Exponential Functions - Lecture 33 Section...

37
Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College Mon, Mar 27, 2017 Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 1 / 16

Transcript of Exponential Functions - Lecture 33 Section...

Page 1: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Exponential FunctionsLecture 33Section 4.1

Robb T. Koether

Hampden-Sydney College

Mon, Mar 27, 2017

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 1 / 16

Page 2: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Reminder

ReminderTest #3 is this Friday, March 31.

It will cover Chapter 3.Be there.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 2 / 16

Page 3: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Reminder

ReminderTest #3 is this Friday, March 31.It will cover Chapter 3.

Be there.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 2 / 16

Page 4: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Reminder

ReminderTest #3 is this Friday, March 31.It will cover Chapter 3.Be there.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 2 / 16

Page 5: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Objectives

ObjectivesLearn (or review) the properties of exponential expressions.Learn the properties of exponential functions.Learn about the “natural” base.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 3 / 16

Page 6: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Exponential Expressions and Functions

Definition (Integer Exponential Expression)Let b be a positive real number and let n be a positive integer. Then

bn = b · b · b · · · b︸ ︷︷ ︸n factors

Also, b0 = 1 and

b−n =1bn .

The number b is called the base of the expression. The number n iscalled the exponent.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 4 / 16

Page 7: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Exponential Expressions and Functions

Definition (Rational Exponential Expression)Let b be a positive real number and let n

m be a rational number. Then

bn/m =(

m√

b)n

=m√

bn.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 5 / 16

Page 8: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Expressions

Properties of Exponential ExpressionsThe following properties hold for all bases a,b > 0 and all exponentsx , y .

Equality: if b 6= 1, then bx = by if and only if x = y .Products (same base): bxby = bx+y .Products (same exponent): axbx = (ab)x .

Quotients (same base):bx

by = bx−y .

Quotients (same exponent):ax

bx =(a

b

)x.

Powers: (bx)y= bxy .

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 6 / 16

Page 9: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Expressions

Properties of Exponential ExpressionsThe following properties hold for all bases a,b > 0 and all exponentsx , y .

Equality: if b 6= 1, then bx = by if and only if x = y .

Products (same base): bxby = bx+y .Products (same exponent): axbx = (ab)x .

Quotients (same base):bx

by = bx−y .

Quotients (same exponent):ax

bx =(a

b

)x.

Powers: (bx)y= bxy .

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 6 / 16

Page 10: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Expressions

Properties of Exponential ExpressionsThe following properties hold for all bases a,b > 0 and all exponentsx , y .

Equality: if b 6= 1, then bx = by if and only if x = y .Products (same base): bxby = bx+y .

Products (same exponent): axbx = (ab)x .

Quotients (same base):bx

by = bx−y .

Quotients (same exponent):ax

bx =(a

b

)x.

Powers: (bx)y= bxy .

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 6 / 16

Page 11: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Expressions

Properties of Exponential ExpressionsThe following properties hold for all bases a,b > 0 and all exponentsx , y .

Equality: if b 6= 1, then bx = by if and only if x = y .Products (same base): bxby = bx+y .Products (same exponent): axbx = (ab)x .

Quotients (same base):bx

by = bx−y .

Quotients (same exponent):ax

bx =(a

b

)x.

Powers: (bx)y= bxy .

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 6 / 16

Page 12: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Expressions

Properties of Exponential ExpressionsThe following properties hold for all bases a,b > 0 and all exponentsx , y .

Equality: if b 6= 1, then bx = by if and only if x = y .Products (same base): bxby = bx+y .Products (same exponent): axbx = (ab)x .

Quotients (same base):bx

by = bx−y .

Quotients (same exponent):ax

bx =(a

b

)x.

Powers: (bx)y= bxy .

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 6 / 16

Page 13: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Expressions

Properties of Exponential ExpressionsThe following properties hold for all bases a,b > 0 and all exponentsx , y .

