Extreme Wind Distribution Tails: A 'Peaks Over Threshold ...The Generalized Pareto Distribution...

72
NIST BUILDING SCIENCE SERIES 174 Extreme Wind Distribution Tails: A ‘Peaks Over Threshold’ Approach E.Simiu1andN.A.Heckert2 1Building andFireResearch Laboratory National Institute ofStandards andTechnology Gaithersburg, MD 20899-0001 and Department ofCivil Engineering TheJohnsHopkinsUniversity Baltimore, MD 21218 2ComputingandAppliedMathematics Laboratory National Institute ofStandards andTechnology Gaithersburg, MD 20899-0001 Sponsored inpartby: National Science Foundation Arlington, VA 22230 March1995 U.S.DepartmentofCommerce RonaldH.Brown, Secretary Technology Administration MaryL.Good,Under Secretaryfor Technology National Institute ofStandardsandTechnology AratiPrabhakar, Director

Transcript of Extreme Wind Distribution Tails: A 'Peaks Over Threshold ...The Generalized Pareto Distribution...

  • NIST BUILDING SCIENCE SERIES 174

    Extreme Wind Distribution Tails:A ‘Peaks Over Threshold’ Approach

    E.Simiu1andN.A.Heckert2

    1BuildingandFireResearchLaboratoryNationalInstituteofStandardsandTechnologyGaithersburg,MD 20899-0001

    and

    DepartmentofCivilEngineeringTheJohnsHopkinsUniversityBaltimore,MD 21218

    2ComputingandAppliedMathematicsLaboratoryNationalInstituteofStandardsandTechnologyGaithersburg,MD 20899-0001

    Sponsoredinpartby:

    NationalScienceFoundationArlington,VA 22230

    March1995

    U.S.DepartmentofCommerceRonaldH.Brown,Secretary

    TechnologyAdministrationMary L.Good,Under Secretaryfor Technology

    NationalInstituteofStandardsandTechnologyAratiPrabhakar,Director

  • National Institute of Standards and Technology Building Science Series 174Natl. Inst. Stand. Technol. Bldg. Sci. Ser. 174,72 pages (Mar. !995)

    CODEN: NBSSES

    U.S. GOVERNMENT PRINTING OFFICEWASHINGTON: 1995

    For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402–9325

  • TABLE OF CONTENTS

    wLIST OF F’IGURES.......................................................... “

    ABSTRACT ..........................................................~......

    1. INTRODUCTION ...........................................................

    2. ~PEAKS OVER THRESHOLD’ APPROACH .......................................

    2.1 Generalized Pareto Distribution. ................................2.2 Gumbel and Reverse Weibull Distributions ........................2.3 Mean Recurrence Intervals of Variate X as Functions of GPD

    Parameters and Exceedance Rate ..................................

    3. DESCRIPTION OF DEHAAN ESTIMATION METHOD ...............................

    4. WIND SPEED DATA ........................................................

    4.1 Uncorrelated Samples Obtained from Largest Daily Data Records. ..4.2 Largest Yearly Data Samples .....................................

    5. ANALYSES AND RESULTS. ..................................................

    5.1

    5.2

    5.3

    5.4.

    5..5

    Analyses of Uncorrelated Data Sets by the Probability PlotCorrelation Coefficient Method ..................................Estimation of Tail Length Parameter by ‘Peaks over Threshold’Analyses of Uncorrelated Data Samples ...........................Estimation of Tail Length Parameter by ‘Peaks over Threshold’Analyses of Largest Yearly Data Samples .........................Estimation of Speeds with Specified Mean Recurrence Intervalsby ‘Peaks over Threshold’ Analyses of Uncorrelated Data Samples.Influence of Data Errors on Analysis Results ....................

    6. LOAD FACTORS FOR WIND-SENSITIVE STRUCTURES .............................

    7. CONCLUSIONS ........................$.............,,......$$...........O

    REFERENCES ........................................................-.....””

    APPENDIX 1 --

    APPENDIX 2 —

    APPENDIX 3 —

    Histograms of daily largest wind speeds and histogramsof four-day interval uncorrelated wind speeds. ..............

    Plots of parameter & and 95% confidence bounds versusthreshold and number of threshold exceedances (based onsamples of largest yearly wind speeds) ......................

    Plots of point estimates for 100–, 1OOO– and 100 000-ye=speeds versus threshold and number of threshold exceedances(based on four-day interval samples) ........................

    Iv

    vi

    1

    3

    33

    4

    5

    7

    78

    9

    9

    11

    16

    1919

    23

    25

    27

    29

    53

    65

    iii

  • -

    APPENDIX 4 -- Instructions for accessing data sets and attendant programs. 71

    LIST OF FIGURESI

    Figure 1. Probability plots for four-day interval sample, Albany,New York ....................................................... 10

    Figure 2. Plots of parameter & and 95% confidence bounds versusthreshold and number of threshold exceedances (based onfour-day interval samples) ..................................... 12

    Figure 3. Point estimates of tail length parameters and 95% confidencebounds, versus number of exceedances (de Haan, 1990) ........... 16

    Figure 4. Mean of tail length parameter estimates weighted over 44four-day interval samples versus order of threshold ............ 17

    Figure 5. Mean of tail length parameter estimates weighted over 115largest yearly data samples versus order of threshold ........... 18

    Figure 6. Quantiles: point estimates and 95% confidence bounds versusnumber ofexceedances (de Haan, 1990) ........................... 19

    Figure 7. Plots of parameter 6 and 95% confidence bounds versusthreshold and number of threshold exceedances (based onfour-day interval samples, uncorrected data) .................... 21

    Figure 8. Point estimates for 100-, 1OOO- and 100 ()()()-year speedsversus threshold and number of threshold exceedances (basedon four-day interval samples, uncorrected data). ,.,............ 22

    lFigures in Appendices are not included in this list.

    iv

  • E. Simiu acknowledges with thanks partial support by the National ScienceFoundation (Grant No. CMS-9411642 to Department of Civil Engineering, The JohnsHopkins University), and the helpful interaction on this project with R.B.Corotis of the University of Colorado at Boulder. The writers wish to thank S.D.Leigh of the Center for Computing and Applied Mathematics, National Institute ofStandards and Technology, who suggested the collection of large samples of dailydata and the plotting format adopted in this report. Thanks are also due to Dr.S, Coles of Lancaster University for helpful criticism; Dr. J.J. Filliben of theNational Institute of Standards and Technology for advice on testing thehypothesis that a universal reverse Weibull tail length parameter exists; andDrs. J.L. Gross and J.L. Lechner of the National Institute of Standards andTechnology for valuable collaboration on eailier phases of this project, some ofwhich are reviewed in this report.

    COVER PICTURE:

    Honor6 Daumier (1808-1879)“UN LEGER COUP DE VENT” (A light gust)Lithograph (newsprint)In the Collection of the Corcoran Gallery of Art,Gift of Dr. Armand Hammer

    v

  • ABSTRACT

    We seek to ascertain whether the reverse Weibull distribution is an appropriateextreme wind speed model by performing statistical analyses based on the ‘peaksover threshold’ approach. We use the de Haan method, which was found in previousstudies to perform about as well or better than the Pickands and Cumulative MeanExceedance methods, and has the advantage of providing estimates of confidencebounds. The data are taken principally from records of the largest daily windspeeds obtained over periods of 15 to 26 years at 44 U.S. weather stations inareas not subjected to mature hurricane winds. From these records we createsamples with reduced mutual correlation among the data. In our opinion, theanalyses provide persuasive evidence that extreme wind speeds are describedpredominantly by reverse Weibull distributions, which unlike the Gumbeldistribution have finite upper tail and leadto reasonable estimates of wind loadfactors. Instructions are provided for accessing the data and attendantprograms.

    Key words: Building technology; building (codes); climatology; extreme valuetheory; load factors; structural engineering; structural reliability; thresholdmethods; wind (meteorology).

    vi

  • 1. INTRODUCTION

    A fundamental theorem in extreme value theory states that sufficiently largevalues of independent and identically distributed variates are described by oneof three extreme value distributions: the Fr6chet distribution (with infiniteupper tail), the Gumbel distribution (whose upper tail is also infinite, butshorter than the Frechet distribution’s), and the reverse (negative) Weibulldistribution, whose upper tail is finite (Castillo, 1988).

    The wind loading provisions of the American National Standard ANSI A58.1-1972were based on the assumption that a Frechet distribution best fits extreme windspeeds blowing from any direction in regions not subjected to mature hurricanewinds. An extensive study concluded, however, that the Gumbel distribution is amore appropriate model (Simiu, Filliben and Bi&try, 1976). It is a physical factthat extreme winds are bounded. Their probabilistic model should reflect thisfact. To the extent that an extreme value distribution would be a reasonablemodel of extreme wind behavior, one would intuitively expect the best fittingdistribution to have finite tail, that is, tobe a reverse Weibull distribution.

    In addition to the certainty that wind speeds are bounded, there is at least oneother indication — albeit indirect — that the Gumbel model might be aninappropriate model of extreme wind behavior. Estimated safety indices for wind-sensitive structures based on the Gumbel model imply unrealistically high failureprobabilities (Ellingwood et al., 1980). This may be due, at least in part, tothe use in those estimates of a distribution with an unrealistically long —infinite — upper tail.

    In this report we seek to ascertain whether the reverse Weibull distribution isan appropriate extreme wind speed model by performing statistical analyses basedon the ‘peaks over threshold’ approach. This approach enables the analyst to useall the data exceeding a sufficiently high threshold, and is more effective thanthe classical approach, which uses only the largest value in each of a number ofbasic comparable sets called epochs (typically, for extreme wind analysis anepoch consists of one year). To illustrate this point, consider, for example, twosuccessive years in which the respective largest wind speeds are 30 m/s and 45m/s. Assume that in the second year winds with speeds of 31 m/s, 37 m\s, 41 m/sand 44 m/s were also recorded (at dates separated by sufficiently long intervalsto view the data as independent). For the purposes of threshold theory, for a 30m/s threshold the two years would supply six data points. The classical theorywould make use of only two data points. It may be argued that, by choosing asomewhat lower threshold, the number of data points used in the analysis couldbe considerably larger than six in our example. However, in viewof the theory’sbasic assumption that the threshold is high, excessive loweringof t.e thresholdwould introduce a strong bias. Simulations reported by Gross et al. (1994)suggest that, in samples taken from normal or extreme value populations, optimalresults are obtained if the threshold is chosen so that the number of exceedancesis of the order of ten per year.

    Given a sample of data exceeding a sufficiently high threshold, the analyst usingthe ‘peaks over threshold’ approach must choose an appropriate estimation method.In this report we use the estimation method proposed by de Haan (1994). Ourchoice is based on two reasons. First, Monte Carlo simulations suggest that the

    1

  • de Haan method performs about as well or better. than two available alternativemethods, the Pickands method and the Cumulative Mean Exceedance method (Gross etal, 1994). Second, the de Haan method has the advantage of providing estimatesof confidence bounds.

    Data used in this report are taken principally from records of the largest dailywind speeds obtained over periods of 15 to 26 years at 44 U.S. weather stationsin areas not subjected to mature hurricane winds. A storm system usually affectsa given location for longer than one day, so that wind speed data recorded on twoor even more consecutive days are not necessarily independent. We describe thedata samples and our procedure for creating, from the samples of largest dailyspeeds, samples with reduced mutual correlation among the data, In addition tosamples of daily data we describe and analyze 115 samples consisting only oflargest yearly speeds recorded over periods of 18 to 54 years at locations notsubjected to mature hurricane winds. To our knowledge no tornado winds haveaffected any of our data. All the data samples used in our analyses are availablein an anonymous data file. Instructions for accessing that file and attendantprograms are available in Appendix 4.

    In our opinion, the results presented in this report provide persuasive evidencethat extreme wind speeds of extratropical origin and excluding tornadoes aredescribed predominantly by reverse Weibull distributions. This result is initself useful from a structural engineering viewpoint, and we discuss itspotential implications for the estimation of load factors for wind-sensitivestructures. Our analyses also suggest that estimates of extreme wind speeds basedon the reverse Weibull model may not be obtainable with sufficient confidencefrom the information and by the method used in this report. This suggests theneed for (i) data samples based on longer recording periods and (ii) moreefficient estimation methods.

