................................................. 51

7.4 DDR SDRAM DC Characteristics .................................................................................................. 52

7.5 AC Characteristics ......................................................................................................................... 52

7.5.1 Clock AC .......................................................................................................................... 53 7.5.1 SPI Timing .......................................................................................................................... 53 7.5.2 Serial Flash Interface (SFI) Timing ................................................................................. 55 7.5.3 Serial i2c pin timing......................................................................................................... 57 7.5.4 RGMII Interface timing ................................................................................................... 58 7.5.5 Video Input Interface timing ........................................................................................ 59 7.5.6 Video Output Interface ................................................................................................. 61 7.5.7 PDtrace Interface timing .............................................................................................. 62 7.5.8 reseti-n pin timing ........................................................................................................... 62 7.5.9 DDR SDRAM AC Characteristics .................................................................................. 63

7.6 DDR SDRAM Timing Specification ................................................................................................ 63

7.6.1 LPDDR2 Address/Command/Control timing specification .................................... 64 7.6.2 LPDDR2 write timing specification ............................................................................... 65 7.6.3 LPDDR2 read timing specification ............................................................................... 67

8. Reset .......................................................................................................................... 68

9. Boundary Scan (JTAG1149.1) Functions ................................................................. 70

9.1 Boundary Scan Interface .............................................................................................................. 70

9.2 State Machine ................................................................................................................................. 70

9.3 EyeQ3 TAP Controllers.................................................................................................................... 70

9.4 MIPS JTAG Instruction Register ..................................................................................................... 70

9.5 System JTAG Instruction Register ................................................................................................. 71

9.6 Boundary Scan Register (BSR) ...................................................................................................... 71

9.6.1 Express and Normal BSRs ............................................................................................... 71

9.7 EyeQ3® Device ID Register........................................................................................................... 72

10. Power-On Configurations......................................................................................... 73

10.1 sfi_d0 .................................................................................................................................................. 73

10.2 sfi_d1 = mode1 ................................................................................................................................ 73

Page 8: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Audience and Scope

11/18/201511/9/2015 8

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

10.3 sfi_d(2-3) = board version .............................................................................................................. 73

10.4 GPIO(8:2) = PowerMode (8:2) ...................................................................................................... 73

10.5 por_vdd – Power On Reset ........................................................................................................... 74

10.6 ntrst_n –JTAG Reset ........................................................................................................................ 74

10.7 clk_in and clk_out ........................................................................................................................... 74

11. External Connection Examples ............................................................................... 76

11.1 DDR-SDRAM ..................................................................................................................................... 76

11.1.1 DDR supported................................................................................................................ 76

11.2 Flash memory .................................................................................................................................. 77

11.2.1 Serial flashes supported ................................................................................................. 77

11.3 Image sensor connection ............................................................................................................. 78

12. Chip Package Data ................................................................................................. 80

12.1 Mechanical Data ........................................................................................................................... 80

12.2 Package Thermal Data ............................................................................................................. 8783

12.2.1 Operational Thermal Data ....................................................................................... 8783 12.2.2 Package Related Temperature Data .................................................................... 8783

12.3 Package Solder Mask ................................................................................................................ 8884

13. Special Considerations and Checklist ................................................................ 8985

13.1 Power considerations ................................................................................................................ 8985

13.2 PCB considerations .................................................................................................................... 8985

13.2.1 DDR Routing Considerations for Good Signal Integrity ....................................... 8985

Page 9: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Audience and Scope

11/18/201511/9/2015 9

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

List of Figures Figure 1: EyeQ3® Block Diagram ........................................................................................................... 14

Figure 2: Video Channels ......................................................................................................................... 18

Figure 3: SIM3 in Online Mode................................................................................................................. 22

Figure 4: SIM3 in Offline Mode ................................................................................................................ 23

Figure 5: PDTrace Mictor Connections .................................................................................................. 24

Figure 6: EyeQ3® Pinout Diagram .......................................................................................................... 26

Figure 7: EyeQ3® balls top-view North-West ........................................................................................ 27

Figure 8: EyeQ3® balls top-view North-East ......................................................................................... 28

Figure 9: EyeQ3® balls top-view South-West........................................................................................ 29

Figure 10: EyeQ3® balls top-view South-East ....................................................................................... 30

Figure 11: I2C timing waveform .............................................................................................................. 57

Figure 12: RGMII TX timing ........................................................................................................................ 59

Figure 13: RGMII RX timing ....................................................................................................................... 59

Figure 14: Video Input Interface inputs timing ..................................................................................... 60

Figure 15: Video Output Interface outputs timing .............................................................................. 61

Figure 16: PDTrace Timing Diagram ....................................................................................................... 62

Figure 17: System Set-Up and Hold Uncertainties and Margin ......................................................... 63

Figure 18: LPDDR2 Command/Address/Control Timing Diagram .................................................... 64

Figure 19: LPDDR2 Write Timing Diagram .............................................................................................. 66

Figure 20: LPDDR2 Read Timing Diagram ............................................................................................. 67

Figure 21: Application diagram of the crystal oscillator .................................................................... 74

Figure 23: Two 32-bit data width LPDDR2 devices interface ............................................................ 76

Figure 24: Single 32-bit data width LPDDR2 device interface .......................................................... 77

List of Tables Table 1: LPDDR2-SDRAM ball description ............................................................................................. 31

Table 2: Vision Serial Flash ball description ........................................................................................... 32

Table 3: Video Interface ball description ............................................................................................. 33

Table 4: Video Output Interface balls description .............................................................................. 34

Table 5: PDTrace Interface ball description ......................................................................................... 35

Table 6: Ethernet Interface ball description ......................................................................................... 35

Table 7: I2C balls description .................................................................................................................. 36

Page 10: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Audience and Scope

11/18/201511/9/2015 10

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Table 8: UART balls description ............................................................................................................... 37

Table 9: CAN balls description ................................................................................................................ 38

Table 10: SPI balls description ................................................................................................................. 38

Table 11: GPIO / Timer balls description ............................................................................................... 39

Table 12: Clocks, Resets, Interrupts, Analog pins description ........................................................... 42

Table 13: Jtag0 for boundary balls scan ............................................................................................... 45

Table 14: Power pin description ............................................................................................................. 45

Table 15: NC pin description ................................................................................................................... 47

Table 16: Absolute maximum ratings .................................................................................................... 48

Table 17: Voltage variation ..................................................................................................................... 49

Table 18: Steady state current Power ................................................................................................... 49

Table 19: 1.8V DC IO Characterization* ............................................................................................... 51

Table 20: 3.3V DC IO Characterization* ............................................................................................... 51

Table 21: LPDDR2 Interface DC Electrical Characteristics ................................................................ 52

Table 22: Crystal Input .............................................................................................................................. 53

Table 23: Serial Port Interface timing(2)

.................................................................................................. 54

Table 24: Serial Flash SDR & DDR Timing (3.3V@15pF/30pF load) .................................................... 57

Table 25: I2C Interface Timing(Fast Mode Plus – 1Mbs) ..................................................................... 57

Table 26: RGMII TX Timing ......................................................................................................................... 59

Table 27: RGMII RX Timing ........................................................................................................................ 59

Table 28: Video Input Interface timing .................................................................................................. 61

Table 29: Video Output Interface timing .............................................................................................. 61

Table 30: PDtrace timing (3.3V) .............................................................................................................. 62

Table 31: LPDDR2 Interface AC Electrical Characteristics ................................................................ 63

Table 32: LPDDR2 Command/Address/Control Timing Specifications ........................................... 65

Table 33: LPDDR2 Write Timing Specifications...................................................................................... 66

Table 34: LPDDR2 Read Timing Specifications ..................................................................................... 67

Table 35: Supported JTAG Instructions of EyeQ3® ............................................................................. 71

Table 36: Package Thermal Data ...................................................................................................... 8783

Table 37: Package Temperature ratings .......................................................................................... 8783

Table 38: Recommended Skew Budgets ......................................................................................... 9086

Page 11: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Audience and Scope

11/18/201511/9/2015 11

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

1. Audience and Scope This data sheet provides the technical details of the EyeQ3® system. This will help

technical personnel understand the various EyeQ3® system components, including

their features, characteristics, and connectivity options.

Section ‎2‎2 contains a glossary of the mnemonics used in this document; section 3

provides an overview of the system.

Section ‎4‎4 describes EyeQ3® system architecture as a whole. A brief description is

provided together with the main features of the various EyeQ3® system peripherals,

including MIPS1004K CPU, Vector Microcode Processor (VMP), memories and

video interfaces.

Section ‎5‎5 lists the EyeQ3® software and hardware development tools.

Section ‎6‎6 describes the pinouts of the EyeQ3® system peripherals which includes a

depiction of the overall EyeQ3® pinout).

Section ‎7‎7 provides the AC and DC electrical specifications and characteristics as

well as interface timing details and diagrams for system components.

Section ‎8‎8 describes the JTAG configuration. Section ‎10‎10 provides power-on

configurations, including diagrams of the crystal oscillator hook up.

External connection examples are provided in Section ‎11‎11, including for SDRAM

and Flash memory as well as various configurations of vision sensor systems.

Physical details of EyeQ3® package are provided in Section ‎12‎12, including thermal

data details.

Section ‎13‎13 includes special considerations for balls, power, and the PCB.

Page 12: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Acronyms and Abbreviations

11/18/201511/9/2015 12

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

2. Acronyms and Abbreviations Mnemonic Description

AHB AMBA High Performance Bus

AXI Advanced eXtensible Interface

BALL Package’s pin

CAN Controller Area Network

CIS CMOS Image Sensor

CPU Central Processing Unit

DMA Dynamic Memory Access

DDRAM Double Data Rate Dynamic Random Access Memory

DSP Digital Signal Processor

EEPROM Electrically Erasable Programmable Read-Only Memory

EPM EyeQ3® Processing Module

ESD Electrostatic Discharge

ETM Embedded Trace Module

FIFO First In First Out

GND Ground

GPIO General Purpose Input Output

HSBGA Heat Slug Ball Grid Array

ICE In Circuit Emulator

JTAG IEEE standard boundary scan protocol

LVDS Low Voltage Differential Signalling

OCP Open Core Protocol (bus)

PCB Printed Circuit Board

PLL Phase Locked Loop

POR Power On Reset

RGMII Reduced Gigabit Media Independent Interface

RISC Reduced Instruction Set Computer

ROM Read Only Memory

SIM Serial Interface Module

SoC System On Chip

SRAM Static Random Access Memory

TCM Tightly Coupled Memory

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

Page 13: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Overview

11/18/201511/9/2015 13

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

3. EyeQ3® Overview The Mobileye EyeQ3® System-on-Chip (SoC) is the third-generation Vision-System-

on-Chip produced by Mobileye. Following the success of its two predecessors -

EyeQ® & EyeQ2® - the EyeQ3® SoC offers a solution for computationally

intensive, real-time visual recognition and scene interpretation applications that can

be customized for use in intelligent vehicle systems. The chip architecture is designed

to maximize cost performance by executing a full-fledged application on a single

ultra-low-cost chip. An example of such an application is low-cost Adaptive Cruise

Control using a single video input source. The EyeQ3® system detects vehicles,

motorcycles, pedestrians, and road markings to provide an intelligent driver-

assistance system.

The EyeQ3® is completely programmable to accommodate a wide range of vision

processing applications beyond the automotive field.

To maximize total system cost performance, all peripheral circuits are integrated into

the EyeQ3®, including dual CAN, UARTs, I2C, SPI interfaces. Dual Data Rate 64bit

LPDDR2 controller, 32bit parallel GPIO, timers, high resolution Video interface and

1Gb 1GB Ethernet interface unit.

The EyeQ3® is manufactured using the STMicroelectronics 40 nanometer-low power

technology and is designed to comply with cabin-grade automotive standard AEC-

Q100.

EyeQ3® main features:

On Chip Processors:

Four floating point, hyper-thread, cache-coherent 32bit RISC 1004KfMIPS CPU

Four custom Vector Microcode Processors (VMPs)

800Mb/sec LPDDR2 SDRAM Controller

Serial Flash Interface (SFI) Serial Multi-SPI DDR/SDR FLASH/SRAM Controller

Arteris Interconnect

Three 16/12/8-bit 2Mpixel Video and Image preprocessing input ports

16-bit 2Mpixel Video output.

Two CAN ports (1Mbps)

Two UART ports (5Mbps)

Two I2C Interfaces (1Mbs)

Two SPI interfaces (31.25M (Master) / 15.62 (Slave) )

32-bit General Purpose I/O (GPIO)

Eight Timers (max output frequency 62.5MHz)

1Gb Ethernet / Audio Video Bridge (AVB)

Power management

Page 14: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Architecture

11/18/201511/9/2015 14

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

4. EyeQ3® Architecture The EyeQ3® architecture consists of one quad floating point, hyper-thread 64bit

RISC 1004KMIPS CPU, four custom Vector Microcode Processors (VMPs), and

several other peripherals. The on chip power management can turn off and on several

processors by SW in order to budget the device power dissipation and operation

temperatures.

Figure 1: EyeQ3® Block Diagram

OCP

EyeQ3

block diagram D

FI 2

.1

4b

Da

tab

ah

n

/ 1

28b

LPDDR2 Controller

Interconnect &

Quality of Service

OCP

OCP

16b

2x

SPI

2x

I2C

2x

CAN

8X

Timer

APB 32b

16b

MIPS-1004K with

Cache-coherency

Ca

ch

e-c

oh

ere

ncy

OCP

IOC

U

OCP

1Gbs Ethernet /

Audio Video Bridge

2x

UART

32x

GPIO

8b

OCP

OCP VMP3

34Kf32/32K

D/I$

16KB ECC iSRAM

AXI

OCP

34Kf32/32K

D/I$

34Kf32/32K

D/I$

34Kf32/32K

D/I$

50

0M

hz

Scheduler

64/32b

DDR SDRAM LPDDR

400/533MHz

OCP

OCP

32b CRCOCP

OCP

DMAs & CTR

3xPar

Video_in

1xPar

Video_out

AXI

SlaveMaster2x Temp

Sensor

3x

PLLs

16b

16b

AHB 32b

500Mhz

VMP3

VMP3

VMP3

2.5V 3x

DC2DC

AHB 32b

16b

PDTrace

DM

As

DM

As

DM

As

DM

As

Serial Flash

Quad DDR/SDR

I/F

RGMII

sFlash

LPDDR2 PHY

Page 15: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Architecture

11/18/201511/9/2015 15

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

The EyeQ3® architecture employs an Arteris interconnect block to route the multiple

master ports to the various slave ports, and enables concurrent operation over 128bit

busses. The interconnect block offers the high connectivity scheme needed to support

the demanding data bandwidth required for vision processing. Slave port bus

contention is resolved by the interconnect block which decides on the winning master

according to its priority scheme.

All the VMPs work in parallel, using their own DMA controller to transfer data

between their local memories and off-chip or on-chip memories.

A high-speed, 64-bit width, 16Kbyte, on-chip ECC SRAM is connected to the

interconnect block for fast memory storage.

A separate 32-bit low-bandwidth Peripheral Bus (APB) is provided to connect all of

the various peripherals (e.g., CAN, UART, I2C, etc.).

4.1 MIPS1004K CPU Sub-System

EyeQ3® employs the MIPS1004Kf 500MHz cache coherent processor system which

contains four 1004Kf (34Kf with cache coherency support) CPUs. Three out of four

CPUs can be powered off/on by SW.