Equality: if b 6= 1, then bx = by if and only if x = y .Products (same base): bxby = bx+y .Products (same exponent): axbx = (ab)x .

Quotients (same base):bx

by = bx−y .

Quotients (same exponent):ax

bx =(a

b

)x.

Powers: (bx)y= bxy .

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 6 / 16

Page 14: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Expressions

Properties of Exponential ExpressionsThe following properties hold for all bases a,b > 0 and all exponentsx , y .

Equality: if b 6= 1, then bx = by if and only if x = y .Products (same base): bxby = bx+y .Products (same exponent): axbx = (ab)x .

Quotients (same base):bx

by = bx−y .

Quotients (same exponent):ax

bx =(a

b

)x.

Powers: (bx)y= bxy .

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 6 / 16

Page 15: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Exponential Expressions and Functions

Definition (Exponential Function)An exponential function is a function of the form

f (x) = bx

for some base b > 0.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 7 / 16

Page 16: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Functions

Properties of Exponential FunctionsThe following properties hold for all exponential functions.

bx > 0 for all x .The x-axis is a horizontal asymptote of the graph.The point (0,1) lies on the graph.If b > 1, then

limx→+∞

bx = +∞ and limx→−∞

bx = 0.

If b < 1, then

limx→+∞

bx = 0 and limx→−∞

bx = +∞.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 8 / 16

Page 17: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Functions

Properties of Exponential FunctionsThe following properties hold for all exponential functions.

bx > 0 for all x .

The x-axis is a horizontal asymptote of the graph.The point (0,1) lies on the graph.If b > 1, then

limx→+∞

bx = +∞ and limx→−∞

bx = 0.

If b < 1, then

limx→+∞

bx = 0 and limx→−∞

bx = +∞.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 8 / 16

Page 18: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Functions

Properties of Exponential FunctionsThe following properties hold for all exponential functions.

bx > 0 for all x .The x-axis is a horizontal asymptote of the graph.

The point (0,1) lies on the graph.If b > 1, then

limx→+∞

bx = +∞ and limx→−∞

bx = 0.

If b < 1, then

limx→+∞

bx = 0 and limx→−∞

bx = +∞.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 8 / 16

Page 19: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Functions

Properties of Exponential FunctionsThe following properties hold for all exponential functions.

bx > 0 for all x .The x-axis is a horizontal asymptote of the graph.The point (0,1) lies on the graph.

If b > 1, then

limx→+∞

bx = +∞ and limx→−∞

bx = 0.

If b < 1, then

limx→+∞

bx = 0 and limx→−∞

bx = +∞.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 8 / 16

Page 20: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Functions

Properties of Exponential FunctionsThe following properties hold for all exponential functions.

bx > 0 for all x .The x-axis is a horizontal asymptote of the graph.The point (0,1) lies on the graph.If b > 1, then

limx→+∞

bx = +∞ and limx→−∞

bx = 0.

If b < 1, then

limx→+∞

bx = 0 and limx→−∞

bx = +∞.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 8 / 16

Page 21: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Properties of Exponential Functions

Properties of Exponential FunctionsThe following properties hold for all exponential functions.

bx > 0 for all x .The x-axis is a horizontal asymptote of the graph.The point (0,1) lies on the graph.If b > 1, then

limx→+∞

bx = +∞ and limx→−∞

bx = 0.

If b < 1, then

limx→+∞

bx = 0 and limx→−∞

bx = +∞.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 8 / 16

Page 22: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Graph of an Exponential Function (b > 1)

The graph of f (x) = 2x

-3 -2 -1 1 2 3

2

4

6

8

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 9 / 16

Page 23: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Graph of an Exponential Function (b < 1)

The graph of f (x) =(

12

)x

-3 -2 -1 1 2 3

2

4

6

8

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 10 / 16

Page 24: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Graph of an Exponential Function (b < 1)

The graph of f (x) =(

12

)x

-3 -2 -1 0 1 2 3

2

4

6

8

10

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 11 / 16

Page 25: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

The Natural Base e

The Natural Base eLet f (x) = bx for some base b > 0.What is f ′(x)?