    The report is organized as follows. Basic theoretical results pertaining to the‘peaks over threshold’ approach are briefly reviewed in Section 2. The de Haanmethod is reviewed briefly in Section 3. The data used in the analyses aredescribed in Section4. Section5 includes the main results of our investigation,Section 6 discusses the load factors issue. Section 7 presents our conclusions.

  • 2. ‘PEAKS OVER THRESHOLD’ APPROACH

    2.1 Generalized Pareto Distribution. The Generalized Pareto Distribution (GPD)is an asymptotic distribution whose use in extreme value theory rests on the factthat exceedances of a sufficiently high threshold are rare events to which thePoisson distribution applies. The expression for the GPD is

    G(y) = Prob[YS y] = l-([l+(cy/a)]-l/c) a>O, (l+(cy/a))>O (1)

    Equation (1) canbe used to represent the conditional cumulative distribution ofthe excess Y = X - u of the variate X over the threshold u, given X > u for usufficiently large (Pickands, 1975). The cases c>O, c=O and c

  • 2.3 Mean Recurrence Intervals of Variate X as Functions of GPD Parameters andExceedance Rate. The mean recurrence interval R of a given wind speed, in years,is defined as the inverse of the probability that that wind speed will beexceeded in any one year (see, e.g. , Simiu and ScanIan, 1986, p. 525). In thissection we give expressions that allow the estimation from the GPD of the valueof the variate corresponding to any percentage point 1 –l/(AR), where A is themean crossing rate of the threshold u per year (i.e., the average number of datapoints above the threshold u per year). Set

    Prob(Y < y) = 1 - l/(AR) (11)

    Using eq (1)

    1 – [1 + cy/a]-II. = I – l/(,uL) (12)

    Therefore

    y =–a[l – (AR)c]/c

    (Davison and Smith, 1990). The value being sought is

    XR= y + U

    (13)

    (14)

    where u is the threshold used in the estimation of c and a.

    4

  • 3. DESCRIPTION OF DE HAAN ESTIMATION METHOD

    Let the number of data above the threshold be denoted by k, so that the thresholdu represents the (k+l)-th highest data point(s). We have A = k/~,=, where ~r~denotes the length of the record in years. The highest, second, ..,, k-th, (k+l)-th highest variates are denoted by &,n, ~.l,n, ~-(k+l),n,~.km~=u, respectively.Compute the quantities

    ~(r) . ~ ‘~1k i=o

    The estimators of c

    {lWG%-l,J - log(%-k,.))’ r-l,2

    and a are then

    16==~(1)+1- .--———.----_—

    2{1 - (%(1))2/(%(2)))

    a ==~(l)/pl

    {

    1 ;>()

    PI =1(1–;) ;

  • 4. WIND SPEED DATA

    4.1 Uncorrelated Samples Obtained from LargestDaily Data Records. Setx of dailyfastest mile wind speeds for winds blowing from any direction were obtained fromthe National Climatic Data Center, National Oceanic and AtmosphericAdministration. Inmost samples anumber of daily fastest miles were missing. Thespeeds on days with missing fastest mile data were estimated from speeds recordedon the respective days at 3-hour intervals, using observations of the approximaterelation between these speeds and daily fastest mile speeds. Wind speeds soestimated exceeded 15.6 m/s (35 mph) only at the following stations and dates:Boise (4/26/87, 16.1 m/s); Portland, OR (11/14/81, 19.7 m/s), Salt Lake City(2/1/87, 16.1 m/s) and Toledo (2/6/86, 18.8 m/s). Forty-four samples were usedin the analyses. For fourteen of these samples corrections based on the largestyearly records were effected. 1 The influence of these corrections on the resultsof the analyses is discussed in Section 5.5. The length of the records rangedfrom 1,5to 26 years, the average length being about 18.5 years.

    The anemometer elevations were changed during the period of record at thefollowing stations: Duluth (16.2 m to 10/15/75; 6.4 m thereafter), Dayton (6.1m to 2/4/64; 6.7 m/s thereafter), Missoula (6.1 m to 6/24/82; 9.8 m thereafter),Oklahoma City (16.8 m to 10/21/65; 6.1 m thereafter), Portland, OR (7.6 m to3/1/73; 6.1 m thereafter), San Diego (6.4 m to 8/13/69, 6.1 m thereafter),Toledo, OH (6.lmto 11/1/68; 10m thereafter) and Winnemucca (10.4mto4/22/66;6.1 m thereafter). For these stations the daily data were corrected to correspondto a common 10 m elevation using the logarithmic law for open terrain. For allother stations the anemometer elevations did not change during the period ofrecord and (except for Denver, where the data were also corrected to correspondto a 10 m elevation), the original recorded data were used, that is, no elevationcorrection was effected.

    From samples of largest daily wind speeds we obtained as follows samples thathave reduced mutual dependence among the data. Partition the sample of dailymaxima into small periods of size equal to or larger than the duration of typicalstorms in days. (A reasonable choice of the length of the periodis four to eightdays.) Pick the largest value in each period. If the maxima of two adjacent

    1 The following discrepancies between records of yearly maximum fastestmiles and daily maximum fastest miles were found: Cheyenne (6.1 melevation), 69vs. 75 (72/3/6), 61 vs. 66 (1/18/75), 65 vs. 70 (6/14/76); Dayton (10 m), 44 vs.49 (6/27/66), 61 vs. 86 (2/16/67), 52 vs. 67 (5/14/70); Fort Wayne (6.1 m), 51vs. 55 (8/27/65); Greenville (6.lm), 57vs. 52 (7/15/66); Lander (6.lm), 49vs.61 (4/12/68); Louisville (6.1 m), 57 vs. 61 (2/15/67); Milwaukee (6.1 m), 52 vs.56 (6/16/73); Minneapolis (6.4m), 52 2VS. 56 (7/10/66); Missoula (6.lm), 67vs.61 (7/31/83); Portland, ME (6.1 m), 38 vs. 57 (12/24/70); Portland, OR (10 m),48 vs. 42 (12/11/69); Pueblo (6.1 m), 65 vs. 70 (5/12/75); Richmond (6.1 m), 47

    vs. 42 (7/11/73); Sheridan (6.1 m), 52 vs. 57 (3/2/74). For these stations thecorrections were effected by replacing the recorded daily maximum by the yearlymaximum recorded on the same day, The yearly maxima were checked for correctnessagainst the original charts — see Section 4.2.

    7

  • periods are less than half a period apart, replace the smaller of the two maximaby the next smaller value in the respective period which is at least half a

    period apart from the larger maximum. A data sample is thus obtained in whichadjacent data are one period apart on the average and never less than half aperiod apart. We show below the daily maximum fastest miles at Boise, Idaho inthe first six eight–day periods of the year 1965. The periods are separated byvertical bars. The data selected by the procedure just described are in boldtype. In the sixth period we underlined the period maximum (26), discarded andreplaced by the next largest value (18) because of the proximity to the largermaximum (31) of the adjacent period.

    23,32,35,20,26,24,24,14 I 13,16, 5,11, 5,12,12, 7 I 6, 6, 9, 9,11,12,25,26 I

    15,12,12, 7,15,12,29,10 I 7,10,15,20,20,17,24,31 I 26,9,16,14,18,16,14,121

    In spite of our selection procedure, small correlations among data might subsist.Nevertheless, we refer to a sample obtained by the selection procedure just

    described as anuncorrelated data sample based on eight–day (four-day) intervalsor, for short, an eight–day (four–day) interval sample. An assessment was madeof differences between results of analyses based on four–day and eight–dayinterval samples at the same station. Since in all cases the differences wereinsignificant, we present in this report only results based on four–day intervalsamples.

    Appendix 1 contains histograms of the full samples of daily data and of the four-day interval samples obtained from them for each of the 44 stations. Owing to thesmall scale of the graphs, in some cases high wind data are not perceptible onthe daily data histograms; however, they can be seen clearly on the four-dayinterval data histograms. A comparison between the histograms of the full dailydata samples and the histograms of the four–day interval samples shows that ourselection procedure considerably reduces the number of lowest wind speed data.The selection procedure also results in a shifting of the highest ordinate of thehistogram toward higher wind speeds.

    4,2 Largest Yearly Data Samples. Also available were samples of largest yearlyfastest miles for winds blowing from any direction, recorded over periods of 18to 54 years at 115 U.S. stations not subjected to mature hurricane winds. Thedata in those samples were obtained and checked against original charts by M.J.Changery, Chief, Applied Climatology Branch, National Climatic Center, NationalOceanic and Atmospheric Administration (letter to E. Simiu of December 20, 1988)and are an update of the information included in Simiu, Changery and Filliben(1979) .

    As noted earlier, all the data samples used in our analyses are available in ananonymous data file. Instructions for accessing that file and attendant programsfor creating sets of uncorrelated data are available in Appendix 4.

  • 5. ANALYSES AND RESULTS

    5.1 Analysis of Uncorrelated Data Sets by the Probability Plot CorrelationCoefficient Method. Before applying the ‘peaks over threshold’ approach, weestimated the best-fitting distributions for the four-day samples from among aset of seven distributions or families of distributions (normal, doubleexponential, lognormal, Gumbel, Fr6chet, Weibull, and reverse Weibull). Thisanalysis was viewed as a tentative step toward understanding the probabilisticstructure of the populations from which the threshold exceedances were taken. Theestimation of the best fitting distribution was based on the probability plotcorrelation coefficient (PPCC) (Filliben, 1975). As an example, Figure 1 showsthe PPCC plots for the Albany, New York four-day interval samples. For thissample the mean and standard deviation were E(X)=1O.5 m/s (23.5 mph) ands.d.(X)=3.14 m/s (7.03 mph); for the full sample of daily data E(X)=7.8 m/s (17.5mph) and s.d. (X)=3.l m/s (6.98 mph). The analyses were repeated for the eight–daysamples, and the results were found to differ insignificantly from those basedon the four-day samples.

    The reverse Weibull distribution was found to best fit the data in the majorityof the cases. Even in the cases where other distributions fitted the data better,the reverse Weibull was typically very close to being the best fittingdistribution, that is, its PPCC differed only in the fourth or even fifthsignificant figure from the PPCC of the best fitting distribution. We thereforere–analyzed the eight-day interval samples by assuming that the populations forall stations have reverse Weibull distributions with a single, site-independentvalue of the tail length parameter, and site-dependent location and scaleparameters. For each stationwe calculated the PPCC’S by assuming that the shapeparameter ywas 1,2,3, ...50. For samples of data based on eight-day intervals themean and median of the PPCC’S, taken over all the stations, were largest for 7=11and 7=13, respectively. If it were true that a reverse Weibull distribution witha single tail length parameter characterized the extreme winds at all sites, thenour analyses would indicate that the value of that parameter is 7=12.

    The assumption that there exists a universal tail length parameter for extremewind distributions is implicit in current practice, except that it is applied tothe Gumbel distribution (for which Y=Q). To see whether that assumption istenable if applied to the reverse Weibull distribution with 7=12, 44 samplescorresponding to 18-year record lengths based on 8-day intervals were generatedfrom reverse Weibull populations with (1) 7=8, (2) 7=12, and (3) 7=16. The numberof simulated samples for which the best fitting reverse Weibull distribution hadshape parameters with 7

  • NORMAL PFIOBABILilY PLOT V

    60 ,J

    50-

    40-

    30-

    20-

    lo-

    0 1 1 1 1 1 1 1

    -4 -3-2-101234

    CORRELATION COEFFICIENT = 0.990863

    EXTREME VALUE TYPE 1 PROBABILITY PLOT V

    50-

    44-

    t-J0

    30-

    20-

    lo-

    0 1 1 1 # 1 I 1 1 ,

    -2.10123456 78

    CORRELATION COEFFICIENT = 0.99108

    EV2 PROBABILIN PLOT V

    60GAMMA =50

    50

    40

    30

    20

    10 ; ,,[,

    o

    0,9 0.95 1 1.05 1.1 1.15 1

    CORRELATION COEFFICIENT = 0.988443

    DOUBLE EXPONENTIAL PROBABILITY PLOT V LOGNORMAL PROBABILIN PLOTV

    -lo -5 0 5 10 -4 -3 -2 :101234CORRELATION COEFFICIENT = 0.977449 CORRELATION COEFFICIENT = 0.994978

    WEIBULL PROBABILITY PLOT V

    60GAMMA = 2

    50-

    40-

    30-

    20-

    lo-

    0 I 1 1 I 1

    NEGATIVEWEIBULL PROBABILITY PLOT V

    60-GAMMA = 8

    50-

    40-

    30-

    20-

    lo-

    0 1 1

    0 0.5 1 1.5 2 2.5 3 -1.3 -1.2 -1.1 .; -0.9 -0.8 -0’.7 -0.6 -0.5 -0.4CORRELATION COEFFICIENT = 0.996035 CORRELATION COEFFICIENT = 0.997976

    FIGURE 1. Probability plots for four-day interval sample,2 Albany, New York.