4.1.1 MIPS Cores Configuration

* One Virtual Processor Engine (VPE)

* Two Task Contexts (TCs)

* Memory Map Unit (MMU) Type: TLB

* 16 dual entries in JTLB

* 2:1 core clock to FPU clock

* Load/Store unit

Eight FSB entries

Nine Load-Queue entries

Inter-Thread Communications

* PRID company options field = 25

* ICache

32KB Cache

* DCache

CUT1: 64K DCache w/o ECC; CUT2: 32KB DCache w/ECC

Fixed aliasing in HW

* Parity Enabled

* Debug Config Options

* EJTAG HW Breakpoint Options

Four Instruction breakpoints

Two Data breakpoints

* MIPS Trace Options

Page 16: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Architecture

11/18/201511/9/2015 16

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Trace Enabled

Off Chip Trace Memory

4 Triggers

Two-bit source field in trace word not enabled

* Probe Interface Block (PIB) options—16b Trace Data width for off chip memory

4.1.2 Coherence Manager Configuration

General:

Data Memory Port Interface: 64 bits

Exception Base Reset for each Core: 0xB000_0000

Interrupts:

Number of Interrupts: 48

No External Interrupt Controller

Interrupts: FdcInt, SWInd, PerfInt and TimerInt are router by GIC.

ITU:

16 FIFOs

ITU RS Entries: 9

4.2 Vector Microcode Processor (VMP)

Designed by Mobileye and customized to implement efficiently vision algorithms.

The four VMP modules are generic vector processing units without cache. Each

VMP connects to the Interconnect via its own OCP bus (Master port). Each Unit is

also connected to the Interconnect via its AHB bus (Slave port). Each VMP has the

following features:

Vector Microcode machine

VLIW

Each field is a SIMD

Each Instruction takes one clock

o Latency is 4 clocks

o Pipeline is handled by the compiler automatically.

o Operation at 500MHz

o The four VMPs can be powered off/on by sw

o Program and Data memories are local:

No cache

o Deterministic accesses

Instruction example (dx):

Page 17: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Architecture

11/18/201511/9/2015 17

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

{R0=Read0; Next0; R1=R0;(R2, R0)=COMB(R1, R0);

R3=HSUB(R1, R2); Write1(R3); Next1; Cont(0) }

4.3 Arteris Interconnect Block

The Interconnect block (licensed from Arteris) offers the high connectivity scheme

needed to provide the required data bandwidth of the EyeQ3® vision processing. It is

referred to as the NoC (Network on a Chip).

The NoC is comprised of 10 clock domains to connect the various cores.

4.4 Video Input Interfaces

The video interface block supports the capture of three high dynamic-range (90-

120dB), color or monochrome image video streams, each with a maximum of 8k x 8k

image resolution (i.e., components). The video interface is always in slave mode (i.e.,

sync signals are received from image sensor). The EyeQ3® provides a glueless

interface to the image sensor, which it configures via an I2C or GPIO interface.

Typical image sensors include Aptina’s 12-bit MT9M025 devices and future 16-bit

image sensors.

The video interface, upon receiving the video stream, performs pixel pre-processing

and then stores the modified 8/16bit pixel images.

The video interface features include:

Three parallel video-in ports

Programmable capture frame size up to input size (max: 8k x 8k components)

Support for both progressive and interlaced scans (de-interlacing done in DMA).

Synchronization support using data bus according to ITU-R BT.656.

Five channels for the three video-in ports (see Figure 2: Video Channels below),

with separated Filter, and Histogram for each channel.

o Sub sampling for horizontal and vertical configurable separately (step size 0-

31)

o 16bit curve approximation. One curve for each channel (with bypass option)

o Histogram supports different weights for different areas of the frame; as well as

supporting windowing (horizontal and vertical offset and size) and sub-

sampling (step size 0-31 in either horizontal, vertical or both)

o Multiple pixel arrangements - bursts from FIFOs may reverse pixel order

o Header and footer from image sensor can be captured without going through

sub-sampling and correction process.

Max pclk frequency:

o 100MHz when Histogram is enabled.

o 200MHz when Histogram is disabled.

Page 18: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Architecture

11/18/201511/9/2015 18

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Max mclk frequency – 250MHz/n where n>1.

The figure below shows the possible video channels that can be used by the three

video input interfaces. VIA can use channels 1 to 3, VIB can use channels 3 to 5 and

VIC can use channel 5. Accordingly, the video block must be initially configured by

software to connect either VIA or VIB to channel 3 and either VIB or VIC to channel

5.

Figure 2: Video Channels

Image

sensor

16bit

Image

sensor

16bit

Image

sensor

16bit

V

I

A

V

I

B

V

I

C

Channel 2

Channel 1

Channel 4

Channel 5

Channel 3

EyeQ 3 Video Interface

4.5 Video Output Interface

The video output interface supports the display of one high dynamic-range 16-bit

color or monochrome image video stream, with a maximum of 8k x 8k image

resolution (components). The video output interface supports Master Mode (i.e.,

driving syncs to image sensor).

The essential features of the output interface are:

Supports RGB (5-6-5, 16 bit), Y:Cb:Cr 4:2:2 (8bit/component; 8 or 16 bit/pclk)

Supports format change from RGB to Y:Cb:Cr 4:2:2

Output frame size – up to 8k x 8k

LUT for data generation

64bit Internal memory word width

o 16bit components stored consecutively

o 8bit components stored as 3 consecutive components per 32bit (padded).

Max pclk frequency – 250MHz/n where n>1.

Page 19: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Architecture

11/18/201511/9/2015 19

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

4.6 1Gb Ethernet / AVB

The 1GB Ethernet interface enables a host to transmit and receive data over Ethernet

in compliance with the IEEE 802.3-2005 standard.

The AVB is compliant with the following standards:

IEEE 802.3-2005 for Ethernet MAC, Reduced Gigabit Media Independent

Interface (RGMII).

IEEE 1588-2008 standard for precision networked clock synchronization

IEEE 802.1-AS, version D6.0 and 802.1-Qav, version D6.0 for Audio Video (AV)

traffic.

AMBA 3.0 for AXI Master/Slave ports.

The 1GB Ethernet interface supports 10/100/1000 Mbps data transfer rates by RGMII

interface to communicate with an external PHY.

The RGMII frequencies are programmable to 2.5/25/125MHz to support data rates of

10/100/1000 Mbps, respectively. It should be noted that the JEDEC standard for Tx

skew is not supported (see timing section).

The 1GB Ethernet interface contains:

1024 Core Registers.

23 DMA Registers.

2 RX FIFO in size 4KB (each FIFO)

1 TX FIFO in size 4KB.

4.7 On-chip memory

EyeQ3® supports several on-chip memories equipped with parity check with the

following features:

16-KByte, 64-bit data width, 200MHz, single-cycle memory with ECC (Error

Code Correction) mechanism.

More than 640-KByte memory spread amongst the four VMPs with parity check.

More than 100-KByte memory for the four Video I/Fs with parity check.

More than 380-KByte cache memory for the MIPS 1004K system with parity

check.

4.8 Off-chip memory

EyeQ3® supports several off-chip memories with the following features:

64/32-bit width, external LPDDR2 Mobile Double Data Rate SDRAM.

Multi SPI (single, dual and quad) Serial Flash Interface (SFI developed by

Mobileye). The SFI supports SPI NOR and NAND Flash of all the main vendors

(e.g., Micron, Spansion, Winbond, Macronix).

Page 20: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Architecture

11/18/201511/9/2015 20

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

4.9 Peripherals

The EyeQ3® supports numerous peripherals which are located on the Arteris

Interconnect Block-SL0:

Serial Interfaces:

o Two UART controller

o Two 1Mb CCAN (Bosch) controllers

o Two 1Mbs I2C Controllers that support clock stretching

o Two SPI Controllers - 31.25Mbs (Master) / 15.62Mbs (Slave)

o 125Mb Serial Quad DDR/SDR controller

32-bit GPIO

Eight timers, including one Watch-Dog timer

Three On-Chip PLLs

Power management

Two Temperature Sensors - Two on-chip temperature sensors are employed in the

EyeQ3 – one near the MIPS cores and the other near the VMP cores. Each sensor

is calibrated at room temperature (calibration is set during testing by fuses) and

provides junction temperature data within an accuracy of +/-6°C for temperatures

above 100°C.

Page 21: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Development Tools kit

11/18/201511/9/2015 21

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

5. EyeQ3® Development Tools kit The sections below list the EyeQ3® software and hardware development tools.

5.1 EyeQ3® Software Development Kit (SDK) Tools

The EyeQ3® software-development tools allow the customer to develop a product

based on EyeQ3®. The software development tools include:

HW Development board –EPM3 (EyeQ3® Processing Module)

EyeQ3® HIL (HW In Loop)

MIPS1004K tools

o MIPS C++ compiler

o MIPS assembler

o MIPS linker

o MIPS source-level debugger

o MIPS profiling, translating simulator

VMP s/w development tools

o Assembler & linker

o Clock-accurate simulator

o Compilers for high-level languages (EyeC - a C dialect with extensions for

vector processing, plain C and Forth)

o A graphical debugger

o A build & test system (both for standalone testing and integration with

applications targeted at the external CPUs - the MIPS cores)

o Standard libraries

o Hyper-Threads aware custom RTOS and Peripherals drivers

o EQC (EyeQClient) application: Host Logging/Playback/Testing tool

o Vision algorithms libraries

o Quick Start examples

5.2 EyeQ3® Development platform

An EyeQ3® based Development Vision System includes the following modules:

EyeQ3® HW In Loop (EyeQ3® HIL)

Up to three CMOS Image Sensor camera modules (CIS)

FS2 core debug tools (PDtrace and JTAG)

An EyeQ3® Processing Module (EPM3) integrated into a SIM3 PCB system is

shown below (in both “online” and “offline” configurations):

Page 22: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Development Tools kit

11/18/201511/9/2015 22

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Figure 3: SIM3 in Online Mode

Page 23: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Development Tools kit

11/18/201511/9/2015 23

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Figure 4: SIM3 in Offline Mode

Page 24: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

EyeQ3® Development Tools kit

11/18/201511/9/2015 24

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

5.3 EyeQ3® Debug Configurations

There are two ways to build a PCB to allow for various levels of debug capability:

(1) JTAG; (2) JTAG & PDTrace;

The following diagram illustrates the FS2/Lauterbach probe connector which

requires the PDTrace and JTAG signals. Also shown are the voltage level shifters

required.

Figure 5: PDTrace Mictor Connections

Page 25: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 25

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

6. Pin List This section describes the pin connections of the various EyeQ3® system peripheral

devices. Included here are various diagrams as well as detailed pin description

sections divided according to functional groups.

It should be noted that the EyeQ3 features programmable power rings to allow

various IO groups to operate and different voltage levels. These power rings often

serve multiple functional groups. As such, it is important that the user be sure to

program and power all IOs of a specific power ring consistently. Please see section

‎10.4‎10.4 “GPIO(8:2) = PowerMode (8:2)” for important configuration details.

The power rings are noted at the bottom of every section of pins related to that ring.

If an application has no need for any IOs of a certain power ring, it is recommended

to connect the Voltage input (e.g., for ring2: VDDE_R2_1V8_3V3) for that ring to

GND.

Figure 6: EyeQ3® Pinout Diagram

Figure 6: EyeQ3® Pinout Diagram

Figure 6 below shows the overall EyeQ3® pinout.

All tables in this section use the following abbreviations:

A Analog signal

B Bi-directional

H Activity High

I Input

L Activity Low

LH Programmable

O Output

X(m:n) m is MSB and n is LSB

Field Code Changed

Formatted: Body Text, Indent: Firstline: 1.23 cm, Tab stops: 0 cm, Left

Page 26: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 26

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Figure 6: EyeQ3® Pinout Diagram

64 BIT

MDDR

SDRAM

DDR_A(14:0)

DDR_BA(2:0)

DDR_DQ(63:0)

DDR_DQS(7:0)

DDR_DQS_N(7:0)

DDR_DM(7:0)

DDR_RAS_N

DDR_CAS_N

DDR_CLK(1:0)

DDR_CLK_N(1:0)

DDR_CLKE(1:0)

DDR_CS_N(1:0)

DDR_RETENTION_N

DDR_VREF

DDR_ATO

DDR_DTO(1:0)

DDR_ZQ

GPIO

CANA_TX

CANA_RX

CANB_TX /GPIO22 (DEF:GPIO)

CANB_RX /GPIO23 (DEF:GPIO)

PDT(15:0)

PDCLK

PDT_TRIGIN

PDT_ TRIGOUT

PDT_PROBE_N

PDT_DM

NTRST_N

TDI

TMS

TCK

TDO

TESTEN

VIA_D(15:0)

VIA_PCLK

VIA_VSYNC

VIA_HSYNC

VIA_FIELD

VIA_MCLK

16 BIT

VIDEO

INPUT

CLK &

RESET

MIPS

&

PDTRACE

I/O

JTAG

CAN

UART /

GPIO

EYEQ3 FCTEBGA

POWER

GND

VDDE_VDDQ_ISLAND_1V8_1V5_1V2

VDD_1V2

VDDE_R(0:1)_1V8_1V5_1V2

VDDE_R(2:8)_1V8_3V3

VIB0_D(15:0)

VIB0_PCLK

VIB0_VSYNC

VIB0_HSYNC

VIB0_FIELD

VIB0_MCLK

UARTA_TX/GPIO18 (DEF:GPIO)

UARTA_RX/GPIO19 (DEF:GPIO)

UARTB_TX/GPIO20 (DEF:GPIO)

UARTB_RX/GPIO21 (DEF:GPIO)

I2CB_SDA

I2CB_CLK

VIC_D(15:0)

VIC_PCLK

VIC_VSYNC

VIC_HSYNC

VIC_FIELD

VIC_MCLK

VO_D(15:0) / VIB1__D(15:0)

VO_PCLK / VIB1__PCLK

VO_VSYNC / VIB1__VSYNC

VO_HSYNC / VIB1__HSYNC

VO_EN / VIB1__FIELD

NU / VIB1__MCLK

I2CA_SDA

I2CA_CLK

SFISFI_CK

SFI_CS(1:0)

SFI_D(3:0)

I2C

I2C

16 BIT

VIDEO

OUTPUT

1GB

ETHRNT

/ AVB

RGMII_TD[3:0]

RGMII_TX_CTL

RGMII_TX_CLK

RGMII_RD[3:0]

RGMII_RX_CTL

RGMII_RX_CLK

SMA_MDIO

SMA_MDC

CAN/

GPIO

SPIA_DO/GPIO24 (DEF:GPIO)

SPIA_DI/GPIO25 (DEF:GPIO)

SPIA_CK/GPIO26 (DEF:GPIO)

SPIA_CS/GPIO27 (DEF:GPIO)

SPIB_DO/GPIO28 (DEF:GPIO)

SPIB_DI/GPIO29 (DEF:GPIO)

SPIB_CK/GPIO30 (DEF:GPIO)

SPIB_CS/GPIO31 (DEF:GPIO)

GPIO0 /TIMER_CK0

GPIO1 /TIMER_CK1

GPIO2 /TIMER_CK2 / PWRMODE2

GPIO3 /TIMER_CK3 / PWRMODE3

GPIO4 /TIMER_EOC0 / PWRMODE4

GPIO5 /TIMER_EOC1 / PWRMODE5

GPIO6 /TIMER_EOC2 / PWRMODE6

GPIO7 /TIMER_EOC3 / PWRMODE7

GPIO8 /TIMER_EXT0_INCAP1 / PWRMODE8

GPIO9 /TIMER_EXT0_INCAP2

GPIO10 / TIMER_EXT0_OUTCMP1

GPIO11 / TIMER_EXT0_OUTCMP2

GPIO12 / TIMER_CK4

GPIO13 / TIMER_EOC4

GPIO14 / TIMER_EXT1_INCAP1

GPIO15 / TIMER_EXT1_INCAP2

GPIO16 / TIMER_EXT1_OUTCMP1

GPIO17 / TIMER_EXT1_OUTCMP2

POR_VDD

RESETI_N

RESETO_N

CLK_IN

CLK_OUT

XINT (3:0)