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 12 / 16

Page 26: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

The Natural Base e

The Natural Base eIf we apply the definition, we get

f ′(x) =

limh→0

f (x + h)− f (x)h

= limh→0

bx+h − bx

h

= limh→0

bxbh − bx

h

= limh→0

bx(

bh − 1h

)= bx · lim

h→0

bh − 1h

.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 13 / 16

Page 27: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

The Natural Base e

The Natural Base eIf we apply the definition, we get

f ′(x) = limh→0

f (x + h)− f (x)h

= limh→0

bx+h − bx

h

= limh→0

bxbh − bx

h

= limh→0

bx(

bh − 1h

)= bx · lim

h→0

bh − 1h

.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 13 / 16

Page 28: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

The Natural Base e

The Natural Base eIf we apply the definition, we get

f ′(x) = limh→0

f (x + h)− f (x)h

= limh→0

bx+h − bx

h

= limh→0

bxbh − bx

h

= limh→0

bx(

bh − 1h

)= bx · lim

h→0

bh − 1h

.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 13 / 16

Page 29: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

The Natural Base e

The Natural Base eIf we apply the definition, we get

f ′(x) = limh→0

f (x + h)− f (x)h

= limh→0

bx+h − bx

h

= limh→0

bxbh − bx

h

= limh→0

bx(

bh − 1h

)= bx · lim

h→0

bh − 1h

.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 13 / 16

Page 30: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

The Natural Base e

The Natural Base eIf we apply the definition, we get

f ′(x) = limh→0

f (x + h)− f (x)h

= limh→0

bx+h − bx

h

= limh→0

bxbh − bx

h

= limh→0

bx(

bh − 1h

)

= bx · limh→0

bh − 1h

.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 13 / 16

Page 31: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

The Natural Base e

The Natural Base eIf we apply the definition, we get

f ′(x) = limh→0

f (x + h)− f (x)h

= limh→0

bx+h − bx

h

= limh→0

bxbh − bx

h

= limh→0

bx(

bh − 1h

)= bx · lim

h→0

bh − 1h

.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 13 / 16

Page 32: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

The Natural Base e

The Natural Base e

Note that limh→0

bh − 1h

is a constant.

For the right choice of b, that constant will be 1.That choice is approximately 2.71828. . . .We call that number e, the natural base.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 14 / 16

Page 33: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

The Natural Base e

The Natural Base e

Note that limh→0

bh − 1h

is a constant.

For the right choice of b, that constant will be 1.

That choice is approximately 2.71828. . . .We call that number e, the natural base.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 14 / 16

Page 34: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

The Natural Base e

The Natural Base e

Note that limh→0

bh − 1h

is a constant.

For the right choice of b, that constant will be 1.That choice is approximately 2.71828. . . .

We call that number e, the natural base.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 14 / 16

Page 35: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

The Natural Base e

The Natural Base e

Note that limh→0

bh − 1h

is a constant.

For the right choice of b, that constant will be 1.That choice is approximately 2.71828. . . .We call that number e, the natural base.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 14 / 16

Page 36: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Compound Interest

Compound InterestLet P be the present value of an investment, t the duration (in years) ofthe investment, r the annual interest rate, k the number ofcompounding periods per year, and B(t) the future value after t years.Then

B(t) = P(

1 +rk

)kt.

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 15 / 16

Page 37: Exponential Functions - Lecture 33 Section 4people.hsc.edu/faculty-staff/robbk/Math140/Lectures...Exponential Functions Lecture 33 Section 4.1 Robb T. Koether Hampden-Sydney College

Continuous Compounding

Continuous CompoundingIf the interest is compounded continuously, then the future value is

B(t) = Pert .

Robb T. Koether (Hampden-Sydney College) Exponential Functions Mon, Mar 27, 2017 16 / 16