  • Table 1. Comparison of Results for Simulated and Observed Samples

    @2 13

  • ABILENE.TX (15 YEARS) ALBANY.NY (19 YEARS) ALBUQUERQUE.NM (19 YEARS) BILUNGS.~ (26 YEARS)

    0,5

    0

    0

    ~-0.5

    n

    -1

    .1.5

    0.2- -’, .

    . ..-./ *

    i &

    -/’,

    ‘, ‘.. J.4. ‘, ‘-,

    ,4 -!*.

    ‘, ‘!, . . .

    *, *-.‘,’*, ‘, !,’

    ., .. ,

    .0.8 - V

    -1- ,

    /’/’, ~”

    +

    ~., . ,, ,t.’, ,. --,

    ,,, .J.

    ,, , 1- . ‘-,,,,,”-.,’.

    ,’, ,’ *, ‘.

    ,, ,

    ,-,,. .

    r-”),,.-,-...,.-,,..., ..

    ‘., ..* .,, ‘-.”.“

    ~,.’.,!

    . .,$!,. .

    -.,0.5

    @.26

    $

    I;0

    -0.36

    .0.5

    &‘.

    ?’.‘.,, ‘,,

    -. ,-,

    ,’, -., ,,,., ..‘..

    ,*, , ,“,’‘., , , ,,, . .,-. \,, ,,,

    ““e,! ; “

    ,1,

    ,,,

    ,,

    1,. J,,:,,,l,,r,,,,,,,,l,,,,,,1,5249464340372431 Z19 30 69 99 199 315 455 690 90

    ) ,43 40 37 24 3i 23 25 22 19 MPH16 52 96 191 350 528 741 925 1045

    J,, ,,, ,,, ,,, ,,rr r r:: j; 36 33 30 27 24 21 18 IPH

    66 133 347 423 659 912 1161

    7WPH 60 47 44 4+ 20 36 32 29 26 JPH

    16 40 54 121 203 326 566 623 1129

    BINGHAMTON.NY (20 YEARS) BOISE.ID (23 YEARS) BURLINGTON.Vl(19 YEARS) CHEYENNE_CORR.WY (15 YEARS)

    -.

    /’,0.5 , . ,..t.,

    n*t..’-- . .,.,.. , .. . . .-.’.,’, . .,. # . .\.1’ .. . ..0

    0.0.6

    ~

    E

    -1

    .1.6

    0,5

    0

    c)

    $

    ;

    -0.5

    .1

    0

    ~.o 5

    $“

    Lg

    .1

    w, ,.0.25- ‘, , ‘,E.0.26 -

    4

    ,..,

    41 263532292623201;18 26 64 117 235 412 693 993 IZ

    wN ,0 1,

    ,, !,,,

    1:.25 1.3 ,,-

    11’1,1,,,,,,,!,

    *.1.5 r , r

    tiPH 59 66 53 50 47 4441363620 30 60 82 1S1 170 251 337 46

    I.35 J:,1 , T

    4229363330272421 1!16 42 64 133 264 461 745 10441%

    ,:) , <.1 28353229262320178 29 61 141 279 460 795 1071 13C

    dPH

    lPH

    IPH

    bPH

    CONCORD.NH (26 YEARS) DAYTON_CORR.OH (17 YEARS) DENVER.CO (15 YEARS) DULUTH.MN (15 YEARS)

    0,5> ,

    f’.,.,

    ,l“.., ,“. .

    !.:*n

    .,.1

    -1- ‘ h~.

    ,“, , .-‘ /’, .-.

    ,,1 ...!,, ,~ ,.’,,J ,.

    ,,, , ‘.,,, ,,.-.. ,

    J’.’ ,. ,.,, ,,,, ,,,

    ‘,,,o-

    0

    %

    , ,“~$ ~, ! J ,,g

    ,, ~i~~ .,, -,

    -0,5- , #“‘. JI, , ,

    ., ●,. ‘, # ,, . -, ,,’, -,, $

    ,,,, ,,,,, ,.., -

    \\ ‘,m,, .,

    ~-.’

    -1 , , , 1-aPH 44 41 23 35 32 29 26 23 20

    20 47 72 131 206 302 580 790 98

    .IJ,I,,29 36 33 30 27 24 21

    I # r18 15

    t7 41 106 193 404 666 965 1393+71

    {:,,,,,,,,,,,,,,,,,,,,,,,,4744413635 32 29 26 2:16 36 65 92 152 254 402 605 83

    ~33 25 22

    17 56 79 139 274 431 537 747 SS$

    FIGURE 2. Plots of parameter ~ and 95% confidence bounds versus threshold andnumber of threshold exceedances (based on four-day interval samples).

  • ..[.i .-z!

    -----~

    ‘.-.t-g

    .’-.

    -.,

    ,-.

    ...

    -’-N

    ~.’.’

    ..

    ,,%

    %.,

    ‘----.g-N

    ..-.

    R:

    ,#-

    ..:s

    .’,‘.

    .?

    38---

    -.’-.

    ,%!%

    3N

    vvH3a

    13

  • MINNEAPOUS.CORR.MN (15 YEARS) MSSOUIA_CORR.MT (25 YEARS) MOUNE.IL (15 YEARS) OKLAHOMA.CITY.OK (16 YEARS)

    ,

    ..

    ‘.~.. . .~ .

    ; +

    .-,,’

    ,.$‘,,.1 ‘,. .

    ., ,.

    , . .-.

    r.“,1,. ,.-./1, ,’!1 ,,

    .1- ,, ‘It,,,,

    a5

    0.25

    :0

    :

    :

    -025

    -0.5

    l,- ‘,

    l“~~0,5 *,.\0.26.

    ,,

    ‘--,

    ,,

    *,’. I

    J,,!,1 .,,,

    ,,

    .

    ?

    ‘,~-.

    ‘.. .,--- .

    . . .. “.*

    / ‘, .,,,.~,

    ‘, !,‘r ,,

    ,.,.,’

    .

    ,-:

    : *

    ,~ o- ‘-,-: .,-.,,

    s .“-,, ,,

    .0.26 ,. ,. .,$,.’-- ... ,,~,

    ,,,’ 1,,) , ,’ ~,u

    -0,6‘.

    ‘,, . , ,,

    \

    .ls~4345423936 33 30 27 24 MPH21 42 74 120 234 378 586 763 943

    11,,,,,,,,,,,,,,,,,,,,,,,(,,47444135353229 26217 27 45 6% 109 172 273 400 84

    >41 33 35 32 29 26 23 20 17 MPH18 31 73 138 237 401 661 850 1021

    I, , I

    46 42 29 35 33 30 27 24 21 MPH17 34 55 144 159 375 540 10291243

    !PH

    MPH

    UPH

    POCATELLO.ID (21 YEARS) PORTbiND_COR.ME (20 YEARS) PUEBLO_CORR.CO (17 YEARS)PORTIAND_CORR.OR (23 YEARS)

    0.5

    0

    c1

    ~.O.6z

    ~

    -1

    .1.5

    ,

    0.5- t

    0.26- “ ‘, ,-.

    ! &

    ‘,, , -’ ,. .

    ,/, ,5

    ,- ,,.,

    , ‘,4-, ,---

    ‘,. ,\

    . . ,,

    .0.5 -..

    ,’, ,‘,, ,

    0.5

    I

    ,,,,

    0.25, ,,. .

    . ,. .,,, ,,. , ,“. .,w$ ,~ ,’.‘ ,, . ..-. . . . ,.’~,,1 1..,J,, ,, .,1,,, ,

    ‘., ,,,

    I ,,-1.5 ~

    44413+13532292623 20 MPH21 56 59 179 403 618 877 11221301

    Ir

    47444123353223 26Z16 22 28 56 119 180 325 511 78

    1> , , , , a r , , ,56 53 50 47 44 4’I 33 35 32 MPH18 31 44 79 122 215 303 435 855

    RED_SLUFF.CA (21 YEARS) RICHMOND_CORR.VA (16 YEARS) SAN_DIEGO.CA (17 YEARS)SALT_LAKE_CITY.UT (26 YEARS)

    0.5

    0

    0.0,5

    $

    n .1

    -1.5

    -2

    .,,

    +

    , ?..* ‘..

    ‘, -,’.. .’ ,- .,,’.-,, ,, .t, ‘.

    -.,,, ,

    /.,’ 1,,

    ,J, +

    ./. . .,,

    ?

    ‘.’-.

    ,. -,’,‘..,- .,-~ ‘.,1 ,*. .,“ ,,

    ‘-’, ,,,,,,,,,,,,,,,,,

    .

    3,.,,.’ ,-, .

    .. . .,\- ,“. -.t,. . .

    1, ‘,’ ‘- ‘,, .1, . .‘.’ * ,’, ●

    ~,,’,

    $,‘,~,

    4 4+ 3835322926232(0 52 92 134 3%0 614 867 1183 13$

    ‘.

    I :,-1.5. >

    45 42 39 35 33 30 27 24 21 MPH16 24 67 91 136 221 393 395 S13

    r,4 31

    r28 25 22 19 16 13 10

    3 57 128 261 418 617 944 11521276

    FIGURE 2 (continued)

  • SHERIDAN_CORR.WY (15 YEARS) SPOKANE.WA (24 YEARS) SPRINGFIELD.MO (15 YEARS)TOLEDO.OH (25 YEARS)

    \,- -, ,

    ,.

    .,‘. $“, , .,,

    # ,’.

    P .,’. . . . . -.‘. $,,,~~.-,,*W ,-- .-,, ,,Jt,,, ,,. ,,,

    ,‘ , t’,

    ~,. ,0

    0

    $26

    z

    ; -0.5

    -0,75

    -1

    “., ,

    +

    ,*. ..-. . .J,-- . ‘-’,,,-,

    ‘, -. .’..‘, ,o.~

    ~.”‘, ,

    ,, .,

    ‘, , ,,.

    ‘,‘,‘. ,

    ,

    y

    ,..-, ,.. ‘..

    ,. .... .,

    . ..’.,. -., .I ‘. ‘,

    ‘,, - .,,, ‘,

    ‘. - m‘J,

    ,,

    ,,, ,,,,, ,.“‘,

    ‘1‘,

    ) (B 45422936333027 2116 26 47 91 144 252 367 642 75

    -1,6‘,

    & 36 33 30 27 24 21 18 15 MPH23 37 63 140 257 467 670 878 1111

    ) ,~;; 333532292623 2

    59 121 210 351 523 855 11

    85 42 39 36’r

    33 30 27 24 21 MPH18 39 63 115 235 326 502 649 1162

    MPH

    IPH

    MPH

    I!PH

    WINNEMUCCA.NV (19 YEARS) WJh14.AZ (22 YEARS)TUCSON.AZ (15 YEARS)TOPEKA.KS (15 YEARS)

    ,,,

    1- 0.5WI

    .. , .

    “ ~, .,’,,’ . .‘, .,

    \

    . .,-, ..-, ,.

    ,’, . 4 ., ,

    ‘,, \,-, ,--, ., .‘.

    -, .~%.. ‘..,,,.,

    ,. “.,,, ,. 8

    %

    ‘., ,.

    ,-. ‘,’. . \ ‘1,, ‘,

    ,,, ,,, %,., ,’ ,,. ,

    ‘,,$$

    ,, ‘, ,,, ,

    ,, *

    , ,,

    1-, -- ~,.

    q

    ‘,

    --,,..-,.., ,(, .,tt~

    , ,,, ..., ,.‘, , ‘,’,

    ,fl,,,~, ‘,$’1 ‘f

    1.