3V3VREG1_COREPWR/VREG1_COREGND

2V5VREG1_COREPWR

3V3VREG2_COREPWR/VREG2_COREGND

2V5VREG2_COREPWR

3V3VREG3_COREPWR/VREG3_COREGND

2V5VREG3_COREPWR

1V2PLLA_COREPWR/GND

1V2PLLB_COREPWR/GND

1V2PLLC_COREPWR/GND

1V2OSC_COREPWR/GND

1V8TEMPSENS0_COREPWR

1V8TEMPSENS0_COREGND

1V8TEMPSENS1_COREPWR

1V8TEMPSENS1_COREGND

FUSE_HV

16 BIT

VIDEO

INPUT

16 BIT

VIDEO

INPUT

UART /

GPIO

SPI /

GPIO

SPI /

GPIO

Page 27: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 27

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Figure 7: EyeQ3® balls top-view North-West

1 2 3 4 5 6 7 8 9 10 11

A

VDDE_R0_

1V8_1V5_1

V2

GNDDDR_RAS_

NGND

DDR_CK_N

1DDR_CK1 GND DDR_CK0

DDR_CK_N

0GND DDR_DQS0

B GND DDR_A11 NC4

VDDE_R0_

1V8_1V5_1

V2

DDR_CAS_

N

DDR_CS_N

1

VDDE_R0_

1V8_1V5_1

V2

DDR_ATO DDR_ZQ

VDDE_R0_

1V8_1V5_1

V2

DDR_DM0

C GND DDR_A13 DDR_A12 DDR_BA2 DDR_A10 DDR_BA1 DDR_BA0 DDR_A9DDR_CS_N

0NC3 DDR_DQ4

DDDR_DQS_

N4

VDDE_R1_

1V8_1V5_1

V2

DDR_A14 NC5 DDR_CKE0 DDR_A6 DDR_A8 DDR_A5 DDR_A4 DDR_A1 DDR_DQ6

E DDR_DQS4 DDR_DM4 DDR_DQ32DDR_RETE

NTION_NDDR_CKE1 DDR_A7 DDR_A3 DDR_A2 DDR_A0 DDR_DTO0 DDR_DTO1

F GND DDR_DQ33 DDR_DQ35 DDR_DQ34

VDDE_VDD

Q_ISLAND_

1V8_1V5_1

V2

VDDE_VDD

Q_ISLAND_

1V8_1V5_1

V2

GND

VDDE_R0_

1V8_1V5_1

V2

VDD_1V2 VDD_1V2 VDD_1V2

GDDR_DQS_

N5

VDDE_R1_

1V8_1V5_1

V2

DDR_DQ36 DDR_DQ37 VREF VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2

H DDR_DQS5 DDR_DM5 DDR_DQ43 DDR_DQ39 DDR_DQ38 GND VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2

J GND DDR_DQ44 DDR_DQ41 DDR_DQ42 DDR_DQ40 VDD_1V2 VDD_1V2 VDD_1V2 GND GND GND

KDDR_DQS_

N6DDR_DM6 DDR_DQ45 DDR_DQ46 DDR_DQ47

VDDE_R1_

1V8_1V5_1

V2

VDD_1V2 VDD_1V2 GND GND GND

L DDR_DQS6

VDDE_R1_

1V8_1V5_1

V2

DDR_DQ51 DDR_DQ48 DDR_DQ50

VDDE_R1_

1V8_1V5_1

V2

VDD_1V2 VDD_1V2 GND GND GND

M GND DDR_DQ52 DDR_DQ53 DDR_DQ54 DDR_DQ49 GND VDD_1V2 VDD_1V2 GND GND GND

Page 28: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 28

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Figure 8: EyeQ3® balls top-view North-East

12 13 14 15 16 17 18 19 20 21 22 23

DDR_DQS_

N0GND DDR_DQS1

DDR_DQS_

N1GND DDR_DQS2

DDR_DQS_

N2GND DDR_DQS3

DDR_DQS_

N3GND GND A

VDDE_R0_

1V8_1V5_1

V2

DDR_DQ1

VDDE_R0_

1V8_1V5_1

V2

DDR_DM1 DDR_DQ23 DDR_DM2

VDDE_R0_

1V8_1V5_1

V2

DDR_DQ30 DDR_DM3

VDDE_R0_

1V8_1V5_1

V2

GND VDD_1V2 B

DDR_DQ5 DDR_DQ0 DDR_DQ9 DDR_DQ8 DDR_DQ22 DDR_DQ18 DDR_DQ16 DDR_DQ26 DDR_DQ27 NC1 TMS VDD_1V2 C

DDR_DQ3 DDR_DQ2 DDR_DQ13 DDR_DQ10 DDR_DQ20 DDR_DQ19 DDR_DQ17 DDR_DQ28 DDR_DQ25 NC2 TCK TDO D

DDR_DQ7 DDR_DQ14 DDR_DQ15 DDR_DQ12 DDR_DQ11 DDR_DQ21 DDR_DQ31 DDR_DQ29 DDR_DQ24 TDI NTRST_N TESTEN E

GND VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2

VDDE_R0_

1V8_1V5_1

V2

GND FUSE_HV XINT1 XINT0 NC0 RESETO_N F

VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2VDDE_R7_

1V8_3V3GPIO10 GPIO8 GPIO11 POR_VDD RESETI_N G

VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2VDDE_R7_

1V8_3V3

VDDE_R7_

1V8_3V3GPIO2 GPIO9 GPIO7 GPIO1 GPIO14 H

GND GND GND GND VDD_1V2 VDD_1V2VDDE_R7_

1V8_3V3GPIO3 GPIO4 GPIO5 GPIO6 GPIO13 J

GND GND GND GND VDD_1V2

1V8TEMPSE

NS1_COREP

WR

1V8TEMPSE

NS1_CORE

GND

GPIO0 GPIO12 SPIB_CK SPIB_DO SPIB_CS K

GND GND GND GND VDD_1V2VDDE_R8_

1V8_3V3

VDDE_R8_

1V8_3V3GPIO15 GPIO16 SPIB_DI I2CA_SCL I2CA_SDA L

GND GND GND GND VDD_1V2 VDD_1V2VDDE_R3_

1V8_3V3

VDDE_R3_

1V8_3V3GPIO17 XINT2 XINT3 GND M

Page 29: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 29

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Figure 9: EyeQ3® balls top-view South-West

NDDR_DQS_

N7DDR_DQ56 DDR_DQ57 DDR_DQ58 DDR_DQ55 VDD_1V2 VDD_1V2

1V8TEMPSE

NS0_CORE

GND

GND GND GND

P DDR_DQS7 DDR_DM7 DDR_DQ60 DDR_DQ59 DDR_DQ63 VDD_1V2 VDD_1V2

1V8TEMPSE

NS0_COREP

WR

GND GND GND

R GND

VDDE_R1_

1V8_1V5_1

V2

DDR_DQ61 DDR_DQ62 VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2 GND GND GND

T GNDVDDE_R5_

1V8_3V3PDT_D2 PDT_D1 PDT_D0

VDDE_R5_

1V8_3V3

VDDE_R5_

1V8_3V3VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2

UVDDE_R5_

1V8_3V3PDT_D5 PDT_D4 PDT_D3 I2CB_SDA

RGMII_RD

1

RGMII_TX_

CTL

VDDE_R5_

1V8_3V3VDD_1V2 VDD_1V2 VDD_1V2

V PDT_D6 PDT_D7 PDT_D8 PDT_D9 I2CB_SCLRGMII_RD

2

RGMII_RD

0

VDDE_R5_

1V8_3V3

VDDE_R5_

1V8_3V3

VDDE_R5_

1V8_3V3

VDDE_R2_

1V8_3V3

W PDT_D10 PDT_D11 PDT_CLKPDT_TRIGO

UTRGMII_TD0

RGMII_TX_

CLK

RGMII_RD

3SMA_MDIO VIB1_PCLK VIB1_FIELD SFI_CS1

Y PDT_D12 PDT_D13 PDT_DMPDT_TRIGI

NRGMII_TD1

RGMII_RX_

CLK

RGMII_RX_

CTLSMA_MDC VIB1_MCLK

VIB1_HSYN

CSFI_CS0

AA PDT_D14 PDT_D15PDT_PROB

E_NRGMII_TD2 RGMII_TD3 VIB1_D4 VIB1_D9 VIB1_D13

VIB1_VSYN

CSFI_D1 SFI_D3

ABVDDE_R5_

1V8_3V3GND VIB1_D0 VIB1_D1 VIB1_D2 VIB1_D7 VIB1_D11 VIB1_D12 VIB1_D14 SFI_D0 SFI_D2

AC GNDVDDE_R5_

1V8_3V3REXT_R5 VIB1_D3 VIB1_D5 VIB1_D6 VIB1_D8 VIB1_D10 VIB1_D15 REXT_R2 GND

1 2 3 4 5 6 7 8 9 10 11

Page 30: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 30

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Figure 10: EyeQ3® balls top-view South-East

GND GND GND GND VDD_1V21V2OSC_CO

REPWR

1V2OSC_CO

REGND

1V2PLLB_C

OREPWRVIA_FIELD VIA_HSYNC VIA_VSYNC GND N

GND GND GND GND VDD_1V21V2PLLA_C

OREPWR

1V2PLLA_C

OREGND

1V2PLLB_C

OREGNDVIA_D7 VIA_PCLK VIA_D15 VIA_D14 P

GND GND GND GND1V2PLLC_C

OREPWR

VREG1_CO

REGND

2V5VREG1_

COREPWR

3V3VREG1_

COREPWRVIA_D11 VIA_MCLK VIA_D12 VIA_D13 R

VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V21V2PLLC_C

OREGND

VREG2_CO

REGND

2V5VREG2_

COREPWR

3V3VREG2_

COREPWRVIA_D10 VIA_D8 VIA_D6 VIA_D9 T

VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2 VDD_1V2VREG3_CO

REGND

2V5VREG3_

COREPWR

3V3VREG3_

COREPWRVIA_D4 VIA_D3 VIA_D2 VIA_D5 U

VDDE_R2_

1V8_3V3

VDDE_R6_

1V8_3V3

VDDE_R6_

1V8_3V3

VDDE_R4_

1V8_3V3

VDDE_R4_

1V8_3V3

VDDE_R4_

1V8_3V3

VDDE_R4_

1V8_3V3VIC_D11 VIC_D13 VIC_D15 VIA_D1 VIA_D0 V

SFI_CK UARTA_TX UARTA_RX VIB0_D0VIB0_VSYN

CVIB0_MCLK VIB0_FIELD VIC_D1 VIC_D4 VIC_D14 CLK_IN CLK_OUT W

SFI_CS2 UARTB_RX UARTB_TX VIB0_D1VIB0_HSYN

CVIB0_PCLK VIB0_D12 VIC_D7 VIC_D8 VIC_VSYNC VIC_HSYNC VIC_FIELD Y

CANB_RX SPIA_DO SPIA_DI VIB0_D3 VIB0_D6 VIB0_D10 VIB0_D15 VIC_D2 VIC_D6 VIC_D12 VIC_PCLK VIC_MCLK AA

CANB_TX CANA_RX SPIA_CK VIB0_D2 VIB0_D7 VIB0_D11 VIB0_D13 VIC_D0 VIC_D3 VIC_D9 GND VDD_1V2 AB

GND CANA_TX SPIA_CS VIB0_D4 VIB0_D5 VIB0_D8 VIB0_D9 VIB0_D14 VIC_D5 VIC_D10 VDD_1V2 GND AC

12 13 14 15 16 17 18 19 20 21 22 23

Page 31: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 31

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

6.1 DDR-SDRAM connectivity

EyeQ3® DDR controller supports LPDDR2 using the signals and pin descriptions as

shown in the table below. The EyeQ3® data port width is configurable to either 32-

bit or 64-bit widths (Note that EyeQ3® LITE data port width is fixed to 32-bit).

Table 1: LPDDR2-SDRAM ball description

Signal name I/O Act Voltage (V)

Curr. (mA)

Reset state

Description

DDR_A(9:0) O H 1.2 0 Command and address (device0)

DDR_A(14:10)/ LP2_DDR_A(4:0)*

O H 1.2 0 Command and address (device1)

DDR_BA(2:0)/ LP2_DDR_A(7:5)*

O H 1.2 0 Command and address (device1)

DDR_RAS_N/ LP2_DDR_A(8)*

O H 1.2 0 Command and address (device1)

DDR_CAS_N/ LP2_DDR_A(9)*

O H 1.2 0 Command and address (device1)

DDR_CS_N0 O L 1.2 1 Chip select (device0)

DDR_CS_N1* O L 1.2 1 Chip select (device1)

DDR_CKE0‡ O H 1.2 0 Clock enable (deivce0)

DDR_CKE1*‡ O H 1.2 0 Clock enable (device1)

DDR_CLK0 O H 1.2 0 Clock (device0)

DDR_CLK_N0 O L 1.2 1 Inverted clock (device0)

DDR_CLK1* O H 1.2 0 Clock (device1)

DDR_CLK_N1* O L 1.2 1 Inverted clock (device1)

DDR_DQ(31:0) B H 1.2 Z Data bus (low bits)

DDR_DQ(63:32) B H 1.2 Z Data bus (high bits)

DDR_DQS(3:0) B H 1.2 Z Data strobe (low bits)

DDR_DQS(7:4) B H 1.2 Z Data strobe (high bits)

DDR_DQS_N(3:0) B L 1.2 Z Inverted data strobe (low bits)

DDR_DQS_N(7:4) B L 1.2 Z Inverted data strobe (high bits)

DDR_DM(3:0) O H 1.2 Z Byte enable (low bits)

DDR_DM(7:4) O H 1.2 Z Byte enable (high bits)

DDR_RETENTION_N I L 1.2 Z Retains ddr_cke state while EyeQ3® supply powered down.

If power down is never employed this pin can be pulled-up.

DDR_VREF A 1.2 reference voltage

Page 32: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 32

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Signal name I/O Act Voltage (V)

Curr. (mA)

Reset state

Description

DDR_ATO O 1.2 Z DDR PHY DLL analog test output

DDR_DTO(1:0) O 1.2 Z DDR PHY DLL digital test output

DDR_ZQ A 1.2 Z External reference to calibrate the output impedance.

NON_PROGAMMABLE POWER RING

* Secondary use of the pins for point to point interface between EyeQ3® and the

LPDDR2 devices (for 64-bit width).

‡ These lines should have pull-downs.

6.2 Serial Flash Interface (SFI)

EyeQ3® provides a Serial Flash Interface to support the internal vision logic (see

below for MCU Serial Flash Interface). This interface allows accesses to SPI NOR

and NAND Flash devices such as: Numonyx, Spansion, Winbond, and Macronix.

The interface implements the Multi-SPI protocol and supports single, dual, quad w/o

ddr mode transfer.

The serial interface has 3 chip selects to support 3 SPI Flash devices: up to 64MB

each .There is option to join spaces: 0 and 1 to one big space of 128MB. The

interface supports SPI Flash frequencies up to 125MHz in SDR mode and up to

62.5MHz in DDR mode.

The pin description is shown in the table below.

