Experimental Physics EP1 MECHANICS – Fluid mechanics · PDF file Experimental Physics -...
date post
28-Nov-2019Category
Documents
view
107download
15
Embed Size (px)
Transcript of Experimental Physics EP1 MECHANICS – Fluid mechanics · PDF file Experimental Physics -...
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 1
Experimental Physics EP1 MECHANICS
– Fluid mechanics –
Rustem Valiullin
https://bloch.physgeo.uni-leipzig.de/amr/
Experimental Physics - Mechanics - Elasticity 2
Elastic modulus
A
F
F l lD
Tensile stress úû ù
êë é= 2m N
A F
Strain l lD
= degree of deformation
Young’s or elastic modulus úû
ù êë é
D ==U 2/
/ strain stress
m N
ll AF
st re
ss
strain
Hook’s law
Elastic limit
Plastic flow
Fracture point
Material Y, GPa (TS, MPa) Rubber 0.01-0.1 Wood ~10 (50)
Aluminum 70 (90)
Glass 50-90 (50)
Silicon 185 Steel 200 (520)
Diamond 1220
Experimental Physics - Mechanics - Elasticity 3
Shear modulus
F h
xD
Shear modulus úû
ù êë é
D = 2/
/ m N
hx AF
G
Shear stress úû ù
êë é= 2m N
A F
Shear strain qtan=D= h x
Material G, GPa Rubber 0.0006 Aluminum 25.5 Glass 26 Steel 80 Diamond 478
Experimental Physics - Mechanics - Elasticity 4
Bulk modulus
Bulk modulus úû
ù êë é
D -= 2/
/ m N
VV AFB
Volume stress
(pressure) úû ù
êë é= 2m N
A F
Volume strain V VD
=
Material G, GPa
Air ~10-4
Water 2.2
Glass 35-50
Steel 160
Diamond 442
Water expands by about 9%
upon freezing. What pressure
would it then create in a bottle?
~ 200 MPa
1 km down a see the pressure of
water rises by 10 MPa. What is the
water density there?
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 5
Fluids Ø Elastic stress Ø Shear stress Ø Bulk stress
Pressure A FP =
Va cu
um
F A
G as
Va cu
um
topF
Va cu
um
botF
h
AhgFmgFF r+=+= toptopbot hgPP r=- topbot
Pascal’s principle: Pressure applied to an enclosed fluid is transmitted to every point of the fluid and to the walls of the container.
Compressibility:
dP dV
VB 11
-=ºk
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 6
Basic equation of hydrostatics
!(#) !(# + )
&'()*, , = ! # &. − ! # + &.
! # + − ! # = &! = 0!0#
&'()*, , = − 0! 0# &. = −
0! 0# &1
&'()*, 2 = − 0! 03 &3&. = −
0! 03 &1
&'()*, 4 = − 0! 05 &5&. = −
0! 05 &1
678& ! = 9: = :⃗
Under equilibrium: 678& ! ≡ 0!0# ̂> +
0! 03 ̂? +
0! 05
@A
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 7
Hydraulic pressure
1F 2F
1A 2A 1
1 1 A FP =
2
2 2 A
FP ==
atmAPF = 0=P
h
ghP r=atm
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 8
Buoyancy
Archimed’s principle: A body submerged in a fluid is acted (buoyed up) by a force equal to the weight of the displaced fluid.
a a2
a2
a
tF
tF
bF
bF
( )220 22 aghaPFt ×+×-= r
h ( ) 220 22 aahgaPFb ×++×= r
VgagF rr == 3net 2 buoyant force
Equilibrium (under water): wfwf gVgV rrrr =Þ=
Equilibrium (floating): f
w wf V
VgVgV r rrr =Þ= ''
T
N285.0=mg N855.0=T ?-r
33 1
kg/m1025.01 ´»÷÷ ø
ö çç è
æ +=
-
mg T
wrr
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 9
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 10
Surface tension
cohesiveF
dA dE
=s - specific surface energy
[ ] m N
m J == 2s - surface tension
mg
y
l
0y yD
ymgUg D-=D
( ) 2×D×-=--=D ylAAU ifs ss l mg 2
=s
4
topF
dRR +
R
( )22 4)(4 RdRRdUs pps -+=
dR dUF s-=
A PF =
R P s2cohesive =
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 11
Capillary effects
cq lgs
sls sgs
sgsllg cos ssqs =+c
The Young equation:
Contact angle
Degree of wetting
Strength of interaction: Sol.-Liq. Liq.-Liq.
θ = 0 Perfect wetting strong weak
0 < θ < 90° high wettability strong strong weak weak
90°≤θ
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 12
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 13
Viscous flow
A
zD
vD dz dvA
z vAfv hh -=D
D -=
vf viscosity or dynamic viscosity
P P
v v P vf PP D+
P PP D+
R r
x xx D+
0pnet, =+ vfF 2
pnet, arPF p×D-=
a av dr
dvxrf D×= ph 2
òò D D
= rvr
R aa dvP
x drr
0
2h
( ) x PrR
vr D D-
-= h4
22laminar flow
4
8 R
x PIv D D
-= h p
Hagen-Poiseuille law:
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 14
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 15
-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6
0
5
10
15
20
25
30
h / m
m
sqrt (t) / s-1/2
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 16
-0,2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6
0
5
10
15
20
25
30 h
/ m m
sqrt (t) / s-1/2
y=9.2x
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 17
10-6 10-5 0
20
40
60
sl op
e
tube diameter
B
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 18
Continuity 1A
1v 2A
2v
tvAV D=D 11 tvA D= 22
vAIV = - volume flow rate = constant - continuity equation
?-v
m12=l
m3=L
cm2=D
cm1=d n
t
ttnn AvAv =
mglmvn = 2
2 1
gl D dvt 2
2
÷ ø ö
ç è æ=
m/s3=tv
What pressure should the pump provide?
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 19
Bernoulli’s equation
1h 2h
m
21 mghmghU -=D
( )22212 vv mEk -=D
1
2
2v
1v
Pipes are full
2F
( )22222 xAPdxFW D--=-= ò
2xD
1F
( )11111 xAPdxFW D-== ò VPVPVPVPW 121122 -=-=DkEUW D+D=D
2 22
12 12
1 2112 VvVvVghVghVPVP rrrr -+-=-
2 12
1 11
2 22
1 22 vghPvghP rrrr ++=++ const
2 2 1 =++ vghP rr
Bernoulli’s equation
1xD
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 20
Applications of Bernoulli’s equation
h
2 22
1 00 vPghP rr +»+
1
2
ghv 22 =
Torichelli’s law
1P 1v 2P 2v
2A 1A
2 22
1 2
2 12
1 1 vPvP rr +=+ const
2 2 1 =+ vP r
Magnus effect
Experimental Physics - Mechanics - Fluid Mechanics – Static and Dynamic Behaviors 21
Ø Pascal’s principle: pressure applied to an enclosed liquid is
transmitted to any point.
Ø Archimed’s principle: a body submerged in fluid is buoyed up
with a force equal to the weight of the displaced fluid.
ØIntermolecular forces: surface tension and capillarity.
Ø For steady-state flow of an incompressible fluid
the volume flow rate is constant (continuity).
Ø Bernoulli’s equation - conservation of total
mechanical energy applied to fluids.
Ø Pouseuille’s law: fluid velocity is inversely
proportional to the distance from the wall.
To remember!