    .0.5

    ‘,‘n, , f

    42 39 36 33 30 27 24 21 If20 23 57 135 270 523 IOW 1472 20(

    1 f4229363330272421 121 43 70 123 224 373 690 772 @

    I,,,,,,,,,,,,,,,,,,,,,,,fi\42293633302724 211117 29 66 157 263 444 676 875 10

    1 ,1642293633202724 217 27 44 92 177 366 467 744 9

    -1, MPHMPH

    FIGURE 2 (continued)

  • i

    0.5 *

    ‘10.4 i

    0.2

    0.1

    0.0~1

    0.1:

    ,/. ------ ---- ----------. ‘..”- *--------- ‘, -------.-. ----

    FIGURE 3.

    q=lforthreshold.

    o 100 200 300 400 500 600 700 800 900 1000

    Point estimates of tail length parameters and 95% confidence boundsversus number of exceedances (de Haan, 1990).

    each station was so chosen that at least 16 data points exceed that) The plot of Cwa is shown in Fig. 4 and, in our-opinion, tends to

    confirm the view that, -at most if not all stations, the estima~ed value of c isnegative, perhaps c=-O.2 or c=-O.25. We note that, as suggested by Monte Carlosimulations (Gross et al. , 1994), for sample sizes not exceeding about 10 percentof the total number of data, the bias in the estimation of c is about -0.05, thatis, sufficiently small not to invalidate our”judgement that, predominantly,C

  • -0.1

    -0.2

    -0.3

    -0.4

    -0.5

    -0.6 I I I I I I I I I I I I I II I I I I I 1 I

    o 5

    FIGURE 4.

    10 15 20 25

    THRESHOLD

    Mean of tail length parameter estimates weighted over 44 four–dayinterval samples versus order of threshold.

  • -0.1

    -0.2

    -0.3

    -0.4

    -0.5

    -0.6

    “0.7

    -0.8

    -0.9

    /

    \

    I I I I I I I I I I I I I I I I I 1 I I I I I 1

    0 5 10

    FIGURE 5. Mean of tail lengthyearly data samples

    15 20 25

    THRESHOLD

    parameter estimates weighted over 115 largestversus order of threshold.

  • 5,4 Estimation of Speeds with Specified Mean Recurrence Intervals by ‘Peaks overThreshold’ Analyses of Uncorrelated Data Samples. Appendix 3 contains plots of

    point estimates of the extreme winds with mean recurrence intervals of lOO, 1,000and 100,000 years. The estimates were based on four-day interval samples at eachof the 44 stations. They are plotted against the threshold speed and the numberof exceedances of the threshold, as in Fig. 2.

    We reproduce in Fig. 6 an example of a plot where the quantile fluctuatesstrongly as a function of threshold (de Haan, 1990). De Haan comments: “if onewould be forced to give a point estimate ’a value of 5.1 m. .. would not beunreasonable.” The comment is indicative of the spirit in which results based onthe ‘peaks over thresholds’ method must be interpreted in cases where fairlylarge fluctuations are present, as is the case for Fig. 6 and many of the plotsin Appendix 3. We do not attempt in this report to estimate extreme wind speedsfor various mean recurrence intervals. Rather, having found that the tail lengthparameter c of the GPD is negative for the majority of the stations, we assessin the next section the potential implications of this finding for the estimationof load factors.

    1000

    900

    800

    700

    600

    500

    +00

    1“$;f,, IL

    .: ,-~

    I,,t;\ I , ::: ,

    : ;’ ::;,!t ;,, ! ~ ,

    ;4;” , ,,

    [1“““t

    f! ‘,,-.~...,, . ...-------------------

    1---------------p ““ -.‘y\ -------------------.’( -..

    i)J ~d

    Iv ‘“”-{300 i

    I

    ----.<

    .,*,.,,*.,200 ; t .,,11;:*: , !’ . ..”.100: ~’”,i

    . . . . . . .---- .--” .Y,.. . . . ------- ---------- -~------- ----p’

    ---,

    OJ, , , b

    o 100 Qoo 300 400 500 600 700 800 900 1000’

    FIGURE 6. Quantiles: point estimates and 95% confidenceversus number of exceedances (de Haan, 1990) .

    5.5 Influence of Data Errors on Analysis Results. The footnote

    bounds

    to Section L.1lists errors in the recorded daily data found at fourteen stations, and therespective corrected values. Figures 2 and 4 and Appendix 3 are based on thecorrected data sets (these are marked in Fig. 2 and Appendix 3 by the suffix

    19

  • “corr”) . Figures 7 and 8 include, respectively, plots of estimated tail lengthparameters and speeds with various mean recurrence intervals for twelve of thesestations and are based on the uncorrected data. Comparisons between these plotsand their counterparts in Fig. 2 and Appendix 3 show that estimates.of speedscorresponding to various mean recurrence intervals are in some cases affectedfairly significantly by the errors in the data. This is true to a much lesserextent for the tail length parameters. The plot of the weighted mean over all 44stations, computed from results obtained by using the uncorrected data, wasindistinguishable from Fig. 4.

    20

  • .“/.-lM

    I

    {

    ,.‘..‘.,

    .

    ‘,,/

    ‘,,,,’

    ,‘,

    .‘.

    .,,,

    t,

    G.

    .,

    .,.-.

    02

    wT

    3N

    VV

    H%

    3N

    VV

    H311

    21

  • CHEYENNE.WY

    100- I — 100,0W- -1,000

    --1oo

    90-

    1

    .

    70-

    DAYTON.OH FORT_WAYNEIN

    — Iw,ooa

    ‘A

    1,000

    160

    IOQ

    90

    80

    70

    g 60

    50

    40

    30

    20

    90

    80

    E 70

    60

    50

    204

    150

    %0+

    50

    0

    — ioo,ooa- -1,600

    - - 164

    d\ II,\/’,f \[. ~,’’,’, ,\ ,.,. ,,, :,,. !/,,/ ‘,,,,‘.,

    60 ~59 56 53 50 47 44 41 38 35 MPH20 30 60 82 131 170 251 337 461

    146 45 42 39 36 33 30 27 24 MPHi? 25 35 60 39 140 222 266 564

    1 44 41’, 1 #

    383532292627 37 65 92 152 254 402 606 82

    JPH

    LANDER.WY LOUISVILLE.KY

    :~

    MILWAUKEE.WI

    104-

    \

    — too,06Q- -I,OQO

    90- --104

    80-

    E

    60-

    .=

    50-.

    40-

    MI NNEAPOUS.MN

    150 I — 100.06-2 200.— 1 W,ou

    – -1,3+0

    - - 164

    150-

    gloQ -

    ..-..:

    50-

    140-

    130-

    120-

    110-

    3IOQ -

    90-

    80.

    70-

    NN

    60~ MPH

    21 29 41 63 101 155 200 272 376

    o~ MPH20 36 60 145 265 420 580 776 1025

    OJ, ,,, ,, ,:~~3532zJ 262320 17

    73 f26 237 401 661 850 1021

    30 ~39 36 33 30 27 24 21 MPH

    19 31 75 110 218 356 564 645 1067MPH

    MISSOULA.MT PORTIAND.ME

    Iw] —100,000

    PORTLAND.OR

    — 134,000- -1,000

    --100

    RICHMOND.VA

    w. — 100,000- -~,ooo

    --10080-

    70- \,/ \

    \

    60 -. ..-

    .

    50 -

    40 -

    200.

    i50

    KX144

    50.

    0.

    60-— 100,000

    - -l,OQO

    --100

    54-

    . .

    z40- .

    30-

    20-, ,,,,,24 31

    ,23 25 22 19 16 13 10

    23 57 128 251 418 617 944 11521276

    i20- - -I,lxlo

    --to Q

    110-

    1oO-

    90.

    ~80-

    \70- ,

    60- .1

    50- .

    40-

    20- , (40 37 24 31 28 25 22 19 1(19 24 70 162 302 463 751 1041 14(

    20J, ,IIL III! , ,45 42 39 36 33 30 27 24 2117 24 55 *O4 169 375 540 1029134

    MPH I I5 42 29 36 33 30 27 24 21 MPH0 33 46 92 165 275 413 694 971

    IPHMPH

    FIGURE 8. Point estimates of 100-, 1000- and 100 OOO–yr speeds versus threshold and number ofthreshold exceedances (based on 4-day interval samples, uncorrected data) .

  • 6. LOAD FACTORS FOR WIND-SENSITIVE STRUCTURES

    Extreme wind loads used in design include nominal basic design wind loads (e.g.,the 50-yr wind load) and nominal ultimate wind loads. A basic design wind loadis an extreme load with specified probability of being exceeded during a basictime interval. In the United States that interval is usually 50 years. A basicdesign load with a 50–year mean recurrence interval has a probability of almosttwo thirds of being exceeded during a 50-year period.

    A structure or element thereof is expected to withstand loads substantially inexcess of a 50- or 100-year wind load without loss of integrity. The wind loadbeyond which loss of integrity can be expected is referred to as the nominalultimate wind load. The nominal ultimate strength provided for by the designeris based on a nominal ultimate wind load equal to the design wind load times awind load factor. This statement is valid for the simple case where wind is thedominant load. It needs to be modified if load combinations are considered, butfor clarity we refer here only to this case.

    The load factor should be selected so that the probability of occurrence of thenominal ultimate load is acceptably small. This probabilistic concept isimportant from an economic or insurance point of view. To the extent thatevacuation or similar measures cannot be counted on to prevent loss of life, itis also important from a safety point of view.

    A probabilistic approach has proven helpful in a number of cases, particularlyfor relative assessments of alternative design provisions, for example for mobilehomes. However, in most cases the difficulties of obtaining wind load factors byprobabilistic methods have proven to be substantial if not prohibitive. For thisreason code writers have largely relied on wind load factors implicit intraditional codes and standards. For example, the American Society of Civil

    Engineers Standard A7-93 (1993) specifies a wind load factor of 1.3. In a verylarge number of applications the wind load is proportional to the square of thewind speed, so that a basic design wind speed and a nominal ultimate wind speedmay be defined that are proportional to the square root of the basic design windload and the square root of the nominal ultimate wind load, respectively. Forexample, for Lander, Wyoming, the American Society of Civil Engineers StandardA7-93 (1993) specifies a basic design 50-year design speed of 35.8 m/s (80 mphfastest-mile) at 10 m (33 ft)elevation. The corresponding nominal ultimate windspeed would then be 1,31/235.8=40.8 m/s (91.2 mph).

    Reliance on traditional code values is part of the process sometimes referred toas “calibration against existing practice,” Traditional codes were generallyadequate for many types of structures, but questions remain on whether safetymargins implicit in those codes may be applied to modern structures, which candiffer substantially from their predecessors in their materials anddesign/construction techniques. For this reason an assessment of wind loadfactors used in codes and standards would be desirable. For example, one wouldwish to answer the question: what is the approximate mean recurrence interval ofthe nominal ultimate wind speed?

    The answer to this question depends strongly upon the probability distributionassumed to best fit the extreme wind speeds. For example, a PPCC analysis oflargest yearly fastest-mile speeds recorded at Denver between 1951-1977, basedon the assumption that the best fitting distribution is Gumbel, yielded a 27.9m/s (62 mph) estimate of the 50-year wind speed at 10 m above ground. The

    23

  • corresponding nominal ultimate wind speed would be 1.311227.9=31.8 m/s (71.0mph), to which there would correspond, under the Gumbel assumption, a meanrecurrence interval of about 500 years (Simiu, Changery and Filliben, 1979). Iftaken at face value this would be an alarmingly short recurrence interval, sinceit would entail an unacceptably large probability of exceedance of the nominalultimate wind load during the life of the structure.