Table 2: Vision Serial Flash ball description

Signal name # of balls

I/O Act Voltage (V)

Curr. (mA)

Reset State*

Description

SFI_CK 1 O H 1.8/3.3 4/8 0 Clock – active only when sfi_cs is asserted

SFI_CS(2:0) 3 O L 1.8/3.3 4/8 1 Chip select

SFI_D0

1 I/O H 1.8/3.3 4/8 0 Serial output for single bit data mode or I/O for Dual or Quad mode.

SFI_D1 /

MODE1

1 I/O H 1.8/3.3 4/8 0 Serial input for single bit data mode or I/O for Dual or Quad mode.

Mode pin usage upon power on reset (por_vdd) this pin is used to select SFI sing/quad mode.

SFI_D2 /

MODE2

1 I/O H 1.8/3.3 4/8 1 Write protect (Output) in single or dual data mode I/O in Quad mode.

Should have an external pull-up (to configure unused mode on power-up)

Page 33: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 33

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Signal name # of balls

I/O Act Voltage (V)

Curr. (mA)

Reset State*

Description

SFI_D3 /

MODE3

1 I/O H 1.8/3.3 4/8 1 Hold (Output) in single or dual data mode I/O in Quad mode.

Should have an external pull-up (to configure unused mode on power-up)

POWER RING 2: SFI Voltage is set by GPIO2 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

* When EyeQ3 pin reseti_n is asserted all SFI pins are at tri-state to enable an

external programmer to program the SFI flash content. When EyeQ3 pin

POR_VDD is low (0), even if reseti_n is also asserted, SFI pins are not tri-stated

and thus the external programmer cannot program the SFI flash content. For

further information on reseti_n and its interaction with POR_VDD, see section “‎8‎8

Reset.”

6.3 Video Input Interface

The EyeQ3® provides a glue-less interface to three high dynamic image sensors

(which allow up to 16-bit pixels) to perform video stream capture.

Please note that, though the signal names herein appear as one, they actually refer to

the three separate ports: A, B and C (via, vib and vic ports).

Table 3: Video Interface ball description Signal name # of

balls I/O Act Voltage

(V) Curr. (mA)

Reset State

Description

VIA_D(15:0) /

VIB0_D(15:0) /

VIC_D(15:0)

16 I H 1.8/3.3 - - Video Data input (see note 1 below for internal pull-up configuration)

VIA_HSYNC /

VIB0_HSYNC /

VIC_HSYNC

1 I

LH 1.8/3.3 - Z Horizontal sync (see note 1 below for internal pull-up configuration)

VIA_VSYNC /

VIB0_VSYNC/

VIC_VSYNC

1 I

LH 1.8/3.3 - Z Vertical sync (see note 1 below for internal pull-up configuration)

VIA_PCLK S /

VIB0_PCLK S

/

VIC_PCLK S

1 I LH 1.8/3.3 - - Pixel clock

VIA_MCLK /

VIB0_MCLK /

VIC_MCLK

1 O H 1.8/3.3 4/8

1 Image sensor clock – should be disabled by software if not needed.

VIA_FIELD /

VIB0_FIELD /

VIC_FIELD

1 I H 1.8/3.3 - - Field indication for interlace video (see note 1 below for internal pull-up configuration)

Page 34: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 34

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Signal name # of balls

I/O Act Voltage (V)

Curr. (mA)

Reset State

Description

POWER RING 3: VIA Voltage is set by GPIO3 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

POWER RING 4: VIB0/VIC Voltage is set by GPIO4 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

s note “S” denotes “Schmidt Trigger” buffer

Note (1): a weak (50Kohm) internal pull-down is enabled according to value programmed in the VPCR as shown in the following table (See OLB document for more details):

bit values description

000 (DEFAULT) No input device connected. All pins (d[15:0], hsync,

vsync, field, pclk) have weak internal pull down (50Kohm).

001 8bit input device connected. Unused data (d[7:0]) have weak

internal pull down (50Kohm).

010 10bit input device connected. Unused data (d[5:0]) have weak

internal pull down (50Kohm).

011 12bit input device connected. Unused data (d[3:0]) have weak

internal pull down (50Kohm).

100 16bit input device connected. All pins used, no weak internal pull

downs used.

101,110,111 illegal values will be interpreted as 100.

6.4 Video Output (and alternate Video Input) Interface

The EyeQ3® provides a glue-less interface to video display (which allows up to 16-

bit pixels) to perform video stream display. The pin description is shown in the table

below. This port is also used as an alternate video input that uses video_in channel

#5, see paragraph ‎4.4‎4.4 Video Input Interfaces).

Table 4: Video Output Interface balls description Signal name # of

balls I/O Act Voltage

(V) Curr. (mA)

Reset State

Description

VIB1_D(15:0) / VO_D(15:0) **

16 B H 1.8/3.3 4/8

Z Video stream

DEFAULT is INPUT

VIB1_HSYNC/ VO_HSYNC**

1 B H 1.8/3.3 4/8

Z Horizontal sync

DEFAULT is INPUT

VIB1_VSYNC / VO_VSYNC**

1 B H 1.8/3.3 4/8

Z Vertical sync

DEFAULT is INPUT

VIB1_PCLK /

VO_PCLK** S

1 B H 1.8/3.3 4/8

Z Pixel clock

DEFAULT is INPUT

VIB1_MCLK /

NU

1 O H 1.8/3.3 4/8

1 Image sensor clock

VIB1_FIELD /

VO_EN **

1 B H 1.8/3.3 4/8

- Field indication for interlace video

POWER RING 5: vib1 Voltage is set by GPIO5 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

Page 35: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 35

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

** has a weak (50Kohm) internal pull-down. s note “S” denotes “Schmidt Trigger” buffer

6.5 PDTrace Interface

The EyeQ3® provides a PDTrace port for MIPS debug. The pin description is shown

in the table below.

Table 5: PDTrace Interface ball description

Signal name # of balls

I/O Act Voltage (V)

Curr. (mA)

Reset State

Description

PDT_D(15:0) 16 O H 1.8/3.3 4/8 Z pdtrace data

PDT_TRIGOUT 1 O H 1.8/3.3 4/8 Z pdt trigger output (debug ack)

PDT_PROBE_N*** 1 I L 1.8/3.3 Z pdt enable (low true)

PDT_CLK 1 O H 1.8/3.3 4/8 - pdt clock

PDT_DM 1 O H 1.8/3.3 4/8 1 pdt debug mode entered

PDT_TRIGIN** 1 I H 1.8/3.3 - pdt trigger in (debug request)

POWER RING 5: pdt Voltage 1.8/3.3V is set by GPIO5 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

** has a weak (50Kohm) internal pull-down. *** has a weak (50Kohm) internal pull-up.

6.6 1Gb Ethernet / AVB Interface

The EyeQ3® provides an RGMII connection to communicate with external Ethernet

PHY. The pin description is shown in the table below.

Table 6: Ethernet Interface ball description Signal name # of

balls I/O Act Voltage

(V) Curr. (mA)

Reset State

Description

RGMII_TD[3:0] 4 O H 1.8/3.3 4/8 Transmit Data

RGMII_TX_CTL 1 O H 1.8/3.3 4/8 Transmit Control

RGMII_TX_CLK 1 O H 1.8/3.3 4/8 Transmit Clock

RGMII_RD[3:0]* 4 I H 1.8/3.3 - Receive Data

RGMII_RX_CTL* 1 I H 1.8/3.3 - Receive Control

RGMII_RX_CLK* 1 I H 1.8/3.3 - Receive Clock

SMA_MDIO 1 I/O H 1.8/3.3 4/8 Z Data (DEFAULT is INPUT), should external have pull-up.

SMA_MDC 1 O H 1.8/3.3 4/8 0 Clock

POWER RING 5: Ethernet I/F Voltage is set by GPIO5 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

* CUT1: These inputs do not have internal pull-downs thus the PCB should implement external pull downs if the lines are not used.

CUT2: These inputs have weak (50K) internal pull-downs.

Page 36: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 36

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

6.7 I2C (a/b) Interfaces

The EyeQ3® provides two Master/Slave I2C interfaces to communicate with external

peripherals such as Image Sensors. It supports up to 1Mbs transfer rate (Fast Plus

mode). The pin description is shown in the table below.

Table 7: I2C balls description

Signal name # of balls

I/O Act Voltage (V)

Curr. (mA)

Reset State

Description

I2CA_SDA 1 B H 1.8/3.3 note1 1 I2C data; requires external pull-up according to I2C spec. (See note 3 here)

Even if unused should have external pull-up.

I2CA_SCLK 1 B H 1.8/3.3 note1 1 I2C clock; requires external pull-up according to I2C spec. (See note 3 here)

Even if unused should have external pull-up.

I2CB_SDA 1 B H 1.8/3.3 note1 1 I2C data; requires external pull-up according to I2C spec. (See note 3 here)

Even if unused should have external pull-up.

I2CB_SCLK 1 B H 1.8/3.3 note1 1 I2C clock; requires external pull-up according to I2C spec. (See note 3 here)

Even if unused should have external pull-up.

POWER RING 3: I2CA Voltage is set by GPIO3 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

POWER RING 5: I2CB Voltage is set by GPIO5 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

Notes:

(1) Current Drive for I2C pads (where VDDE is VDDE_R(3,5)_1V8_3V3)

FAST mode (400 KHz) (DEFAULT):

1V8: Drive @0.2*VDDE = 4.5mA-6.0mA

3V3: Drive @0.2*VDDE = 3.5mA-5.5mA

FAST PLUS mode (1MHz):

1V8: Drive @0.2*VDDE = 5.0mA-6.0mA

3V3: Drive @0.2*VDDE = 5.8mA-8.1mA

(2) These pads have are 2 parameters critical for proper function of the interface:

Bus Load Parameter: The pad has programmable external current sources (see MCSR register description in OLB Spec.

– bit “i2c_hload”) which, depending on the load, will add a current source to maintain rise and fall

times. The default is for less than 100pF loads (i.e., no current source used).

Spike Filter Parameter:

The pad has programmable spike filter (see MCSR register description in OLB Spec. – bit

“i2c_filter_en”) - The filter value is fixed in conjunction with High Speed or Fast Plus mode value

(enhs) programmed in I2C IP registers such that when the filter is enabled: if enhs=0 (DEFAULT),

50ns spikes are filtered and if enhs=1, 10ns spikes are filtered.

(3) External Pull-Up Resistor Values (note: “High Speed” values are for Fast Plus also, i.e.,

frequencies up to 3.4Mb/s. The default for EyeQ3 is Fast mode – i.e., frequencies up to 400Kb/s –

the EyeQ3 is programmed to 200Kb/s):

Page 37: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 37

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

6.8 UART (a/b) Interfaces (with alt. GPIO connectivity)

The EyeQ3® provides two UART interfaces to communicate with external

peripherals such as a keyboard. It supports up to 5MHz transfer rate. The pin

description is shown in the table below.

Table 8: UART balls description Signal name # of

balls I/O Act Voltage

(V) Curr. (mA)

Reset State

Description

UARTA_TX /

GPIO18

1 O / B H / LH

1.8/3.3 2/4 z UART transmit data or Programmable general purpose input and output

DEFAULT STATE is GPIO input

UARTA_RX /

GPIO19

1 I / B H / LH

1.8/3.3 2/4 z UART receive data or Programmable general purpose input and output

DEFAULT STATE is GPIO input, if unused should external have pull-up.

UARTB_TX /

GPIO20

1 O / B H / LH

1.8/3.3 2/4 z UART transmit data or Programmable general purpose input and output

DEFAULT STATE is GPIO input

UART_RX /

GPIO21

1 I / B H / LH

1.8/3.3 2/4 z UART receive data or Programmable general purpose input and output

DEFAULT STATE is GPIO input, if unused should external have pull-up.

POWER RING 6: UART Voltage is set by GPIO6 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

6.9 CAN (a/b) Interfaces (with alt. GPIO connectivity)

The EyeQ3® provides two CAN interfaces to communicate with external peripherals,

such as the automobile’s CAN network. EyeQ3® supports up to 1Mbs throughput.

The pin description is shown in the table below.

Page 38: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 38

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Table 9: CAN balls description

Signal name # of balls

I/O Act Voltage

(V)

Curr.

(mA)

Reset State

Description

CANA_TX /

-

1 O H 1.8/3.3 1/4 1 CAN transmit data

CANA_RX /

-

1 I H 1.8/3.3 2/4 Z CAN receive data

CANB_TX /

GPIO22

1 O / B H / LH 1.8/3.3 2/4 Z CAN transmit data or Programmable general purpose input and output

DEFAULT STATE is GPIO input

CANB_RX /

GPIO23

1 I / B H / LH 1.8/3.3 2/4 Z CAN receive data or Programmable general purpose input and output

DEFAULT STATE is GPIO input, if unused should external have pull-up.

POWER RING 6: CAN Voltage is set by GPIO6 (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

6.10 SPI (a/b) Interfaces (with alt. GPIO connectivity)

The EyeQ3® provides two SPI interfaces to communicate with external peripherals.

The maximum throughput frequencies are 31.25MHZ (Master)/15.62MHz (Slave).

The pin description is shown in the table below.

Table 10: SPI balls description

Signal name # of balls

I/O Act Voltage

(V)

Curr.

(mA)

Reset State

Description

SPIA_DO /

GPIO24

1 O / B H / LH 1.8/3.3 2/4 z SPI transmit data or Programmable general purpose input and output

DEFAULT STATE is GPIO input

Note: When SPI is enabled, regardless of the state of the SPI_CS, the data out line is always active and so if multiple slaves are connected this line needs to be tri-stated externally.

SPIA_DI /

GPIO25

1 I / B H / LH 1.8/3.3 2/4 z SPI receive data or Programmable general purpose input and output

DEFAULT STATE is GPIO input

SPIA_CK /

GPIO26

1 B / B H / LH 1.8/3.3 2/4 z SPI clock or Programmable general purpose input and output

DEFAULT STATE is GPIO input

SPIA_CS /

GPIO27

1 B / B H / LH 1.8/3.3 2/4 z SPI chip select or Programmable general purpose input and output

DEFAULT STATE is GPIO input

Page 39: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 39

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Signal name # of balls

I/O Act Voltage

(V)

Curr.

(mA)

Reset State

Description

SPIB_DO /

GPIO28

1 O / B H / LH 1.8/3.3 2/4 z SPI transmit data or Programmable general purpose input and output

DEFAULT STATE is GPIO input

Note: When SPI is enabled, regardless of the state of the SPI_CS, the data out line is always active and so if multiple slaves are connected this line needs to be tri-stated externally.

SPIB_DI /

GPIO29

1 I / B H / LH 1.8, 3.3 2/4 z SPI receive data or Programmable general purpose input and output

DEFAULT STATE is GPIO input

SPIB_CK /

GPIO30

1 B / B H / LH 1.8, 3.3 2/4 z SPI clock or Programmable general purpose input and output

DEFAULT STATE is GPIO input

SPIB_CS /

GPIO31

1 B / B H / LH 1.8, 3.3 2/4 z SPI chip select or Programmable general purpose input and output

DEFAULT STATE is GPIO input

POWER RING 6: spia Voltage is set by GPIO6 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

POWER RING 8: spib Voltage is set by GPIO8 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

6.11 General Purpose Input Output (GPIO) and Timer I/O

The EyeQ3® provides 18 GPIO pins to communicate with external devices such as

LEDs, buzzers, etc.. The pin description is shown in the table below.

Table 11: GPIO / Timer balls description Signal name # of

balls I/O Act Voltage

(V) Curr. (mA)

Reset State

Description

GPIO0 /

TIMER_CK0

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer clock

DEFAULT STATE is GPIO input

GPIO1 /

TIMER_CK1

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer clock

DEFAULT STATE is GPIO input

GPIO2 /

TIMER_CK2 /

PWRMODE2

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer clock or power mode select

DEFAULT STATE is GPIO input

Page 40: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 40

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

GPIO3 /

TIMER_CK3 /

PWRMODE3

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer clock or power mode select

DEFAULT STATE is GPIO input

GPIO4 /

TIMER_EOC0 /

PWRMODE4

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer end of count or power mode select

DEFAULT STATE is GPIO input

GPIO5 /

TIMER_EOC1 /

PWRMODE5

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer end of count or power mode select

DEFAULT STATE is GPIO input

GPIO6 /

TIMER_EOC2 /

PWRMODE6

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer end of count or power mode select

DEFAULT STATE is GPIO input

GPIO7 /

TIMER_EOC3 /

PWRMODE7

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer end of count or power mode select

DEFAULT STATE is GPIO input

GPIO8 /

TIMER_EXT0_INCAP1 /

PWRMODE8

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer external input capture or power mode select

DEFAULT STATE is GPIO input

GPIO9 /

TIMER_EXT0_INCAP2

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer external input capture

DEFAULT STATE is GPIO input

GPIO10 /

TIMER_EXT0_OUTCMP1

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer external output compare

DEFAULT STATE is GPIO input

Page 41: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 41

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

GPIO11 /

TIMER_EXT0_OUTCMP2

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer external output compare

DEFAULT STATE is GPIO input

POWER RING 7: GPIO(0;11) Voltage is set by GPIO7 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

GPIO12 /

TIMER_CK4

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer clock

DEFAULT STATE is GPIO input

GPIO13 /

TIMER_EOC4

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer end of count

DEFAULT STATE is GPIO input

GPIO14 /

TIMER_EXT1_INCAP1

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer external input capture or power mode select

DEFAULT STATE is GPIO input

GPIO15 /

TIMER_EXT1_INCAP2

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer external input capture

DEFAULT STATE is GPIO input

GPIO16 /

TIMER_EXT1_OUTCMP1

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer external output compare

DEFAULT STATE is GPIO input

GPIO17 /

TIMER_EXT1_OUTCMP2

1 B LH 1.8/3.3 2/4 z Programmable general purpose input and output or Timer external output compare

DEFAULT STATE is GPIO input

POWER RING 8: GPIO(12:17) Voltage is set by GPIO8 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

6.12 Clocks, Reset, Controls Interface

The following section describes the pins for clocks (and their circuitry), reset,

interrupts, temp sensors, and miscellaneous controls.

Page 42: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 42

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Table 12: Clocks, Resets, Interrupts, Analog pins description

Signal name # of balls

I/O Act Voltage (V)

Curr. (mA)

Reset State

Description

CLK_IN 1 A - - crystal ring input.

Ball sfi_d0 should be connected to a weak pull-down (10K) for an external clock and to a weak pull-up (10K) for a crystal.

CLK_OUT 1 A - 0 Crystal ring out

VREG_BYPASS 0 I 2.5 - put all 3 VREGs in BYPASS –

This pad will only be connected to a BUMP and not to a BALL (i.e., available for production testing only).

NO POWER RING: all of the above signals are connected to fixed power (2.5V)

POR_VDD S

1 A 1.8/3.3 - input for external asynchronous Reset during power on, should be asserted (low) until all EyeQ3® power supplies are on and stable

RESETI_N S

1 I L 1.8/3.3 - - input for external Reset

RESETO_N 1 O L 1.8/3.3 2/4 0 output to indicate external reset signal

XINT(1:0)/GPI 2 I H 1.8/3.3 - - external interrupt input signals

disabled on power-up; configurable polarity and level/edge in MIPS GIC

has weak (50K ohm) internal pull-down

Can be used as a GPI (General Purpose Input) – e.g., for PCB version number. Such usage MUST be coordinated with SW to avoid enabling as XINT.

FUSE_HV

1 A - High Voltage for Fuse should be connected to gnd (but can float).

POWER RING 7: Voltage is set by GPIO7 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

Page 43: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 43

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Signal name # of balls

I/O Act Voltage (V)

Curr. (mA)

Reset State

Description

XINT(3:2) 2 I H 1.8/3.3 - - external interrupt input signals

disabled on power-up; configurable polarity and level/edge in MIPS GIC

has weak (50K ohm) internal pull-down

POWER RING 8: xint(3:2) Voltage is set by GPIO8 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

3V3VREG1_COREPWR(1) 1 A 3.3 - 3.3V for 2.5V VREG for PLLA

VREG1_COREGND* 1 A 3.3 - GND for 2.5V VREG for PLLA – must be connected to AGND on PCB

2V5VREG1_COREPWR 1 B 2.5 - This testpoint should be left floating (it has an internal decoupling cap for noise immunity).

If the pin is used to monitor the 2.5V VREG output it must not be loaded with more than 100pF and should be well isolated from noise.

3V3VREG2_COREPWR(1) 1 A 3.3 - 3.3V for 2.5V VREG for PLLB

VREG2_COREGND* 1 A 3.3 - GND for 2.5V VREG for PLLB – must be connected to AGND on PCB

2V5VREG2_COREPWR 1 B 2.5 - This testpoint should be left floating (it has an internal decoupling cap for noise immunity).

If the pin is used to monitor the 2.5V VREG output it must not be loaded with more than 100pF and should be well isolated from noise.

3V3VREG3_COREPWR(1) 1 A 3.3 - 3.3V for 2.5V VREG for PLLC

VREG3_COREGND* 1 A 3.3 - GND for 2.5V VREG for PLLC – must be connected to AGND on PCB

Page 44: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 44

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Signal name # of balls

I/O Act Voltage (V)

Curr. (mA)

Reset State

Description

2V5VREG3_COREPWR 1 B 2.5 - This testpoint should be left floating (it has an internal decoupling cap for noise immunity).

If the pin is used to monitor the 2.5V VREG output it must not be loaded with more than 100pF and should be well isolated from noise.

1V2PLLA_COREPWR* 1 A 1.2 - Analog Power for PLLA – must be connected to Analog 1V2 on PCB

1V2PLLA_COREGND* 1 A 1.2 - Analog Ground for PLLA – must be connected to AGND on PCB

1V2PLLB_COREPWR* 1 A 1.2 - Analog Power for PLLB– must be connected to Analog 1V2 on PCB

1V2PLLB_COREGND* 1 A 1.2 - Analog Ground for PLLB – must be connected to AGND on PCB

1V2PLLC_COREPWR* 1 A 1.2 - Analog Power for PLLC– must be connected to Analog 1V2 on PCB

1V2PLLC_COREGND* 1 A 1.2 - Analog Ground for PLLC – must be connected to AGND on PCB

1V2OSC_COREPWR* 1 A 1.2 - Analog Power for the OSC– must be connected to Analog 1V2 on PCB

1V2OSC_COREGND* 1 A 1.2 - Analog Ground for the OSC – must be connected to AGND on PCB

1V8TEMPSENS0_COREPWR*

1 A 1.8 - 1.8V for TSENS0– must be connected to Analog 1V8 on PCB

1V8TEMPSENS0_COREGND*

1 A 1.8 - Analog Ground for TSENS0 – must be connected to AGND on PCB

1V8TEMPSENS1_COREPWR*

1 A 1.8 - 1.8V for TSENS1– must be connected to Analog 1V8 on PCB

Page 45: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 45

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Signal name # of balls

I/O Act Voltage (V)

Curr. (mA)

Reset State

Description

1V8TEMPSENS1_COREGND*

1 A 1.8 - Analog Ground for TSENS1 – must be connected to AGND on PCB

NO POWER RING: all of the above signals are connected to fixed power

* these analog pins should be connected to a separate analog plane which is then connected to the digital plane via ferrite bead (i.e., AGND to DGND, A1V2 to 1V2, A1V8 to 1V8). s note “S” denotes “Schmidt Trigger” buffer

(1) For CUT1 ONLY: the voltage ramp-up must be greater than 1ms and the

maximum allowed ripple must be less than or equal to 200mV peak to peak.

6.13 JTAG Interface

The JTAG port is used to debug the PCB and the software (MIPS debug mode). It

supports up to 30MHz clock rate. The balls description is shown in the table below.

Table 13: Jtag0 for boundary balls scan Signal name # of

balls I/O Act Voltage

(V) Curr. (mA)

Reset State

Description

TESTEN* 1 I H 1.8 / 3.3 - - Refer to section 8.3

NTRST_N* S

1 I L 1.8 / 3.3 - - Reset Jtag port

TDI 1 I H 1.8 / 3.3 - - Jtag Data Insert

TDO 1 O H 1.8 / 3.3 4/8 z Jtag data out

TMS 1 I H 1.8 / 3.3 - - Jtag Test Mode Select

This pin MUST be pulled up. If it is perceived as low during normal operation it can cause the chip to fail.

TCK S

1 I H 1.8 / 3.3 - - Jtag clock – 33MHZ

POWER RING 7: Voltage is set by GPIO7 pin (0=1.8V, 1=3.3V) at the release of power on reset (por_vdd)

* has a weak (50Kohm) internal pull-down. s note “S” denotes “Schmidt Trigger” buffer

6.14 Power Interface

The power balls are used for the Core and I/O. The pin description is shown in the

table below.

Table 14: Power pin description Signal name # of balls

EyeQ3® Description

VDD_1V2 74 Digital Core Power 1.2V supplies

GND 79 Digital Core Ground

Page 46: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 46

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Signal name # of balls EyeQ3®

Description

VDDE_VDDQ_ISLAND_1V8_1V5_1V2 2 DDR Island power

VDDE_R0_1V8_1V5_1V2 10 RING0 POWER - Digital LPDDR2

VDDE_R1_1V8_1V5_1V2 6 RING1 POWER - Digital LPDDR2

VDDE_R2_1V8_3V3 2 RING2 POWER - SFI

I/O Power Supply 1.8 or 3.3V Voltage is set by gpio2 pin at the release of power on reset (por_vdd)

VDDE_R3_1V8_3V3 2 RING3 POWER – VIA, I2CA

I/O Power Supply 1.8 or 3.3V Voltage is set by gpio3 pin at the release of power on reset (por_vdd)

VDDE_R4_1V8_3V3 4 RING4 POWER – VIB0, VIC

I/O Power Supply 1.8 or 3.3V Voltage is set by gpio4 pin at the release of power on reset (por_vdd)

VDDE_R5_1V8_3V3 10 RING5 POWER – Powers PDT, RGMII, I2CB, VIB1

I/0 Power Supply 1.8 or 3.3V Voltage is set by gpio5 pin at the release of power on reset (por_vdd)

VDDE_R6_1V8_3V3 2 RING6 POWER – UARTA/B, CANA/B, SPIA

I/0 Power Supply 1.8 or 3.3V Voltage is set by gpio6 pin at the release of power on reset (por_vdd)

VDDE_R7_1V8_3V3 4 RING7 POWER – GPIO(0:11)/TIMERS, POR_VDD, RESETI_N, RESETO_N, TESTEN, XINT(0:1), JTAG, FUSE_HV

I/0 Power Supply 1.8 or 3.3V Voltage is set by gpio7 pin at the release of power on reset (por_vdd)

VDDE_R8_1V8_3V3 2 RING8 POWER – SPIB/GPIO(28:31), GPIO(12:17)/TIMERS, XINT(2:3)

I/0 Power Supply 1.8 or 3.3V Voltage is set by gpio8 pin at the release of power on reset (por_vdd)

REXT_R2 1 RING2 external PULL DOWN resistor used for accurate mode of internal voltage compensation cell. MUST be connected to external resistor of 121Kohm with +/-1% accuracy.

Should be placed close to pad.

REXT_R5 1 RING5 external PULL DOWN resistor used for accurate mode of internal voltage compensation cell. MUST be connected to external resistor of 121Kohm with +/-1% accuracy.

Should be placed close to pad.

6.15 No Connects

The following pins are no connects.

Page 47: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Pin List

11/18/201511/9/2015 47

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Table 15: NC pin description

Signal name # of balls

I/O Act Voltage (V)

Curr. (mA)

Reset State

Description

NC0 1 I - - - - Must be left unconnected.

Has an week internal pull-down.

NC1 1 I - - - - Must be left unconnected.

Has an week internal pull-down.

NC2 1 O - - - - Must be left unconnected.

NC3 1 O - - - - Must be left unconnected.

NC4 1 O - - - - Must be left unconnected.

NC5 1 O - - - - Must be left unconnected.

Page 48: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 48

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

7. Electrical Specifications This section provides power and timing details and includes the following

subsections:

Absolute Maximum Ratings

Power Supply Specifications

DC IO Characteristics

AC Characteristics

7.1 Absolute Maximum Ratings

Stresses that occur above or below those listed in the table below may cause

permanent damage to the EyeQ3®.

Note: These are stress ratings only. Functional operation of the device at these or

any other conditions beyond those listed in Section ‎7.2‎7.2 is not implied.

Exposure to absolute maximum rating conditions for extended periods may

affect reliability.

Table 16: Absolute maximum ratings

Parameter Maximum Units

VDD_1V2 1.26 V

VDDE_R(0:1)_1V8_1V5_1V2 note 1 V

VDDE_R(2:8)_1V8_3V3 1.95/3.6 V

VDDE_VDDQ_ISLAND_1V8_1V5_1V2 note 1 V

3V3VREG(1:3)_COREPWR 3.6 V

1V2PLL(A:C)_COREPWR 1.26 V

1V2OSC_COREPWR 1.26 V

1V8TEMPSENS(0:1)_COREPWR 2.75 V

note 1: VDDE_R(0:1)_1V8_1V5_1V2, VDDE_VDDQ_ISLAND_1V8_1V5_1V2

values are described in Table 21: LPDDR2 Interface DC Electrical

CharacteristicsTable 21: LPDDR2 Interface DC Electrical Characteristics.

* This device employs CMOS technology on all signal balls. It should be

handled as an ESD sensitive device. Voltage on any signal pin that exceeds

the power supply voltage by more than +0.5 V can induce destructive latch-

up.

7.2 Power Supply Specifications

The typical estimated total power consumption is less than 3W depending on various

factors such as: the specific application being run, the corresponding IO activity, as

Page 49: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 49

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

well as board components and layout. Special power-saving features are

implemented, like having the clock of the functional blocks being shut off

automatically when the blocks are idle. For further power saving, a special on-chip

power management circuit enables the EyeQ3TM

SW to power off and on each of the

4 VMPs and 3 MIPSs blocks, on an individual basis. There is also a power saving

mode that allows the EyeQ3 to be completely powered down while still maintaining

the DDR contents for subsequent fast power on.

Table 17: Voltage variation

Loading power Nominal Voltage Voltage Variation

VDD_1V2;

1V2PLL(A:C)_COREPWR;

1V2OSC_COREPWR

1.2V +/- 5%

VDDE_R(0:1)_1V8_1V5_1V2;

VDDE_VDDQ_ISLAND_1V8_1V5_1V2

when using LPDDR2

1.2V +/- 5%

3V3VREG(1:3)_COREPWR(1) 3.3V 3.0V – 3.6V

1V8TEMPSENS(0:1)_COREPWR 1.8V +/- 5% (1)

For CUT1 ONLY: For the 3V3VREG(1-3)_COREPWR inputs: the voltage ramp-up

must be greater than 1ms and the maximum allowed ripple must be less than or equal to 200mV peak to peak.

Table 18: Steady state current Power

Power Supply Voltage Range Typical(2) Maximum

VDD_1V2 (3) 1.2V+/- 5% 2A 3.5A(1)

VDDE_R(2:8)_1V8_3V3 when using 3V3(3)

3.3V +/- 10% - 300mA

VDDE_R(2:8)_1V8_3V3 when using 1V8(3)

1.8V +/- 5% - 400mA

VDDE_R(0:1)_1V8_1V5_1V2;

VDDE_VDDQ_ISLAND_1V8_1V5_1V2

when using LPDDR2(3)

1.2V +/- 5% 0.3A 0.9A

NOTES: (1) The worst case transient current is the transient current that depends on the worst case application and data. The maximum current should be measured on the customer board at worst case conditions. For pre-PCB calculations the worst case transient current given here should be used.