    However, the 500 years mean recurrence interval is based on the Gumbel model.Since our results support the assumption that, predominantly, the appropriatemodel is a reverse Weibull distribution, rather than a Gumbel distribution, wewish to answer the question: what is the mean recurrence interval correspondingto 1,31/2 times the wind speed with a 50–year mean recurrence interval? ForDenver, if one had to estimate the tail length parameter ; from the plots of Fig.2 and Appendix 2, and the 50–year speed from the plot of Appendix 3, one might,.choose, say, c=–O.2 (a conservative choice: according to the plots ; is likelyto be somewhat lower, that is, the distribution tail is likely to be somewhatshorter than that corresponding to c=-O.2), and X50=26.8 m/s (60 mph). For athreshold of 16.5 m/s (37 mph) –- a value that is roughly consistent with thesechoices, see Denver plot, Fig. 2 -- we have A=139/15=9.27/year. Assuming X50=26.8m/s (60 mph), it would follow from eqs (13) and (14) &=2.5 m/s (5.6 mph). Theestimated maximum possible wind speed corresponding to the parameters 6=-0.2 and~=2.5 m/s (5.6 mph) is obtained by letting R + ~ in eqs (13, 14). Its value is~aX=u-ti/~ = 16.5+2.5/0.2 = 29.0 m/s (65 mph). The estimated mean recurrenceinterval of the nominal ultimate wind speed 1.31f2xis therefore infinity (i.e.,

    ~0=1.31/2x26.8=30.6m/s(68 mph)such a wind speed is estimated to never occur). This

    estimate is of course subject to sampling errors: the actual maximum possiblewind speed may be higher than 29.0 m/s (65 mph), and the mean recurrence intervalof the 30.6 m/s (68 mph) speed may in fact be finite, though likely much longerthan 500 years. In spite of the uncertainty inherent in our estimates, our resultsuggests that a load factor of 1.3 –– specified in the ASCE A7–93 Standard on thebasis of practical experience –- is in fact adequate from a probabilistic pointof view. This is contrary to what would be concluded if the analysis were basedon the assumption that the Gumbel distribution holds.3

    31n this instance code writers attended to the apparent insufficiency of thenominal ultimate design speedby substantially inflating the value of the 50-yearwind speed: the ASCE A7–93 Standard specifies for Denver a 35.8 m/s (80 mph) 50-year speed at 10 m above ground. Since the estimated standard deviation of thesampling error for the estimated 50–year wind is s~ ~ = 1,3 m/s (3.0 mph) (Simiu,Changery and Filliben, 1979), the specified 35.8 m/s”(80 mph) value differs fromthe estimated 27.9 m/s (62 mph) value by almost six standard deviations. One mayview the actual load factor implicit in the ASCE A7–93 Standard as being equalto (1.3)(80/62)2=2.14, rather than just 1.3. The mean recurrence interval for the40.7m/s (91mph) (i.e., 1.311280= 2.14112X62) nominal ultimate load inherent inthe ASCE A7-93 Standard provisions for Denver, based on the Gumbel model, wouldbe about 80,000 years (Simiu, Changery and Filliben, 1979), which is much moreacceptable than 500 years.

    24

  • 7. CONCLUSIONS

    In this report we presented estimates of the tail length parameters of extremewind distributions for non-tornadic winds blowing from any direction in regionsunaffectedly mature hurricanes. In our opinion, these estimates support the viewthat the reverse Weibull distribution is an appropriate probabilistic model inmost if not all cases. They also suggest that load factors for wind sensitivestructures specified by current standards provide for reasonable safety marginsagainst wind loads, and that the adoption of the Gumbel model likely results inan unrealistic assessment of structural reliability under wind loads.

    However, owing to fluctuations of our estimates with the threshold value, it isdifficult to provide reliable quantitative estimates of the tail lengthparameters. This difficulty is even more pronounced for quantile estimates.We tentatively ascribe these difficulties to the relatively small size of oursamples (15 to 26 years). It would therefore be desirable to assemble data forlonger records than those used in this report. In addition, more efficientestimation methods should be developed. Efforts to develop such methods arecurrently in progress (Coles, 1994).

    25

  • RE)?ERENCES

    American National Standard A58.1-1972 (1972), American National StandardsInstitute, New York.

    ASCE Standard A7-93 (1993), American Society of Civil Engineers, New York.

    Bingharn,N.H. (1990), “Discussion of the Paper by Davison and Smith,” Journal ofthe Roval Statistical Societv, Series B, 52, p. 431.

    Castillo, E. (1988), Extreme Value Theory in En~ineerinr, Academic Press, NewYork.

    Coles, S. (1994), private communication.

    Davison, A.C., and Smith, R.L. (1990), “Models of Exceedances Over HighThresholds,” Journal of the Royal Statistical Society, Series B, 52, pp. 339-442.

    de Haan, L, (1990), “Fighting the Arch-enemy with Mathematics,” StatisticNeerlandica 44, pp. 45-68.

    de Haan, L. (1994), “Extreme Value Statistics,” in Extreme Value Theorv andApplications, Vol. 1 (J.Galambos, J. Lechner andE. Simiu, eds.), Kluwer AcademicPublishers, Dordrecht and Boston, 1994.

    Ellingwood, B. et al. (1980), Development of a Probabilitv-Based Load Criterionfor American National Standard A58, NBS Special Publication 577, National Bureauof Standards (U.S.), Washington, DC.

    Filliben, J.J., “The Probability Plot Correlation Plot Test for Normality,”Technometrics, 17, pp. 111-117.

    Gross, J., Heckert, A. Lechner, J., and Simiu, E., (1994), “Novel Extreme ValueProcedures: Application to Extreme Wind Data,” in Extreme Value Theorv andArmlications, Vol. 1 (J.Galambos, J. Lechner andE. Simiu, eds.), Kluwer AcademicPublishers, Dordrecht and Boston, 1994.

    Gross, J.L., Heckert, N.A., Lechner, J.A. and Simiu, E. (1995), “A Study ofOptimal Extreme Wind Estimation Procedures,” Proceedings. Ninth InternationalConference on Wind Engineering, New Delhi.

    Hosking, J.R.M. and Wallis, J.R. (1987), “Parameter and Quantile Estimation forthe Generalized Pareto Distribution,” Technometrics, 29, pp. 339-349.

    Johnson, N.L. and Kotz, S. (1972), Distributions in Statistics: ContinuousMultivariate Distributions, Wiley, New York.

    Pickands, J. (1975), “Statistical Inference Using Order Statistics,” Annals ofStatistics, 3, 119-131.

    Simiu, E., Changery, M.J. and Filliben, J,J. (1979), Extreme Wind Speeds at 129Stations in the Contimous United States, NBS Building Science Series 118,National Bureau of Standards (U.S.), Washington, DC.

    27

  • Simiu, E., Filliben, J.J. and Bietry, J., (1978) “Sampling Errors in theEstimation of Extreme Wind Speeds, ” Journal of the Structural Division. ASCE,104, pp. 491-501.

    Simiu, E., and ScanIan, R.H. (1986), Wind Effects on Structures, Second Edition,Wiley-Interscience, New York, 1986.

    Smith, R. L. (1989), Extreme Value Theorv, in Handbook of Armlicable Mathematics,Supplement edited byW. Ledermann, E. Lloyd, S. Vajda, and C. Alexander, pp. 437-472, John Wiley and Sons, New York.

    28

  • APPENDIX 1

    Histograms of daily largest wind speeds (top) andhistograms of four-day interval uncorrelated wind

    speeds (bottom)

    29

  • t[

    II

    .

    t~

    “8n

    NN

    $?”.

    30

  • ALBuQuERQUE.NM - DAILY MAXIMA BILLINQS.MT - DAILY MAXIMA

    1000

    90Q

    804

    700

    60+

    500

    444

    300

    200

    100

    0

    0 13 26 39 62 65

    ALBUC2UERQUE.NM -4 DAY NA7ERVAL

    20Q

    160

    100

    50

    0

    2000I

    t60+

    1000

    5D0

    o

    0 10 20 30 40 50 60 70 80

    BILLINGS.MT -4 DAY IN7ERVAL

    40QI 1

    300

    204

    100

    0

    0 13 26 39 52 65 0 10 20 30 40 50 60 70 80

  • wN

    BI NGHAMTON,NY - DAILY MA%IMA

    ‘“”~

    153411Olw

    500

    0

    3CQ

    254

    20Q

    150

    104

    50

    0

    0 13 26 39 52 65

    BINGHAMTON.NY -4 DAY INTERVAL

    BCiSE.lD - DAILY MAMMA

    I‘1500

    1 06+

    500

    0

    0 5 10 15 20 25 30 35 40 45 50 66

    BOISE.ID .4 DAY INTERVAL

    3“ ~

    o 13 26 39 52 65 0 5 10 15 20 25 30 35 40 46 50 55

  • BURLINGTON.W - DAILY MAXW6A

    ‘“w~

    1000

    500

    0

    0 5 10 15 20 26 30 35 40 45 50 55

    wu

    BURLINGTON.VT -4 DAY INTERVAL

    1250 1

    II

    CHEYENNE.CORR.WY - DAILY MAXIMA

    900

    800

    700

    600

    500

    464

    300

    200

    164

    0

    0 15 30 45 60 75

    0 6 10 15 20 25 30 35 40 45 50 56 0 15 30 45 60 75

  • CONCORD.NH . DAILY MAMMA

    ‘“”~

    1500

    i I

    1006

    500

    00 5 10 15 20 25 30 35 40 45 60 55

    CONCORD.NH -4 DAY lNIERVAL

    4“~

    1 I3W

    2W

    100

    0

    DAYTON CORR.OH - DAILY MAXIMA

    2004

    1500

    1000

    5W

    o

    364

    256

    0 13 26 39 52 66

    DAYTON.CORR.OH -4 DAY INTERVAL

    2C4 -

    150 –

    100 —

    50-

    0r

    0 5 10 15 20 25 30 35 40 45 50 55 0 13 26 29 52 65

  • DENVER.CO - DAJLY MAWdA

    ‘ow~

    LAu-l

    200

    103

    !!0

    0

    DULUTH.MN - DAILY MAXJMA

    BooI 1

    0 13 26 39 52 65 0 10 20 30 40 50 60

    DENVER.CO -4 DAY INTERVAL

    o 13 26 39 52 65 0 10 20 30 40 50 60

  • FOR’.SMITH.AK - DAILY MAXMA FOIT_WAYNE_CORR.lN . DAILY MAXIMA

    900 -1 ni II

    SOQ + -I i-hi 111111

    700 -j 111111 Al Ill

    600 + 111111

    i II HIII400 -j 111111

    ‘w-l All Ill200 + 1111111

    100-i 11111110

    1 1 I 1 1 1 I 1 t I 1 1 ! I I 1 1 1 —I #

    o 13 26 29 62 65

    FOtT_SMITH.AK -4 DAY lNIERVAL

    i O&l

    902

    800

    704

    604

    500

    4W

    3W

    2s4

    100

    0

    0 13 26 39 52 65

    FoRT_WAYNE_CORR,lN -4 DAY INTERVAL

    260

    204

    160

    100

    50

    0

    o *3 26 29 52 66 0 13 26 39 52 65

  • GREEN.BAY.WI - DAILY MAXIMA

    i 500I

    io3a -

    500-

    %

    o I I

    o 13 26 39 52 65

    GREEN_BAY.Wi -4 DAY INTERVAL

    150

    Iw

    59

    b

    GREENSBORO.NC - DAILY MAMMA

    900 I I

    800

    700

    600

    504

    400

    304

    200

    100

    0

    0 13 26 29 62 65

    GREENSBORO,NC -4 DAY INTERVAL

    i I

    o t3 26 39 62 66 0 13 26 28 52 65

  • GREENVILLE_CORR.SC . DAILY MAXIMA

    1504

    100Q

    500

    0

    0 10 20 30 40 50 60

    GREENVILLE_CORR.SC .4 DAY INTERVAL

    ‘w~

    300

    200

    100

    0

    2000

    1530

    103U

    50Q

    o

    0 10 20 30 40 50 60 70

    HELENA-MT .4 DAY INTERVAL

    ““~

    30G

    2CG

    lW

    0

    0 10 20 30 40 50 60 0 10 20 30 40 50 60 70

  • I

    II

    1

    8i?AII

    II

    L.-

    s

    I-3

    G

    $_

    -3

    III-

    I.

    L--

    II

    II

    I.

    I

    II

    I.,-

    8.

  • II

    II

    II

    II

    I.

    .3:3:g

    8::8”

    *.-

    .