(2) For thermal estimations, the application should be run on the customer board at worst case conditions (temperature and voltage) and the typical current should be measured. For pre-PCB estimations the typical case current given here should be used.

(3) These values are estimates and will vary depending on the application running and the agents on the board.

7.2.1 Power Up/Down Sequence

The following sections describe the various power sequencing required by the EyeQ3.

There are no other special power-up or power-down sequences other than those

described here.

Page 50: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 50

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

7.2.1.1 DDR

The following sections discuss the power up sequence as it relates to the EyeQ3. For

the power up sequence recommendation that accounts for the external DDR device,

please refer to the EyeQ3 PCB Design Guide.

7.2.1.1.1 DDR PHY

The following section describes the relation of the EyeQ3 Core power (VDD_1V2,

referred to as VDD (Core)) versus the EyeQ3 IO power

(VDDE_R(0:1)_1V8_1V5_1V2, referred to as VDD (IO)).

There are no specific requirements for VDD (Core) and VDD (IO) power sequencing

on power on/off.

The user should be aware that if the I/O is powered up before the core, there can be

large current draws between these two events because the I/O is powered-up but is

not supplied with valid control signals, thus it can be in an undefined high-current

state. Conversely, if the core is powered up before the I/O, the core may consume a

slightly higher current than normal due to not being supplied with valid CMOS level

signals from the I/O, but this will be a low additional current draw. It is generally

recommended that the VDD (Core) and VDD (IO) supplies be powered-up together,

and it is generally also acceptable for the VDD (Core) supply to power-up a very

short time before the VDD (IO) supply. If the VDD (IO) supply must power-up

before the VDD (Core) supply, it is advised to keep the time between these two

events less than 100ms to limit excessive VDD (IO) current draws.

7.2.1.1.2 When using LPDDR2

To operate LPDDR2 a special power on/off sequence is required (as defined by the

specific LPDDR2 component). The 1.8v (i.e., of the LPDDR2 core) should always be

200mV higher than the 1.2V (i.e., of the LPDDR2 I/O) both for power on and power

off (as specified in the LPDDR2 standard).

As such, the 1.8V (for the LPDDR2 core and EyeQ3 Temperature Sensor power)

must be powered first, followed by the 1.2V (for the LPDDR2 I/Os, EyeQ3 DDR

I/Os). This is done in HW via the 1.8V's “good” signal which will enable the 1.2V

supply. As a result, EyeQ3 LPDDR2 1.2V I/Os and 1.2V Core Circuitry will get the

same power.

7.2.2 IO Power Sequence

The IO pad rails (VDDE) must be powered before driving voltage on the IO signal

(VPAD) into the EyeQ3. For details please see EyeQ3 PCB Design Guide.

Page 51: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 51

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

7.3 DC I/O Characteristics

The following tables describe the IO pads for power rings that allow multiple voltage

inputs (1.8V or 3.3V). If 1.8V operation is selected then the pads will operate

according to Table 19: 1.8V DC IO Characterization; if 3.3V operation is selected

then the pads will operate according to Table 21: 3.3V DC IO Characterization.

Table 19: 1.8V DC IO Characterization*

Parameter Description Condition Min Max Units

VIH Input High voltage 0.65 *VDDE VDDE +0.3 V

VIL Input low voltage -0.3 0.35 *VDDE V

VOL Output low voltage IOL = 1mA for BDX

IOL = 2mA for BD2X

IOL = 4mA for BD4X

- 0.4 V

VOH Output High voltage IOL = 1mA for BDX

IOL = 2mA for BD2X

IOL = 4mA for BD4X

VDDE - 0.4 - V

CPIN Input pin capacitance for output mode - 3 pF

* VDDE indicates the VDDE_Rn_1V8_3V3 pin input being driven at 1.8V

Table 20: 3.3V DC IO Characterization*

Parameter Description Condition Min Max Units

VIH Input High voltage 2.0 VDDE +0.3 V

VIL Input low voltage -0.3 0.8 V

VOL Output low voltage IOL = 2mA for BDX

IOL = 4mA for BD2X

IOL = 8mA for BD4X

- 0.4 V

VOH Output High voltage IOH = 2mA for BDX

IOH = 4mA for BD2X

IOH = 8mA for BD4X

VDDE - 0.4 - V

CPIN Input pin capacitance for output mode - 3 pF

* VDDE indicates the VDDE_Rn_1V8_3V3 pin input being driven at 3.3V

7.3.1 Special cases

In the case where the IO voltage is driven but the Core voltage is not, there is no

additional current consumption during core-off mode and the state of the IOs will be

tri-state – this applies to all BDX, BD2X, BD4X and I2C pads.

Page 52: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 52

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Note that voltage on any signal pin that exceeds the power supply voltage (to the pad

ring) by more than +0.5 V can induce destructive latch-up.

7.4 DDR SDRAM DC Characteristics

The following table provides the recommended operating conditions for EyeQ3®

LPDDR2 interface.

Table 21: LPDDR2 Interface DC Electrical Characteristics

Symbol Parameter/Condition Min. Nom. Max. Unit Notes

VDDE_R(0:1)_1V8_1V5_1V2 (VDDQ)

VDDE_VDDQ_ISLAND_1V8_1V5_1V2

I/O supply voltage 1.14 1.2 1.26

V

DDR_VREF (VREF) Reference supply voltage 0.49*VDDQ 0.5*VDDQ 0.51*VDDQ V 1,2

VIH(DC) DC input voltage High VREF+0.13 VDDQ V

VIL(DC) DC input voltage Low GND-0.3 VREF-0.13 V

VOH DC output logic High 0.9*VDDQ V

VOL DC output logic Low 0.1*VDDQ V

Notes:

1. Peak-to-peak noise on DDR_VREF may not exceed 5% DDR_VREF (DC).

2. DDR_VREF of the receiving device(s) should track the variations in the DC

value of VDDE_R(0:1)_1V8_1V5_1V2 of the sending device for best noise

margins.

7.5 AC Characteristics

The AC timing specifications are listed in the following sections:

Clock AC

SPI Timing

SFI Timing

Serial i2c pin timing

RGMII interface timing

Video Stream interface timing

PDT interface timing

Reset Pin Timing

MDDR-SDRAM interface timing

Page 53: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 53

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

7.5.1 Clock AC

Referring to the OSC input pins:

Table 22: Crystal Input

Description Value

Crystal Frequency 27-30 MHz

7.5.1 SPI Timing

The following diagram describes the SPI timing.

SCLK

MTSR

SLSO

MRST

t51a

t52t52 t53

t51b

t50

t56 t57

SCLK

MTSR

SLSI

MRST

t61

t56 t57

t54

t55h t55l

t58

t60t60

t59

Page 54: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 54

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

While the SPI I/F can operate at 1.8V or 3.3V, the following table describes the

timing of the above diagrams based on 3.3V, 30pF operation.

Table 23: Serial Port Interface timing(2)

Parameter Symbol

Values Unit

Min Max

MA

ST

ER

MO

DE

1

SCLK period t50 32.00 nS

2a

SLSO assertion to SCLK leading

(7) edge t51a a*t50-1.37

(4) a*t50+3.87

(4) nS

2b

MTSR delay from SCLK leading

(7) edge t51b b*t50-1.37

(5) b*t50+3.87

(5) nS

3

MRST setup to SCLK falling edge t52 7.83-N0

(1) nS

4

MRST hold from SCLK falling edge t53 0.00+N1

(1) nS

SL

AV

E M

OD

E

5

SCLK clock period t54 64.00 nS

6

SCLK input clock low/high time t55h,t55l 0.45*t54 0.55*t54 nS

7

MTSR setup to SCLK latching edge t56 0.92

(3) nS

8

MTSR hold from SCLK latching edge t57 0.26

(3) nS

9

SLSI setup to first SCLK latching edge t58 0.92

(3) nS

10

SLSI hold from last SCLK latching edge t59 0.26

(3) nS

11

MRST delay from SCLK shift edge t60 21.51

(3) 34.68

(3) nS

(1) By adding delay elements which are selected by programming the SPI IP,

one can relax the setup time and stress the hold time).

N0 = 7.6ns*NUM_FBCLK_DLYELEMENTS (i.e., the total feedback

clock delay). N1 = 8.4ns*NUM_FBCLK_DLYELEMENTS (i.e., the total

feedback clock delay).

(2) 3.3V, 30pF operation.

(3) Values in the table are based on 50% duty cycle. Any offset from this value

must be taken into account.

(4) The parameter “a” is either “1” or “1/2” depending on programming

(SPH=0: a=1; SPH=1: a=0.5).

(5) The parameter “b” is either “0” or “1/2” depending on programming

(SPH=0: b=0.5; SPH=1: b=0).

(6) Following the last bit, SLSO will deassert one SCLK cycle after the SCLK

output has been deasserted.

(7) Depending on programming (SPO=0: rising edge; SPO=1: falling edge).

Page 55: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 55

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

For 1.8V operation with 30pF load

For 3.3V operation with 30pF load

7.5.2 Serial Flash Interface (SFI) Timing

7.5.2.1 Frequency versus external load

The SFI clock frequency is given by the following formula:

SFI clock = VCO/(Ndiv*L);

VCO – constant frequency of 1500MHz.

Ndiv – can be configured from 6 to 15.

L – can be 2,4,8

7.5.2.2 SDR mode

Tcss

MSB MSB -1 LSB

Tcsh

MSB

Tcs

Tch Tcl Tr TfTv

MSB

TsuThd

SDR SerFin timing

sfi_cs

sfi_ck

sfi_d[0..3]

sfi_cs

sfi_ck

sfi_d[0..3]

Write

Read

Page 56: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 56

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

7.5.2.3 DDR Mode

OpCode

sfi_cs

sfi_ck

DDR SerFin timing

MSBL

S

B

Tv Tv

MSB LSB

Tsu Tsu ThdThd

sfi_cs

sfi_ck

Write

Read

sfi_d[0..3]

sfi_d[0..3]

While the SFI I/F can operate at 1.8V or 3.3V, the following table describes the

timing of the above diagrams based on 3.3V operation.

Page 57: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 57

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Table 24: Serial Flash SDR & DDR Timing (3.3V@15pF/30pF load)

Symbol Description

15pF 30pF

Min Max Min Max Units

fsfi_ck SDR

Serial Flash clock frequency

125 125 MHz

DDR 62.5 62.5 MHz

Tcsh Active hold time 2.97+(Tsfi_ck-8)/2

2.85+(Tsfi_ck-8)/2

ns

Tcss Active setup time 2.76+(Tsfi_ck-8)/2

2.75+(Tsfi_ck-8)/2

ns

Tcs CS High time 32 32 ns

Tv

SDR Clock to output Valid

(write)

-1.52 1.49 -2.21 1.57 ns

DDR Tsfi_ck/4- 1.52

Tsfi_ck/4+ 1.56

Tsfi_ck/4- 2.09

Tsfi_ck/4+ 1.61

ns

Tsu SDR Data in setup time

(read)

0.43 - 0.43 - ns

DDR 1.5 - 1.62 - ns

Thd SDR Data in hlod time

(read)

0.3 - 0.3 - ns

DDR 0.3 - 0.3 - ns

7.5.3 Serial i2c pin timing

Figure 11: I2C timing waveform

Table 25: I2C Interface Timing(Fast Mode Plus – 1Mbs)

Symbol Description Min Max Units

Page 58: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 58

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

fsclk i2c_sclk clock frequency

0 1000 KHz

thd.sta Hold time START condition

0.26 - µs

tlow Low period of the i2c_sclk clock

0.5 - µs

thigh High period of the i2c_sclk clock

0.26 - µs

tsu.sta Set-up time START condition

0.26 - µs

thd.dat Data hold time 0 - us

tsu.dat Data set-up time 50 - ns

tr sda/sclk rise time - 120 ns

tf sda/sclk fall time - 120 ns

tsu.sto Set-up time for STOP condition

0.26 - µs

tbuf bus free time between stop and start

0.5 - µs

Cb Capacitive load for

i2c_sda and

i2c_sclk lines

550 pF

Because i2c_sclk and i2c_sda are open-drain-type outputs, with external pull-up, the

time i2c_sclk or i2c_sda takes to reach a high level depends on external signal

capacitance and pull-up resistor values. Recommended pull-up resistance values are

as follows:

7.5.4 RGMII Interface timing

The following diagrams describe the RGMII interface timing.

Page 59: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 59

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Figure 12: RGMII TX timing

TxCLK

TxD[3:0],

TxCTRL

tns tps tns tps

Table 26: RGMII TX Timing

3.3V 1.8V

Symbol Description Min Max Min Max Units

tns negative skew -0.887 0 -1.057 0 ns

tps positive skew 0 1.345 0 1.607 ns

Note: JEDEC standard skew (+/-0.5nS ....) is not supported.

Figure 13: RGMII RX timing

rx_clk

rx_d[3:0]

rx_ctrl

Tsu ThlTsu Thl

Table 27: RGMII RX Timing

3.3V 1.8V

Symbol Description Min Max Min Max Units

Tsu Set-up Time 0.87 0.95 ns

Thl Hold Time 0.45 0.47 ns

7.5.5 Video Input Interface timing

All video-in input pins are sampled internally with pclk and synchronized to

EyeQ3® system clock. The following data relates to all video Input interfaces A, B

and C (via, vib and vic), for either 1.8V or 3.3V operation.

Page 60: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 60

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Figure 14: Video Input Interface inputs timing

T1 T2

Tpclk

vid[15:0] (input)

vsync, hsync, field (inputs)

pclk

(input)

Page 61: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 61

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Table 28: Video Input Interface timing

3.3V 1.8V

Symbol Description Min Max Min Max Units

Tpclk pclk period 10(2)

/5(1)

-

10(2)

/5(1)

- ns

Tmclk mclk period 10 1000 10 1000 ns

T1 Inputs (vid, vsync, hsync, field) setup time

1.85 1.89 ns

T2 Inputs (vid, vsync, hsync, field) hold time

0.25 0.30 ns

(1) When Histogram is disabled.

(2) When Histogram is enabled.

7.5.6 Video Output Interface

All video-out pins are outputs and change on the vopclk falling edge (according to the

P_pol parameter). The Video Output timing is based on an output load of 10pF, at

either 1.8V or 3.3V operation.

Figure 15: Video Output Interface outputs timing

T1T2

Tvopclk

vod[15:0] (output)

vovsync, vohsync, vode (outputs)

vopclk

(P_pol=1)

vopclk

(P_pol=0)

capture data

edgedata generation

edge

Table 29: Video Output Interface timing

3.3V 1.8V

Symbol Description Min Max Min Max Units

Tvopclk vopclk period 8 1000 8 1000 ns

T1 skew from clock (vsync, hsync, vode, vod[15:0])

1.15 1.55 ns

Page 62: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 62

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

T2 skew from clock (vsync, hsync, vode, vod[15:0])

- 1.45 - 1.45 ns

Note: VoPCLK is defined as 250MHz/n where n>1.

7.5.7 PDtrace Interface timing

The PDT clock is divided down from the internally generated 320MHz clock to be

driven out of the chip at 160MHz. The PDtrace timing is based on an output load of

10pF.