    40

  • MACON.GA - DAILY MAXIMA

    1000 1

    90Q

    800

    700

    600

    500

    400

    304

    200

    100

    0

    0 io 20 30 40 50 60

    MACON.GA -4 DAY INTERVAL

    3w~260

    200

    m

    100

    60

    0

    0 10 20 30 40 50 60

    1500

    1000

    5W

    o

    0 13 26 39 52 65

    MILWAUKEE_CORR.Wl -4 DAY INTERVAL

    200 1

    0 i3 26 29 52 65

  • MINNEAPOLIS_CORR.MN - DAILY MAXIMA

    1000

    I n

    Wa -

    800 —

    709 —

    600 —

    500 —

    4s0 -

    3CQ —

    200 —

    104 —

    o

    0

    20a

    150

    100

    50

    0

    13

    I26 S9 52 66

    --do 13

    MISSOULA_CORR.Ml - DAILY MLXIMA

    ‘“”~J

    1500—

    1000-

    600 -

    0Jo 40

    MINNEAPOLIS_CORR.MN .4 DAY INTERVAL

    26 39 52 65

    i20

    I I

    30 40 50 60 70

    MISSOULA_CORR.MT .4 DAY INTERVAL

    400

    300

    200

    100

    0

    0 10 20 30 40 50 60 70

  • Pw

    MOLINE.IL - DS2LY MAXIMA

    1000-

    56Q -

    0 I I I 1 I I

    o 10 20 30 40 50 60 70

    OKLAHOMA_CITY.OK - DA2LY MAXIMA

    ““~

    1500 I

    MOLINEJL -4 DAY INTERVAL

    1

    0 10 20 30 40 50 60

    OKLAHOMA_C~Y.OK .4 DAY INTERVAL

    I250

    1

    0 10 20 30 40 60 60 70 0 10 20 30 40 50 60

  • d

    II

    [

    so.

    e

    II

    8

    I

    -=+’

    rI

    1L

    I

    I,

    I,

    II

    II

    44

  • PoRTLAND.CORR,OR - DAILY MAXIMA

    ‘“”~

    1000

    540

    0

    0 15 30 45 60 75

    250

    264

    150

    Iw

    50

    0

    PORTLAND.CORR.OR -4 DAY INTERVAL

    0 16 30 45 60 75

    PUEBLO_CORR,CO - DAILY MAXIMA

    1064

    90Q

    8@3

    764

    600

    50Q

    4W

    3W

    240

    100

    0

    0 10 20 30 40 50 60 70

    PUEBLO_CORR.CO -4 DAY INTERVAL

    250

    200

    160

    100

    64

    0

    0 10 20 30 40 50 60 70

  • RED.BLUFF.CA - DAJLY MAMMA

    ‘“”~

    1500 1 I

    40D

    3D0

    200

    100

    0

    0 10 20 30 40 50 60

    RED_ BLUFF,CA -4 DAY INTERVAL

    o 10 20 30 ho 50 60

    RICHMOND_CORR.VA . DAILY MAXIMA

    9&3

    ma

    700

    600

    500

    434

    300

    200

    too

    o

    0 10 20 30 40 60

    RICHMOND_CORR.VA -4 DAV lhlERVAL

    300

    250

    200

    150

    100

    50

    0

    0 10 20 30 40 50

  • :

    -8

    8

    II

    rI

    ..

    I[

    II

    I.

    47

    ‘d

  • SHERIDAN_CORR,WY DAILY MAXMA

    80Q

    704

    604

    500

    409

    300

    2@l

    100

    0

    0 13 26 30 52 65

    SHERIDAN_CORR,WV .4 DAY lNIERVAL

    -i

    250

    i

    I

    I200

    150

    100

    50

    0

    SPOKANE.WA - DAILY MAXIMA

    ‘“”~

    1500

    1000

    500

    0

    0 10 20 30 40 50 60

    SPOKANE.WA -4 DAY IN7ERVAL

    4“~

    o 13 26 39 52 65 0 10 20 30 40 50 60

  • 49

    I

  • s

    I%

    I

    I 1’I

    I

    I..

    II

    I[

    II

    II

    II

    I..

    II

    L1

    ,I

    I[

    I,

    1I

    I,

    I,

    I.

    IIL.

  • II

    I1

    J

    \,

    1

    I

    II

    II

    II

    I

  • APPENDIX 2

    Plots of parameter & and 95% confidence boundsversus threshold and number of threshold exceedances

    (based on samples of largest yearly wind speeds)

    53

  • BIRMINGHAM, AL (34 YEARS)

    -- . . . .. ..->

    MONTGOMERY, AL (34 YEARs) TUCSON, AZ (39 YEARS) W64A, AZ (39 YSARS)

    -.. ----- -------.

    .. . . . .

    W-!.....

    ..1

    -,

    ., ,.,, ,,

    ,,’ 1..,,,,;;. ..’● ,!t., ,

    ~,, ;’.-.

    , ‘-,’:,!; ,

    , , ,$

    ,:,’,:

    . . .

    i-1.6i 1’

    *-.,● ..!

    .2dl’ds’h’

    I

    dl 39 37 35 33 31 20 27 25 MPH1210182329303434343434 34

    T4646444240 d8’36 J4’i’” 2 30 MPH13 17 17 27 29 34 34 34 34 34

    .3 Jd14947454341393736 3313 13 16 21 25 29 23 37 39 39

    -1 t$654526048444442402436 34 MPH12 16 16 19 24 26 27 35 36 39 39 39

    MPH

    MPH

    MPH

    FORT SMITN, AR (31 YEARS) LITTLE ROCK, AR (39 YEARS)

    1-

    0.5-,-.

    ~-: ~

    -1.5- ,’1-.

    ., .

    -2” ;;43464442403636343212 13 16 24 28 30 33 35 37

    FRESNO, CA (37 YEARS) RED BLUFF, CA (4z YEARS)

    1-

    -. . . .0-

    -.>

    ~ x

    -.

    (Jz< J-,

  • PUEBLO, CO (43 YEARS)

    1-

    .-. ,0-

    -----.- ..-,

    0 .1

    - y

    ,.. .~ ,,-,.”< . . ..’ *~ -, ;0 .2. ‘, *

    ::

    -2 -‘. (

    -4’d7’&43’4i’d9’5’7’6’5’d3’3’I’ d9’i7f14151022202238424246 42

    MACON,GA(33YEARS)

    1

    0

    -2

    -2

    1

    0

    -2

    -4

    .“.. ----

    ------

    W-h.-...,.,. ,.,1

    -,/. ,$-.,,

    ,-,,!,

    ,,

    ,-,)13’k’i4’d2’4b 38 26’;4’;2’20’;8 MPH14151820232720313223 33

    MOLINE, IL (44 YEARS)

    -----. ------- ----

    ,’ .,,-1,,, ,“‘.-J

    ;0’d8’d6’ 54’62’iO’~’~ 44 42 40121717203229333842 4242

    Wii

    HARTFORD,CT(44 YEARS) WASHINGTON, OC (39 YEARS)

    ,.-. ---,.*.-.

    --).,-- .,.

    ,.’ ‘..”.----.

    i7’43’i2’ il’d9’37’d 52331t

    141821343642UUU

    BOISE, ID (46 YEARS)

    1-

    .. .

    0- ------

    ~ y

    .- .,

    0.1- ‘, ,-.z< -, J ‘,

    -.

    ~...,’~ $ . .,. .

    -144ri7 i2’42 4* 39’37 35 33 33 23 a121S 2329343637373737 373

    EVANSVLLE, IN (44 VEARS)

    WH

    MP24

    -.. --,

    y’-hf-....----.,-*,,*,t~”,

    ,, $,,, , ,“,,,, ,’,,,,!,

    .,

    )11494742424139373533 3129 MPH13 16 20 2729 24 35 40 44 4444 U

  • FORT WAYNE, IN (46 YEARS) INDIANAPOLIS, IN (36 YEARS) BURLINGTON, 1A (23 YEARS)

    ~=

    DES MOINES, 1A (37 YEARs)

    1 1

    0,6

    0

    uz-4

    .-. ,. . . . .

    -.. ..

    .. ’.. .0 .1 .-’*z<a~

    o .2 1...,

    -3-

    -4- , r656361444745424139 3161019232622223434 3

    ------- -.0

    -----

    : ~

    -.,,. -..

    ..-, --.--~

    0 .1 .

    z . .

    z~0 .2

    -3-

    -4’ r:: 57 65 63 61 49 4T 45

    19 20 32 36 41 44 43

    ------ .-‘-..

    o-

    -’:~ ,--2 .

    ,

    . . .

    ,. . ..-

    6 63 51 49 47 46 42 41 39 3721213141620202020 20

    -4J , ,S4626068666462504346 U

    r

    12 14 16 23 39 22 37 40 41 41 41WI 6P61

    WH

    MP61

    MPH

    WICH~A, KS (41 YEARS) K3RTLAND,ME(43 YEARS)

    ‘~

    BALTIMORE,MD(39 YEARS)

    0.5- ------

    ~-o: -+.1 ,- - . .’ ,

    $- ,

    ---- -. .-.. . . . . . . .

    . . .0.5- ●

    .------ .

    !!!..:. *x , ,“, . .;’ I

    ‘..1- ‘-.-,’ .’

    -1 .s -

    -2-63614947454341393735 3312 13 15 16 24 30 26 42 42 45 42

    ..-

    k‘. -.. .-

    -.,.

    ,.

    . . .-,’

    !: ..’.,;;;t. r‘I:L

    636169676553614947 45424112 12 16 21 25 26 31 36 40 41 41 41

    .3 J,’,, r514947434241393736333112 20 23 28 30 36 37 39 39 39 39

    -4 J56565462504646444240 3612 13 16 23 27 30 35 36 39 39 39

    Ii%l

  • BOSTON, MA (50 YEARS) NANTUCKET, MA (23 YEARSI DETROIT, Ml (46 YEARS) GRAND RAPIDS, Ml (29 YEARS)

    1. . . . .

    --- ----0 ----- ----

    1t

    0.5

    0

    vz<~-0,6

    1%

    .1

    -1 .!

    -2

    ‘. . . ..-...-

    -

    ----.

    .,-.

    , I ‘,,’,,, .’ ,,,, ‘-,’,,.,

    0.5‘...

    -..--y

    ..-.

    ‘)+/‘. ‘. ., ,’,

    J,,.-,,!-f

    46’5’ 2’io ’i3’J4’J4’ *42403W17192122222323 Z

    ----..-. ------ ---

    a

    :L121314141818212524 2

    .1

    -,-l.!

    -i462 S04645 &“ ’JO’’’’’”417 f7262934%42zzz

    MP66MPH

    WH

    Wli

    SAULT STE MARIE, Ml (47 YEARS) MINNEAPOLIS,MN (42YEARS)LANSING, Ml (36 YEARS)

    1

    0.5

    0

    0z<

  • wm

    SPRINGFIELD, MO (44 VSARS)

    -----.

    ‘.

    x

    . . .

    ,-.. . . .-. .. .

    ..-.,

    ,-.

    1i149474542413937 353337

    r

    318273436424244444444

    HELENA, MT(4s YEARS)

    . . . . ..

    Y‘.

    .-’. .

    -.,, .

    .. l.,,,.,1J-, ;

    .257665351494743424139 3731$16283033414346464340 4

    VALENTINE, NE (27 YEARs)

    W5i

    ml

    0.

    .1-c1z<~ .2-

    :

    -3-

    4-

    ---------- -- . . . .

    h.,’ .-----,

    , ,“,, ,,,, ,,,, ,,-..,..

    -5 J63615957555351494743 42 MP1612 14 16 18 20 22 24 25 26 27 27

    BILLINGS, MT (49 YEARS)

    . .‘.

    . ..-0

    : y

    --------.

    -.c1 ‘. .z

    . . .

    <. ,. .-,.

    ~ -1 ●-. s,’..

    ~ ...

    -2-

    -3-63 61 59 d7 55 53 51 49 i7 46””16771927263242434746 g

    MISSOULA, MT (43 YEARS)

    ‘~

    0.6-

    0z<~ o-

    S’

    .0.5 -

    .-.-., ,‘., .

    a ●..,,,‘,,,,. ,

    .,‘,

    DU-W*4Z4UVJ **34W12 15 2335 40 43 42 43 42 43

    ELY, NV (4S YEARS)

    1

    0,!

    (u~

    $-0, e

    E.1

    -1.5

    -2

    -.. .... .-.-.

    ‘!”)v.

    ‘.. -

    ,“,.,,, ‘ ‘,,’,‘ ,-,

    . .‘!

    ..,

    .,

    -1 r55 53 51 49 47 45 43 41 39 37 35121721303643444949 4949

    m

    *PH

    IPH

    GREAT FALLS, MT (44 YEARS)

    -’ ..-..

    ,* .,, .,,.,

    I 11361595755535146 4745423162126283134404244 U

    NORTH PLAllE, NE (31 YEARS)

    f

    . . .

    -5 , r646260 S6565452504644 4413 13 17 20 22 25 26 31 31 31 31

    LASVEGAS,NV(20 YEARS)

    :~

    u .1z

    ~

    .0 .2

    -3

    .4

    : ~

    -. -,~ ,,. . .

    54525046444442403836 3413 16 17 19 20 20 20 20 20 20 20

    WH

    1

    0

    0z<a -1~o

    -2

    -3

    1

    0.5

    0

    vz

    :.0.5~

    n

    -1

    -1.5

    -2

    MP+I

    HAVRE, MT (27 YEARS)

    ‘...●✎✍✎

    h.......---

    . . .

    ,,. ..’

    ~6’3’4’d2’d 0 43’44’& ‘42’JO’15 t6 19 21 21 24 27 27 27

    OMAH& NE (51 YEARS)

    ------

    -- . . . . .

    h8563462604343444221516222634404f46

    RENO, NV (4S VEARS)

    MPH

    MPH

    i *., ...,,

    -2-,,1,!,,-

    -3-’62605056545250444444 42 MPH12161721253235414445 45

  • WINNEMUCCA, NV (38 YEARS) ALBUQUERQUE, NM (52 YEARS)

    ,.. . l-l

    0,6- -.

    .--.

    ------ . ..

    ~“i::*..,-..--.-,,

    ,’ ----- , .

    -1.6-

    1-

    0.6- -’..4*

    *-. ..-.

    0u

    ~ -y

    ‘.-.

    2 .‘,

    -..‘.-..

    ‘.. ,.

    .. .

    .,

    . . . .‘.

    ‘.”..

    ‘n‘.

    .-.

    .-..,.

    -.”. ,-..

    ~..

    ----- ---.,0 0.6

    W.... .“$-,,,,,V ,-.--.,,--.,,. ..,-1 0,,,,,,,,,,,,,,,,-..1

    ,,,,,,,,,,,,,,,,*,,.,

    .1

    -4 ,-1,6

    -5

    +111 -it. l!r!!l. ,ll! lrrlrl56 56 54 82 60 44 46 44 42 40 36i36 MPH

    >

    12141923293541454545 45a4662 SO 46 44 44 i2’40 36’&’$4’$2’2!f4242a3s 394245424542 45*

    -2k’h’41 39 37 32’3!3 3% 24 27<141624263743472050 60

    b’&’&rh’&’&’d6’d4’d2’dO’;6<121314*4202326262629 29

    MPH

  • 1

    0

    v .1$

    ; .2

    .3

    .4

    1

    m o0

    -3

    1

    0

    -2

    -3

    BISMARCK, ND (40 YEARS)

    ‘.. -

    -.. .

    Q.-----,,“

    . ,,, ,

    ‘..1’!

    ,;,,, ,,.-

    ?H!.957d5rJ35194745 k’i’r 1 3$14 f72127343437404040~ 4(

    COLUMBUS, OH (30 YEARS)

    -------- ---- -.

    J?-,,,,,,,....‘,

    .-r--f

    , , r0444344424023363451619262629303030

    WH

    ml

    1

    0

    .1

    -2

    .2

    FARGO, ND (45 YEARS) WILL3STON, ND (18 YEARS)

    .. . . . . . . -

    >

    . . . ... -. . . . . .. . . . .

    .---’ . ..

    . -,

    -.

    ----

    k 59 67 55 d3 Eh 49 dl’.b’kr-

    15 18 20 27 32 36 37 39 4f 44

    DAYTON, OH (41 YEARS)

    TULSA, OK (35 YEARS)

    o-

    -1.

    -2-

    ------------ .

    . .

    %

    .

    ,,!-.,l

    . ,, ‘..,! J,

    .,!,’$ ,,,-----

    -,

    -3 ~57666361404745424139 3713161925283023364041 41

    . ..

    )’%‘. -- .

    . . .-. .-.

    .,

    ● ,..,

    -, ‘t

    ,-.

    >!9 47 M 42 41 39 37 35’d3’&’{9r2;15 21 23 37 30 32 34 25 35 35 %6 35

    WI

    0.s

    o

    0

    3

    ------ -.. . . .

    ~

    .

    ,. . ,,.,,.’. ,.,. ,,

    *-.’

    -6 ~50434444424033363432 3013 16 22 25 29 30 33 33 33 33 33

    MPH

  • GREENVILLE, SC (42 YEARS)SCRANTON, PA (33 YEARS) SLOCK ISLAND, RI (31 YEARS)PmSSURGH, PA (18 YEARS)

    . . . . .-. ”..

    . ..-. . . . ---- -.

    y- . .$-. ,

    -.. . ..-. .

    7.-.--..,,... ..- -. -. ..-

    %.,.-, ”,-

    ,,,$ ,

    ,,,

    ;

    .-. .,,,,1,,.

    ?4’i4’d2’44’d6’36 2’4’32 2’O’;O’i12172230323322233362 X

    ,,. ..2

    4 &’d0’3’8’ d4’5’4’5’2’dO’i6’ J6’4$’42#

    12 15 19 21 27 31 31 31 31 31 31b“ 52’60 44 &“’& ’ion”1212141822 ;2826~i6’i4’42’io ’d6 ‘d6’d4’i2’2’O’&

    12 15 16 17 Is 18 18 18 18 11

    MPH

    MP61

    MP14

    MPHMPH

    CNA~ANOOGA,TN (35YEARS)

    ‘~

    HURON, SO (49 YEARS) RAPIO CITY, SO (42 YEARS)

    1

    0

    ~

    --- -... ----

    -..-1

    ,’ !.2’, ,

    ~ -3 “,,; :,

    z f .,w -40 .$

    1

    0-

    ~-l-

    ~

    ~n .2-

    -3-

    ‘...-

    ‘lJ’lJ-..-.----..,

    ‘-..

    .$

    ..-.. . . . . . -. ---- ,,‘%,.....,’. ,.,, $-,;..1 ‘,,’, . . ., ,.’ ,,~-, ,,t,

    ,,.-l

    ----- ,.,-- . . . ...--”-0

    +.----,

    ,,,,,.,

    :,, f.**’

    1 ---

    -5

    I,,$,.4 ,,’!.;,t.-

    -7 ‘- ,

    -2

    .2 Jc.2’do 46 i6’i4 42 44’26 36 24r12 12 13 15 20 21 26 24 24 35

    -4J f!i2’5b’46 44 44’& ’40 26 36 2’4’32 30 MPH1214192124263131332233 22

    -8 J6i’;2’6b’&7 56’6’4’d2’50 46 46 U 42 MPH1418243536374142424242 42

    I

    6’7’65 62’3’1’2’0 67’~5’C13 6’1’i4’47’i6 MPH1215172123272440413547 49

    AMARILLO, TX (24 YEARS)NASHVILLE, TN (34 YEARS)

    ‘~

    MEMPHIS, TN (21 YEARS)

    -. .. . . . -. .--,

    %

    -----,., ‘,

    ,-,,, --.,,

    0.5 !0.5 . . *- . . .

    ‘--)----.-..--- ,.-.----.8”,

    -.

    ---- .--- I -.

    ‘.-0~

    $0c-4.5

    . . .., .’-,).

    .,/ ‘, ‘.,’

    .. ”.,

    -.. .

    -1 .!

    -155 53 51 49’47’45 42’41 39 37(15 20 21 24 28 22 35 26 36 36

    r3’4’1’;s 57’i5’4’3’d1’4’9’i7’42’2 16 19 2S 26 31 32 33 34 34

    -1J Ii3’i6’i4’42 io’38 36 34’;2’30 MPH12 15 16 22 26 32 34 24 24 34

    -2 ) ‘w 42 40 28’36 34 32 30 28 26 2112 13 17 20 21 21 2t 21 21 21 2

    mli

  • AUSTIN, TX (37 YEARS) DALLAS, TX (32 Y2ARS) EL PASO, TX (32 YEARS) SAN ANTONIO, TX (36 YEARS)

    10. 1

    0

    -1

    -2

    .2

    1-

    ‘.0.6- ,

    *...

    i.; \

    ‘-.. . .

    . . . .‘. ...

    g . . .0 . .

    ,-1-

    6

    00

    2< -5

    g

    -10

    -15

    . . . . . -. . . . . .●..”‘. .

    f“y-J*----

    4,,,, ,

    ,,,

    -,

    .,

    P-,:,$!, f

    ,t~

    ,’ “.,,,,,,’

    , ,’.-.1

    .1.si

    -2 I44’J4’&’4’240262634’ 32d02’6MFll13182225282536333636 3S

    .20 -4 r,67 55 6dS1’49 dl 43 & 41 39 37 35 MPH15 16 16 26 30 32 32 32 32 32 32 32

    k 44 42 40 38 36 34’32 2t’2’6’2i420262336363737373737

    ro ./3’’’’’’’”454442402’8 363432 r2 16 19 27 31 31 32 32 32 32

    SALT LAKE CITY, UT (46 YEARS) BURLINGTON, VT (40 YEARS) LVNCHSURQ, VA (44 YEARS)

    1

    0,6

    0(Jz<

    -..,.,,

    -1- \

    -\. -,, .

    .2.,

    -2-

    -4.

    -5-42 41 36 37 35 33 31 29 27 25 23

    1-

    ls 217.227303333623362 22

    --. ------ -. .

    3‘..

    .,--

    . . . ..1’ ,r ,,,

    .

    .. . . .. ,’.”.

    q

    .\.‘..

    /.‘., *

    . ,*-., ,

    .,’ .,:

    ‘, ,

    ‘. ,

    . .----- . . . .-. .k ...,“$,. I-, J’.,.

    ,$1 ‘,-.,’ 1’,‘, , ,,

    ,, .,

    mN

    -,

    $

    .-2 ~

    54526043434442403836 MP64121820293026424344 43

    -2 > ,49474042413937352231 29 MP6112151824323537404040 40

    1424436362432302626 MIW121623302442444444

    MPH

    MPH

    NOR7H HEAD, WA (41 YEARS) QUILLAYU7E, WA (21 YSARS)

    1

    SEATILE, WA (20 YEARS) SPOKANE, WA (47 YEARS)

    1

    0.5

    c1z-4n 70 68 66

    -3, I 764 62 60 56 MP65

    13 15 17 20 36 41 41 4134 32 30 20 26 24 22 20 18 16 *413 15 21 21 21 21 21 21 21 21 21

    -3 ‘ ,42 40 23 36 34 32 30 28 26 24 2212 17 17 19 20 20 20 20 20 20 20

    Umi

  • TATOOSH ISLAND, WA (54 YSARS) GREEN BAY, WI (36 YEARS)

    1

    . . .- .0-..

    \

    . .‘-. ,-..

    . .,.. .,’ .,.. .-.

    ,,

    -.

    .,,

    $..

    )0’d8’;6’dk’(2’dO’iO’i6’d4’d2’ 2b712 17 19 34 40 44 46 52 63 54 54

    CHEYENNE, WY (46 YEARS)

    ‘~

    -------- -.

    >

    .‘“. -.

    . ,-f.,..

    1, .-,h ,

    ,.

    ,4

    .sJf #“

    d4’&’d0’ 5’6’5’6’;4’i2’iO 4k’44 44*12162531364041424443 44

    . . . . . .● ✎ ✎ ✎

    ✎ ✎

    =’s.-

    MPH-2 J

    d6’3k’5’4’ i2’6’0r4b’&’&’d d12 13 17 21 24 27 26 32 3: 3(

    1

    0

    .3

    4ml

    LANDER, WY (42 YEARS)

    ~ ., ..,.

    , ‘., ,’,,b.