Figure 16: PDTrace Timing Diagram

T1

T2 T2T3 T3

pdt_ck

pdt_d

Table 30: PDtrace timing (3.3V)

Symbol Description Min Max Units

T1 Pdt_ck phase duration

42.194 63.524 %

T2 skew between pdt_d to pdt_clk

- 0.672 ns

T3 skew between pdt_d to pdt_clk

- 0.487 ns

7.5.8 reseti-n pin timing

The reseti_n must be asserted true (low) for at least 1ms (at 30MHz). This is,

of course, after the OSC is stable after power-up which takes 3.4ms (i.e.,

following the deassertion of the POR_VDD – which was asserted for 3.4ms –

the reseti_n is to be asserted for 1ms). Note that the reseti_n signal goes

through a 1ms de-bounce circuit such that the SoC internals will not receive

reset until after 1ms of asserting reseti_n; furthermore, the internal reset signal

will not be deasserted until 1ms after the reseti_n line has been deasserted.

See figure below:

Page 63: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 63

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

reseti_n (input)

reset_n (in SoC)

Note: for further information on reseti_n and its interaction with POR_VDD,

see section “‎8‎8 ResetReset.”

7.5.9 DDR SDRAM AC Characteristics

The following Table provides the AC electrical characteristics for EyeQ3®

LPDDR2 interface

Table 31: LPDDR2 Interface AC Electrical Characteristics

Symbol Parameter/Condition Min. Nom. Max. Unit Notes

VIH(AC) Input logic threshold High VREF+0.22 V 2

VIL(AC) Input logic threshold Low VREF-0.22 V

SR Output driver slew rate 1.59 1.99 V/ns 1

FMAX Maximum operating frequency 500 MHz

DMAX Maximum operating data rate 1000 Mb/s

Notes:

1. Slew rate is an average value of rising and falling edges.

2. VREF refers to DDR_VREF

7.6 DDR SDRAM Timing Specification

The timing specification for the DDR SDRAM interface provided below at the

die and not at the pins.

Read, write and input setup and hold values are referenced to Vref.

Timing budgets are created by accounting for all skew, jitter and uncertainty

effects as well as specification requirements and subtracting them from the

initial Set Up and Hold time budgets. After all of the uncertainty contributors

have been subtracted, the margin that remains is the system set-up and hold

margin.

Figure 17: System Set-Up and Hold Uncertainties and Margin

Formatted: Font: 12 pt, ComplexScript Font: 12 pt

Page 64: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 64

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

The components within a budget fall into three categories: transmitter

uncertainty, interconnect uncertainty and receiver uncertainty.

When EyeQ3 is the transmitter, the EyeQ3 Set-Up/Hold margin = System

Set-Up/Hold Margin + interconnect uncertainty (PCB) + receiver

uncertainty (LPDDR2).

When EyeQ3 is the receiver, the EyeQ3 Set-Up/Hold margin = System

Set-Up/Hold Margin + interconnect uncertainty (PCB) + transmitter

uncertainty (LPDDR2).

7.6.1 LPDDR2 Address/Command/Control timing specification

The Figure below provides the Command/Address/Control timing for EyeQ3®

LPDDR2 SDRAM interface.

Figure 18: LPDDR2 Command/Address/Control Timing Diagram

ddr_clk_n(n)ddr_clk(n)

tCLtCH

tOSCA

ddr_cs_n(n)

tOHCA

tOSCA

ddr_a(9:0)/

LP2_ddr_a(9:0)tOHCA

tOSCA tOHCA

Page 65: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 65

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Table 32: LPDDR2 Command/Address/Control Timing Specifications

Symbol Parameter/Condition CK=2.5ns

(400MHz)

CK=2ns

(500MHz)

Unit Notes

Min. Max. Min. Max.

tCH Clock HIGH pulse width 0.46 0.54 0.46 0.54 tCK Duty cycle

tCL Clock LOW pulse width 0.46 0.54 0.46 0.54 tCK Duty cycle

tOSCA_typ Command/Address/Control output setup with respect to ddr_clk(n)

351 361 ps 1,2

tOHCA_typ Command/Address/Control output hold with respect to ddr_clk(n)

445 361 ps 2

tOSCA_fast Command/Address/Control output setup with respect to ddr_clk(n)

351 361 ps 1,2

tOHCA_fast Command/Address/Control output hold with respect to ddr_clk(n)

445 361 ps 2

tOSCA_slow Command/Address/Control output setup with respect to ddr_clk(n)

351 361 ps 1,2

tOHCA_slow Command/Address/Control output hold with respect to ddr_clk(n)

445 361 ps 2

Notes:

1. During an Address/Command/Control operation, the impact of

simultaneously switching outputs (SSO) is to cause noise on the I/O power

rail. It is assumed that SSO will account for 3.75% of a clock cycle.

2. EyeQ3 Set Up/Hold margin.

3. All timing specifications in this section are related to 50% duty cycle, and

do not include min/max duty cycle calculations, which should be taken in

account by simulation.

4. Since CKE and CS are changed only at rising edge of clock, uncertainty is

shorter with half clock cycle, so tCK/2 can be reduced from tCKCS and

tCKCKE.

5. CKE timing violations can be ignored since only change of CKE is done at

boot stage at low frequency ~30MHz.

6. Data eye training implemented at reading operation. It means that DQS

signal is shifted to the center of the valid data eye for each byte separately.

It is recommended to consider it at simulation configuration stage.

7.6.2 LPDDR2 write timing specification

The Figure below provides the write timing for EyeQ3® LPDDR2 SDRAM

interface.

Page 66: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 66

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Figure 19: LPDDR2 Write Timing Diagram

ddr_clk_nddr_clk

ddr_dq

tDS tDH

ddr_dqs_nddr_dqs

ddr_dm

tCKDQS

tDS tDH

tDS tDHtDS tDH

Table 33: LPDDR2 Write Timing Specifications

Symbol Parameter/Condition CK=2.5ns

(400MHz)

CK=2ns

(500MHz)

Unit Notes

Min. Max. Min. Max.

tCKDQS ddr_dqs output rising with respect to ddr_clk output rising

-130 130 -215 215 ps

tDS_typ ddr_dq and ddr_dm output setup with respect to ddr_dqs output

351 361 ps 1,2

tDH_typ ddr_dq and ddr_dm output hold with respect to ddr_dqs output

445 361 ps 2

tDS_fast ddr_dq and ddr_dm output setup with respect to ddr_dqs output

351 361 ps 1,2

tDH_fast ddr_dq and ddr_dm output hold with respect to ddr_dqs output

445 361 ps 2

tDS_slow ddr_dq and ddr_dm output setup with respect to ddr_dqs output

351 361 ps 1,2

tDH_slow ddr_dq and ddr_dm output hold with respect to ddr_dqs output

445 361 ps 2

Notes:

1. During a Write operation, the impact of simultaneously switching outputs

(SSO) is to cause noise on the I/O power rail. It is assumed that SSO will

account for 3.75% of a clock cycle.

2. EyeQ3 setup/hold margin.

Page 67: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Electrical Specifications

11/18/201511/9/2015 67

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

7.6.3 LPDDR2 read timing specification

The Figure below provides the read timing for EyeQ3® LPDDR2 SDRAM

interface.

Figure 20: LPDDR2 Read Timing Diagram

ddr_dq

ddr_clk_nddr_clk

ddr_dqs_nddr_dqs

ddr_dqs_nddr_dqs

(shifted)

90o Shift

tDISKEW(max)

CISKEW(min)

tDISKEW(min)

CISKEW(max)

Table 34: LPDDR2 Read Timing Specifications

Symbol Parameter/Condition CK=2.5ns

(400MHz)

CK=2ns

(500MHz)

Unit Notes

Min. Max. Min. Max.

tCISKEW_typ EyeQ3 internal skew between ddr_dqs and ddr_dq

-177 177 -123 123 ps 1,2

tCISKEW_fast EyeQ3 internal skew between ddr_dqs and ddr_dq

-177 177 -123 123 ps 1,2

tCISKEW_slow EyeQ3 internal skew between ddr_dqs and ddr_dq

-177 177 -123 123 ps 1,2

Notes:

1. tCISKEW represents the total amount of EyeQ3 internal skew consumed by

the PHY between ddr_dqs and any corresponding ddr_dq bit that will be

captured.

2. The amount of skew that can be tolerated from ddr_dqs to a corresponding

ddr_dq signal is called tDISKEW. This can be determined by the following

equation: tDISKEW = ± (T/4 – abs(tCISKEW)), where T is the clock period

and abs(tCISKEW) is the absolute value of tCISKEW.

Page 68: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Reset

11/18/201511/9/2015 68

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

8. Reset

EyeQ3® has two external reset inputs:

Power On Reset (POR_VDD)

PushButton Reset (RESETI_N)

POR_VDD is the system reset and asserts low to place the system in a known state,

as defined by the “Reset State” pin descriptions, immediately upon assertion since

this signal functions as asynchronous reset. It should be noted that the internal MIPS

controller will not start until POR_VDD negation, at which point the mode bits are

latched into an internal register according to which MIPS0 boots. In addition, the

power ring settings are latched upon POR_VDD negation. POR_VDD must assert for

3.4ms after voltage inputs are stable.

RESETI_N is a “push-button” reset and asserts low to place the system in a known

state, as defined by the “Reset State” pin descriptions, following the 1ms debounce

time (see Sec. ‎7.5.8‎7.5.8 reseti-n pin timing). The 1ms assertion is counted from the

deassertion of POR_VDD. Note: this signal is synchronous to the input clock and

thus will not assert until the clock is stable. When RESETI_N is negated, MIPS0 is

released from reset and boots according to the mode bits (previously latched upon

POR_VDD negation).

Both of these signals have the same effect on the system, whether they are asserted

together or independently, except in two cases:

SFI: When RESETI_N is asserted all SFI pins are tri-stated. When POR_VDD is

asserted all SFI pins are active (i.e., not tri-stated). If both are asserted together,

the pins are active.

GPIO: When RESETI_N is asserted all GPIO pins (i.e., pins configured as GPIO)

remain in their current state (i.e., RESETI_N does not affect their state). Pins

configured for their corresponding alternate function will be reconfigured to

GPIO functionality until RESETI_N is deasserted and SW reconfigures the

alternate function. When POR_VDD is asserted all GPIO pins are configured as

GPIO and are reset. If both are asserted together, all pins are reset. (If, for some

reason, there is a need to put the GPIOs in a reset configuration other than via

POR_VDD, this can be achieved via SW; e.g., RESETI_N will initiate a SW

routine to write "reset" values to the GPIO registers. Customers with this need

must request software specialization from Mobileye).

The following diagram describes the sequence of events as related to the reset

signals.

Page 69: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Reset

11/18/201511/9/2015 69

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

1.8V

1.2V

SFI_D0***

OSC_EN****

EyeQ3 Power On Timing

OSC

POR_VDD

3.3V

3.4ms*

Valid Data

RESETI_N 1ms**

NOTES:* 3.4ms is OSC “Start Time” required till OSC provides stable clock (from the time 3.3V and 1.2V are stable and OSC_EN=1).** 1ms is needed to overcome debouncer*** SFI_D0 is pulled-up by a weak pull-up in order to enable the OSC**** OSC_EN (internal signal) is the LATCH output of the SFI_D0, the LATCH being controlled by the POR_VDD (pass through on low, latched on high)

Page 70: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Boundary Scan (JTAG1149.1) Functions

11/18/201511/9/2015 70

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

9. Boundary Scan (JTAG1149.1) Functions EyeQ3® includes an IEEE 1149.1 boundary scan test port for board level testing. All

digital input, output, and input/output pins are accessible. The BSDL file is available

from Mobileye.

9.1 Boundary Scan Interface

This interface consists of five pins (TMS, TDI, TDO, NTRST, and TCK). It includes

a state machine, data register array, and instruction register.. Signals must be pulled-

up or down externally as needed.

9.2 State Machine

The TAP controller is a 5 state machine driven by the TCK and TMS pins. Upon reset

the TEST_LOGIC_RESET state is entered.

9.3 EyeQ3 TAP Controllers

There are 6 TAP controllers in EyeQ3. In normal mode (when testen = 0), 5 TAP

controllers are connected in daisy chain. They are:

1. MIPS Core0

2. MIPS Core1

3. MIPS Core2

4. MIPS Core3

5. MIPS Coherence Manager

In test mode (when testen = 1), only the System JTAG (which contains the BSR) is

connected.

9.4 MIPS JTAG Instruction Register

Please refer to MIPS EJTAG Spec.

Page 71: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Boundary Scan (JTAG1149.1) Functions

11/18/201511/9/2015 71

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

9.5 System JTAG Instruction Register

After the state machine resets, the IDCODE instruction is always invoked. The

decode logic ensures the correct data flow to the data registers according to the

current instruction. Valid instructions are listed in table below (JTAG instructions).

Table 35: Supported JTAG Instructions of EyeQ3®

Name Code Description Mode Data Register

BYPASS 1111 Bypass Scan Normal Bypass

EXTEST 0000 External Test Test BSR

SAMPLE/PRELOAD 0011 Sample Boundary Test BSR

IDCODE 1110 ID Code Inspection Test ID REG

HIGHZ 0111 Force Float - put all scan pins in high-z

Test Bypass

CLAMP 0101 Clamp Test BSR

9.6 Boundary Scan Register (BSR)

Each Boundary Scan Register (BSR) cell has two stages. A flip-flop and a latch are

used for the serial shift stage and the parallel output stage. There are four modes of

operation as listed in below:

Mode Description

1 Capture 2 Shift 3 Update 4 System Function

9.6.1 Express and Normal BSRs

EyeQ3® has 2 BSRs: A normal one which includes all EyeQ3® functional IOs, and a

short BSR that includes only the Serial Flash port. The BSR accessed is selected

through a special control bit: TCRRES[228]=1 (for details please see the

“ExpressBoundaryScanMode” specification).

To initialize the express mode the following SVF script can be run: TRST ON; TRST OFF; ENDI R I DLE; ENDDR I DLE; STATE RESET I DLE; SI R 4 TDI ( 08) ; SDR 4 TDI ( 01) ; SI R 4 TDI ( 06) ; SDR 160 TDI ( 0000000000000000000000000000000000001000) ; ! Shi f t out TCRUSER. Check val ue agai ns t expect ed ( BI T 146 1) . SDR 160 TDI ( FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)

Page 72: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Boundary Scan (JTAG1149.1) Functions

11/18/201511/9/2015 72

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

TDO ( 0000000000000000000000000000000000004003) MASK ( FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) ;

9.7 EyeQ3® Device ID Register

4 bit version number 0010

16 bit part number 0010001010101100

11-bit identity of the manufacturer 00000100000

Required by IEEE Std 1149.1 1

Page 73: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Power-On Configurations

11/18/201511/9/2015 73

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

10. Power-On Configurations This section explains how to design the external hardware of the Power-On-Reset

(POR) function.

Some of the EyeQ3® balls should be connected to specific external logic as indicated

herein.

10.1 sfi_d0

A weak pull-up must be located on this ball.

10.2 sfi_d1 = mode1

A pull-down or pull-up should be located on this ball in order to set up the EyeQ3®

SFI data width mode. The mode bits are sampled ONLY when the POR pin is de-

asserted (i.e., on the rising edge). Mode1=0: SFI boots in single data mode

Mode1=1: SFI boots in quad data mode

10.3 sfi_d(2-3) = board version

This pins should be pulled-up or pulled-down externally to indicate the PCB version

number. These bits are sampled ONLY when the POR pin is de-asserted (i.e., on the

rising edge).

10.4 GPIO(8:2) = PowerMode (8:2)

A pull-down or pull-up should be located on this ball in order to establish the power

ring voltages (i.e., rings 8 thru 2, respectively) to either 1.8V or 3.3V IO. The mode

bits are sampled ONLY when the POR pin is de-asserted (i.e., on the rising edge).

0: the I/Os power supply is 1.8V

1: the I/Os power supply is 3.3V

To determine which IOs reside in which power ring, see the respective IO Table

describing the IO in question.

Note1: GPIO(8:2) reside on Power Ring 7 which is controlled by GPIO(7). As such,

if GPIO(7)=0, Ring7 IOs are configured for 1.8V operation; consequently, all the

powermode pins must use 1.8V. So, for example, if one wanted to use Ring2 at 3.3V,

GPIO(2) must be pulled up to 1.8V; conversely, if one wanted to use Ring2 at 1.8V,

GPIO(2) must be pulled down to GND. Furthermore, for the sake of clarity, if Ring7

was configured for 3.3V operation (i.e., GPIO[7]=1 by being connected to 3.3V), then

all powermode pins (i.e., GPIO[2:8]) must use 3.3V or GND for configuration.

Note2: The IO cell does have built-in protection circuitry to insure that no physical

damage will occur if the wrong configuration is applied (i.e., rail voltage doesn’t

match configuration bits) – this, of course, assumes that the rail voltage and the

logical IO pin voltage match. Nevertheless, if the configuration bits do not

appropriately reflect the applied rail voltage, the performance of the IO cell is not

Page 74: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Power-On Configurations

11/18/201511/9/2015 74

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

guaranteed. Furthermore, such a mismatch must be corrected as soon as possible and

not persist during normal operation.

10.5 por_vdd – Power On Reset

Used as input for external asynchronous Reset during power on. The por_vdd should

be kept asserted (low) until after all EyeQ3® power supplies are stable for 3.4ms.

That is, since the internal OSC has a 3.4ms startup time therefore if the OSC is being

used the por_vdd must be held 3.4ms.

10.6 ntrst_n –JTAG Reset

There is a pull-down on ntrst_n, so leaving it unconnected will keep the TAPs in reset

state. The ntrst_n should be asserted after all EyeQ3® power supplies are on for at

least 1µs.

10.7 clk_in and clk_out

The following diagram illustrates the crystal oscillator hookup.

Figure 21: Application diagram of the crystal oscillator

clk_in clk_out

CA=5pF CB=5pF

Rfd=909K

sfi_d0

* The crystal oscillator used to provide the 30MHz must be precisely

30.000000MHz (+/-100ppm).

Page 75: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Power-On Configurations

11/18/201511/9/2015 75

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

The values of the capacitors and resistors should be calculated based on the

recommendations of the specific crystal oscillator used which must take into account

conditions such as PCB materials and trace lengths. Note: components should be

placed as close as possible to the EyeQ3® oscillator pin inputs.

It should be noted that since the clk_in and clk_out pins are analog signals dependent

on the attendant circuitry, no voltage value can be provided.

The crystal must support the following conditions:

Drive Level ≥ 100uW

CO (shunt capacitance, including parasitics) < 6PF

CA = CB = 5pF

CL = 8pF

ESR ≤ 50 Ohm

The following parts are approved for general use, however ONLY the Jauch part

support the automotive temperature range (-40C to +105C).

SUNTSU_SCQ

EPSON_FA20H

JAUCH_JXS22

Page 76: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

External Connection Examples

11/18/201511/9/2015 76

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

11. External Connection Examples

11.1 DDR-SDRAM

11.1.1 DDR supported

Examples:

Micron - MT42L32M32D2AC-25 AAT

Winbond – W97AH2KBVA1K/2K

ISSI - IS46LD32320A2

The common EyeQ3® configurations are as follows:

1. Two 32-bit data width LPDDR2 devices.

2. Single 32-bit data width LPDDR2 device.

Figure 22: Two 32-bit data width LPDDR2 devices interface

EyeQ3ddr_a[9:0]

ddr_ck[0]

ddr_ck_n[0]

ddr_cke[0]

ddr_cs_n[0]

ddr_dm[3:0]

ddr_dq[31:0]

ddr_dqs[3:0]

ddr_dqs_n[3:0]

CA[9:0]

CK

CK#

CKE

CS#

DM[3:0]

DQ[31:0]

DQS[3:0]

DQS#[3:0]

ddr_a[14:10]/ddr_a[4:0]*

ddr_ck[1]

ddr_ck_n[1]

ddr_cke[1]

ddr_cs_n[1]

ddr_dm[7:4]

ddr_dq[63:32]

ddr_dqs[7:4]

ddr_dqs_n[7:4]

ddr_ba[2:0]/ddr_a[7:5]*

ddr_ras_n/ddr_a[8]*

ddr_cas_n/ddr_a[9]*CA[9:0]

CK

CK#

CKE

CS#

DM[3:0]

DQ[31:0]

DQS[3:0]

DQS#[3:0]

ddr_zq

ddr_retention_n

gpio

ddr_ato

ddr_dto[1:0]

240Ω

LPDDR2

(32bit)

LPDDR2

(32bit)

* Secondary use of IOs

Note: Please note that the low word LPPDR2 device’s lane #0 data (DQ[0:7]) must be

connected to EyeQ3 lane #0 (DDR_DQ[0:7]) – though the data within this lane can be

swapped for layout considerations. The other three lanes of the low word LPDDR2 device

can be swapped as desired; similarly the four lanes of the high word LPDDR2 device can be

Page 77: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

External Connection Examples

11/18/201511/9/2015 77

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

swapped to ease the layout. (For further information on lane swapping constraints see the

BootSWparameters document).

Figure 23: Single 32-bit data width LPDDR2 device interface

EyeQ3ddr_a[9:0]

ddr_ck[0]

ddr_ck_n[0]

ddr_cke[0]

ddr_cs_n[0]

ddr_dm[3:0]

ddr_dq[31:0]

ddr_dqs[3:0]

ddr_dqs_n[3:0]

LPDDR2

(32bit)

CA[9:0]

CK

CK#

CKE

CS#

DM[3:0]

DQ[31:0]

DQS[3:0]

DQS#[3:0]

ddr_zq

ddr_retention_n

gpio

ddr_ato

ddr_dto[1:0]

240Ω

11.2 Flash memory

11.2.1 Serial flashes supported

The Serial Flash Interface implements the standard SPI protocol for serial flashes up

to 1Gbit (128MB).

Examples:

Micron: N25Q256A

Spansion: S25FL256S

Winbond: W25Q128B

Example of serial flash connection:

Page 78: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

External Connection Examples

11/18/201511/9/2015 78

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

EYEQ3

S25FL256S

SFI_D0

SFI_D1

SFI_D2

SFI_D3

SFI_CLK

SFI_CS0

SFI_CS2

SFI_CS1

SI/IO0

SO/IO1

WP#/IO2

HOLD#/IO0

SCK

CS

N25Q256A

DQ0

DQ1

Vpp/W#/DQ2

HOLD#/DQ3

C

S#

Maximum clock rates (MHz) as a function of load and mode:

Mode SDR DDR

Load 10pF 30pF 10pF 30pF

Micron-N25Q256A 107.14 93.75 53.57 46.88

Spansion-S25FL256S 93.75 93.75 62.5 53.57

11.3 Image sensor connection

Figure 31: Interface with Aptina Image Sensor

Page 79: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

External Connection Examples

11/18/201511/9/2015 79

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

via_d(15:4)

via_d(3:0)

via_pclk

via_vsync

via_hsync

via_field

via_mclk

Mobileye

EyeQ3

*

* leave unconnected

*

*

Aptina

PIXCLK

FRAME_VALID

LINE_VALID

DOUT(11:0)

OEn

RESETOnRESETn

SCLK

SDATA

SCL

SDA

SADDR

GND

VCC

NC

4K7

EXTCLK

TRIGGER

STANDBY

TEST

27MHz

4K7

Pull-Up | Pull-Down

FLASH*

NOTE: It is critical to insure that the image sensor is placed right-side up and not

upside down. When looking at the image sensor input array, pin A1 should be on the

lower right hand side. If the sensor is not connected with this orientation, not all

video grabbing options will be supported.

NOTE: It is recommended to employ a low noise LDO to drive the image sensor with

2.8V AVCC and 1.8V DVCC – 300mA.

Page 80: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Chip Package Data

11/18/201511/9/2015 80

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

12. Chip Package Data The EyeQ3 is packaged in an FCTEBGA (Flip Chip Thermal Enhanced Ball Grid Array) of 529

balls. EyeQ3 package solder ball material is SAC305 (SnAgCu alloy composition). EyeQ3’s PCB

CTE (coefficient of thermal expansion) overall is in a range of 12~13 E-6/°C.

12.1 Mechanical Data

The following table shows the “Databook” values which are the final values to be

used for PCB design.

Page 81: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Chip Package Data

11/18/201511/9/2015 81

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Page 82: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Chip Package Data

11/18/201511/9/2015 82

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Page 83: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Chip Package Data

11/18/201511/9/2015 83

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Page 84: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Chip Package Data

11/18/201511/9/2015 84

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Page 85: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Chip Package Data

11/18/201511/9/2015 85

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Page 86: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Chip Package Data

11/18/201511/9/2015 86

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Page 87: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Chip Package Data

11/18/201511/9/2015 87

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

12.2 Package Thermal Data

12.2.1 Operational Thermal Data

Theta Ja is the thermal resistance between the junction and the under air velocity 0, 1,

2 m/s are listed in the table below.

Theta Jc is the thermal resistance between the junction and package coverage.

Theta Jb is the thermal resistance between the junction and the package bottom.

The following table shows the Thermal data:

Table 36: Package Thermal Data

Air velocity

(m/s)

Theta Ja

(oC/W)

PsiJt

(oC/W)v

Theta Jc

(oC/W)

Theta Jb

(oC/W)

0 16.71 0.94 1.25 8.04

1 14.39 0.95 1.25 8.04

2.5 13.26 0.96 1.25 8.04

Note 1: The above values have been determined by simulation of a 1S2P JEDEC

board. As those values strictly depend on the PCB on which the component is

mounted, their values must be assessed through Thermal simulations. Mobileye can

provide the FlowTherm model upon request.

EyeQ3 operation is guaranteed from -40C to +125C junction temperature.

The following equations can be used to calculate the relevant temperatures:

(a) ambient temperature: Ta = Tj - (ThetaJa * Power)

(b) pcb bottom temperature: Tb = Tj – (ThetaJb * Power)

(c) pcb top temperature: Tc = Tj - (ThetaJc * Power)

For Power=2W and maximum Tj of 125C, then:

(a) ambient temperature: 125 - (16.71 * 2) => 91.58C

(b) pcb bottom temperature: 125 - (8.04 * 2) => 108.92C

(c) pcb top temperature: 125 - (1.25 * 2) => 122.5C

note: the above calculations are without considering a heat sink.

12.2.2 Package Related Temperature Data

Table 37: Package Temperature ratings

Parameter Minimum Maximum Units

Storage temperature -55 150 Co

Leaded Solder reflow temperature - 225 Co

LeadFree Solder reflow temperature - 245 Co

Page 88: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Chip Package Data

11/18/201511/9/2015 88

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

12.3 Package Solder Mask

Shown above is the solder mask of the EyeQ3 FBGA substrate which is SMD

(solder mask defined). As shown below, it is recommended that the PCB be NSMD

(non-solder mask defined) and use a ball pad (mask opening) equal to the solder

mask opening of the FBGA (i.e., 0.420mm ±0.030mm); and use an additional 0.10-

0.15mm to define the solder mask opening on the PCB (i.e., 0.520-0.57mm).

Exposed Ball Pad

NSMD – PCB

Solder Masked Ball Pad

Solder Masked Substrate

SMD – EyeQ3

Exposed Ball Pad

NON Solder Masked Substrate

Solder Masked Substrate

(1) Solder Mask Opening

(2) Ball Pad Diameter

(4) Ball Pad Diameter

(3) Solder Mask Opening

(1) EyeQ3 solder mask opening –the exposed ball pad diameter : 0.42mm +/- 0.03mm

(2) EyeQ3 ball pad diameter – partly covered by solder mask: 0.52mm

(3) PCB solder mask opening –includes exposed board substrate in addition to the ball pad

diameter : 0.52mm min 0.57mm max

(4) PCB ball pad diameter –where the ball is soldered : 0.42mm

Page 89: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Special Considerations and Checklist

11/18/201511/9/2015 89

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

13. Special Considerations and Checklist

13.1 Power considerations

TBD

13.2 PCB considerations

13.2.1 DDR Routing Considerations for Good Signal Integrity

13.2.1.1 Routing Priority

Signals should be routed based on the relative tightness of the skew budgets. In

order of priority:

1. The double data rate signals (DQ, DM, DQS/DQS#) should be routed first

since these have the strictest budgets: ¼ of a clock period available for set-

up or hold relative to the differential strobe.

2. Differential clock (CK/CK#) and single data rate signals, as well as Control

signals have looser budgets with ½ of a clock period for set-up and hold.

3. Rising edges of all differential DQS/DQS# signals are within ¼ of a clock

period of the rising edge of the differential clock, CK/CK#.

4. Route all Vref and support signals (debug).

13.2.1.2 Skew Control

How tightly skew needs to be controlled on the PCB depends on the maximum

operating frequency of the interface. The following table lists skew

recommendations for double data rate and single data rate domains for various

operating frequencies. Recommended PCB skew for CK to DQS timing for

different bit rates is also included. Skew in picoseconds is translated to

physical length for microstrip and stripline cases. Assumptions are 151 ps/inch

for top layer microstrip (air in cross section) and 179 ps/inch for stripline or

embedded microstrip (no air in cross section).

Page 90: EyeQ3™ Data Sheet - BEST Inc. · PDF fileconfidential information of Mobileye, and may not be disclosed or transferred to any third party without Mobileye’s prior express consent.

EyeQ3™ Data SheetEyeQ3™ Data Sheet

Special Considerations and Checklist

11/18/201511/9/2015 90

Formatted: Font: Bold, Complex ScriptFont: Bold

Formatted: Font: Bold, Complex ScriptFont: Bold, Superscript

Formatted: Font: Bold, Complex ScriptFont: Bold

Table 38: Recommended Skew Budgets

800Mbps 1066Mbps

DQ to DQS Domain Skew in ps. 25 18

Skew in Inches of Microstrip 0.17 0.12

Skew in Inches of Stripline 0.14 0.10

Addr/Cmd to CK/CK# Domain Skew in ps. 50 37

Skew in Inches of Microstrip 0.33 0.25

Skew in Inches of Stripline 0.28 0.21

DQS to CK Skew in ps. 188 141

Skew in Inches of Microstrip 1.25 0.94

Skew in Inches of Stripline 1.04 0.78

13.2.1.3 Vias and Layer Changes

Any via that attaches to a trace will change the delay of that trace. In order to

preserve a tight skew relationship, all signals within a byte lane should have

the same number of vias and layer changes. This will help to insure that data

signals, along with the accompanying strobe, will see the same effective delay.

13.2.1.4 Serpentine Traces

In order to match lengths within a byte lane, delay must be added to some

traces to match the longest length. This is often done with serpentine routing.

Care must be taken, as coupling between parallel portions of a serpentine can

excite crosstalk in the adjacent parallel section, effectively causing the signal

to arrive at the far end of the net earlier than desired. Essentially, coupling will

cause a portion of the signal to travel orthogonal to the trace in the coupled

regions causing the signal to arrive early.

Stripline vs. Microstrip

Propagation times are shorter in microstrips than in striplines. Consequently,

the mechanical length in a microstrip will need to be longer than the

mechanical length in a stripline in order to achieve the same propagation delay.

For this reason, all signals within a single byte of the DQ-DQS domain should

be routed in the same substrate configuration, i.e. all in a microstrip or all in a

stripline. Similarly, each path in the byte lane should have the same number of

vias and layer transitions. All paths within a byte lane should be as similar as

possible. Deviations from these rules should be simulated in order to determine

how best to compensate for any difference.

The same rules apply to the address/command bus since this interface uses

double data rate signaling as well.