    15’63 61 59 67 5’5’3’3 5’1 44 4?21415212230333436 39

    0

    -2

    MPH.3

    1

    0

    -1

    -3

    -4

    -5ml

    MADISON, WI (41 YEARS)

    1

    -------- . ,. ..-

    W-m-i-., *

    , ,,. ,,,-’,,,-l!;

    ?Z’d6’i4’;Z’5b’d4’k’ 4i’i2’k’h13 13 14 t? 17 20 27 32 36 39 41

    SHERIDAN, WY (44 YEARS)

    --‘-. .

    %

    -.. ------ --

    ,“* ...-, ,.

    ,. .,,’-..

    *;.--1

    -133 61 54 67 55 53 61 49 47 45<13162730342535394144

    o

    -z

    MPH.3

    MPH

    MILWAUKEE, WI (42 YEARS)

    -.‘------

    . .G -.,’. . ,.,*,t,’-”~ ,*.t .‘,,, ,

    ,.

    h’ i4’5’2rdo’JZ’i4’44’dZ’k’14 30 23 26 33 29 41 42 42 ::

  • APPENDIX 3

    Plots of point estimatesfor 100-year, 1000-year and 100 000-year speeds

    versus threshold and number of threshold exceedances(based on four-day interval data samples)

    65

  • ABILENE.TX (15 Y124RS)

    110 — 160,000

    h

    - -1,040foo --1oo

    zo~43 40 37 34 31 26 25 22 19 MPH16 52 96 191 3LW 536 741 925 1045

    200

    64

    0

    BINGHAMTON.NY (20 YEARS]

    — 1to,ooo- -IJOO- - 124

    k\\“.‘. >--- s-, . . . . -r, , 9-I1 30 35 32 29 26 23 20 18 26 54 117 235 412 693 993 72

    IPH

    r4PH

    zo~42393633302734 2jq616 41 65 136 247 428 659 912 116

    70

    60

    gso

    40

    30

    BOISE.ID (2s YEARS)

    — 100, OW- -1,000

    --102

    \-1! 29 36 33 30 27 24 21 11F 42 64 133 254 461 74S 4044 1%

    r4PH

    !PH

    ALBUQUERQUE.NM (19 YEARS)

    m- — lGO,om- -1,000

    : 4

    --1oo

    60

    \70

    ‘\~

    \ 1,,

    ./, ,,,,

    60\

    ‘-.

    30

    ao~5249464340373437 219 30 69 39 199 315 455 690 90

    BURUNGTON.VT (19 YEARS)

    — 100,000- -1,000--1oo

    *

    l\

    -!,’.-... ‘,-

    -.

    ‘.

    \

    DENVER.CO (15 YEARS)

    140.— 134,000

    i30 - - -I,LXIO

    --140WO -

    110.

    1oo-

    90-

    E30- ,\

    60- .

    54-

    40

    !Ptl

    400

    334

    g 240

    100

    BILLINGS.MT (26 YEARS)

    — 100,000- -*,000--100

    ‘L.L-/“,--. \-.-~-, . .90

    24

    30,

    ux76.

    70.

    44.

    m.

    CHEYENNE_CORR.WY (15 YEARS)

    — Ioo,ow- -1,000--*OO

    o l-r, ,5047444120363229 26 MPH16 40 63 121 203 326 566 823 1129

    -1 , , , , ,9565350474441333k MPHo 30 60 82 131 170 251 337 461

    DULUTH.MN (15 YEARS)

    110-— 100,000- -1,000

    100. --400

    30-

    e4-

    \E70. ,

    60-.\

    .

    50-

    40.

    ~

    40J, , , ,47 44 41

    8 t33 35 32 29 26 23 MPH

    30 ~ ~p” .~

    16 36 65 92 162 254 402 603 832 77 56 79 139 274 4% 537 747 36933 35 32 29 26 23 20 MPH

    20 47 72 131 206 362 560 790 902

  • 2CQ

    150

    aXloo

    E4

    0

    FORT.SMITH.AK (17 YEARS)

    — 100,000- -1,000--100

    I

    Ii‘“+

    ,;:~ 353229262320 ~

    62 i03 167 251 45S 667 31iPH

    GREENVILLE_COR R.SC (19 YEARS)

    :F

    o~ ~p”343123262220 46 106 236 419 672 1051 13201497

    LANSING.KH (15 YEARS)

    90- — 100,000

    30-

    70-

    $i

    50-

    5n - ,.

    40’, , r-46’42293633302720 220 37 M 07 158 256 377 603 81

    ,lPH

    FORT_WAYNE_CORR.lN (15 YEARS)

    — 164,000- -1,000

    J100

    ,6\,\/\

    I d,’,’,k .

    \ ● .’ ‘,\’\., ,t.-t.-.=, *,,1s,

    rB 45 42 39 36 33 30 27 W725356089140222266 53

    HELENA.MT (26 YEARS)

    90-

    60-

    E 70-

    60-

    cw -

    - -1,000--100

    -\

    --

    40~4345422936339027 Zi6 27 60 126 204 365 572 875 12

    LOUISVILLE_CORR. KY (15 YEARS)

    o~29 36 33 30 27 24 21 16 1!20 36 80 145 266 420 533 776 IW

    MPH

    #PH

    !4PH

    GREEN_BAY.M (15 YEARS)

    120 T —100,000

    120- I- -1,000

    --100

    110.

    *OO -

    90-

    gao-

    70-

    60- ,---

    50-

    40-

    30- , <4126353229262320 1’22 36 66 127 223 360 604 817 10

    HURON.SD (15 YEARS)

    324- — 100,000- -1,600

    250---100

    200

    gmcl

    ioo

    i,L

    1’~, \,\

    .A, -....,--- . >---/. 2 >.-

    50

    o~46 45 42 39 36 33 30 27 2416 22 43 93 125 224 232 536 811

    MACON.GA (16 YEARS)

    140- — too,ooo

    %20 -

    120-

    110-

    100-

    =90-

    x30-

    70-

    50- -.-’ ---. ~,\

    60-.

    .

    40 -

    400

    30Q

    E 200

    im

    oIPH

    i!PH

    GREENSBORO.NC (19 YEARS)

    — 16Q,000- -1.000

    --IA

    \

    \

    ~B 35 26 23 20 17 14 MPH!0 29 61 117 202 234 547 770 *043

    LANDER_CORR.WY (15 YEARS)

    iw — Im,ooa

    150 1 - -1,000--100140

    120

    120

    %10

    ‘ bd~

    ;\ 1164- ,

    \l\ ,

    90 \ l\l-.’ ,1,\//\ \,. ,

    .,. v.. ,t ?,. ,/, ,w , , d?l “

    70-, ,.,

    \\. , : --

    60-54 51464542393633320 23 4* 63 101 155 200 272 %

    MILWAUKEE_CORR.Wl (17 WARS)

    104- — 10.3,0m- -I,oao

    90

    ~:%

    --100

    60

    70 ;\ }K. ~ \x

    , \l

    .~ l\ ~60- . ““, \ ,,-,

    . . ‘ .\ .-

    50 . . . .

    \

    MPH

    30 ~26 26 22 19 16 MPH

    .~

    17 25 29 71 121 267 416 607 93033 30 27 24 21 MPH

    19 31 75 %0 218 356 560 645 1067

  • MINNEAPOIJS_CORR.MN (15 YEARS)

    20Q -— 16Q,00Q

    – 1,640

    164

    ~ k

    . .

    154

    Elml\

    .~/ J,.-\..- .X

    . -\66 ..-

    o~36 35 32 29 26 23 20 77 MPH

    18 31 73 i38 2S7 401 661 850 1021

    POCATELLO.ID (21 YEARS)

    140-— 100,000

    130-I

    - -1,040

    --10012Q -

    110-

    100-

    90-

    ~3a-

    $70-

    50--.

    60-

    40-

    20’ , , ,# 41 24 35 32 29 26 23 20 MPH

    56 69 179 403 618 877 1122 i301

    RED_BLUFF.CA (21 YEARS)

    90-1 — 140,004- -1,000

    --100Oo-

    70-.

    E J \

    60-. . - .,

    50-.

    40 ~4542393633302724 2116 24 67 91 136 221 393 595 81:

    ilPH

    200

    164

    E1OO

    50

    0

    MSSOULA_CORR.MT (25 YEARS)

    — 100,000- -1,000--104

    L

    \4\

    --..\-. . ...>-- -=.

    r, r15 42 39 36 33 30 27 24 217 34 55 104 139 375 640 1029134

    iiPH

    PORTblND_COR.ME (20 YEARS)

    140-— 100,004

    124-

    I

    - -1,600.- 164

    120-

    110-

    1o4-

    90-E

    60-

    70-

    6@-

    54-

    40-

    30- , , , , r ,44 44 26 35 32 20 26 23 20 MPH21 56 69 179 403 618 877 11221301

    RICHMOND_CORR.VA (16 YEARS)

    70— 100,004- -1,000- - ,100

    56.

    E40- .

    20.

    20- r34 31 26 25 22 19 16 13 10 MPH23 57 126 251 418 617 %t4 11521276

    MC3LINE.IL (15 YEARS)

    12Q -!— 100,OLW- -1,000

    110

    # %

    - - 100

    104

    wux“ *

    ~- flf

    \/A\II

    I ‘/, ,%,70- -’ ..-.1 /1’, ,

    b

    {./, ~ /\-’,””. \

    64. \ ,’*\,

    ‘.\, ,.

    54~4744413617 27 46 63 fW 172 273 400 d

    PORTLAND_CORR.OR (23 YEARS)

    o~2S 35 32 29 26 23 MPH

    16 22 26 56 119 190 325 611 769

    SALT_LAKE_CITV.UT (26 YEARS)

    Iw - — 160,000

    \

    - -1,040

    96. --1oo

    34-

    70-

    z

    64-

    40-

    36~26 35 32 29 26 23 20 MPH

    20 52 92 164 330 614 667 11831391

    OKLAHOMA.CIN.OK (16 YEARS)

    70- — Ico,om- -

  • SHERIDAN_CORR.WY (17 YEARS) SPOKANEWA (2S YEARS)

    90-

    80-

    % 70-

    60-

    60-

    A - -1,640

    40~16 26 47 91 144 252 367 5.32 7!

    TOPEKA.KS (2S YEARS)

    300

    100

    r —100,000--I,cao--100“L-L

    o 1 f42 29’ ’36 33 30 27 24 21 1121 48 78 *2a 224 373 590 772 94

    IPH

    MPH

    90-

    80-

    70-

    s

    60-

    50 -

    40 -

    .~35 32 29 26 23 2{

    18 51 69 $21 210 351 523 855 11

    TUCSON.AZ (15 YEARS)

    o~293633302724211

    *7 39 66 157 253 444 675 875 10

    SPRINGHELD.MO (24 YEARS)

    364 — Ioo,ow– -1.000

    250

    200

    %150

    Iw

    50

    0MPH

    100

    90

    3Q

    70Ex

    60

    50

    40

    20flPH

    - - I’w

    ,~

    \

    :\f\

    .--. .>- ---

    2936333027242118 123 37 08 440 257 467 670 878 11

    WINNEMUCCA.NV (15 YEARS)

    — Ioo,oco- -1,000--100

    \\

    . .

    > , , rt542393633302724 2’17 27 44 92 777 365 437 744 97

    IIPH

    MPH

    69

    70

    g60

    50

    40

    20Q

    350

    gloo

    60

    a

    TOLEDO.OH (15 YEARS)

    — IO0,06Q- -1,000

    --1C4

    ,\

    ,

    .

    ~33 30 27 24 21 MPH

    8 29 63 116 235 325 502 849 1162

    YUMA.AZ (19 YEARS)

    — 100,000- -1,640--100

    1 ,12 29 36 33 30 27 24 21 18 MPH20 28 57 135 270 523 *0031472 2UOI

  • APPENDIX 4

    Instructions for accessing data sets and attendant programs

    NOTE. Only corrected data are included in the data files.

    ftp enh.nist.gov (or: ftp 129.6.16.1)>user anonymousenter password >guest>cd emil/datasets (to access data)>cd emil/programs (to access programs)>prompt off>mget * (this copies all the data files)>dir (this lists the available files)>get (this copies a specific file; example: get boise.idboise.id)

    >quit

    71*U.S.sowmmmm~ OFFICE:1995-386-627/37909