Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh...

27
Serge A. Krasnokutski Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Experimental Characterization of Low-temperature Surface Reactions for Astrochemistry

Transcript of Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh...

Page 1: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Serge A. Krasnokutski

Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena

Experimental Characterization of Low-temperature

Surface Reactions for Astrochemistry

Page 2: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Dark molecular clouds T ~ 10 K

Page 3: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Volatiles in Habitable Planets

No volatiles condense in the habitable zone

Volatiles have to be delivered later

They are likely delivered from the distant

areas

The delivery of pristine IS dust by

meteorites and comets is expected

Both meteorites and comets contain large

quantities of organic and biological

molecules

Page 4: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Dark molecular clouds T ~ 10 K 2 atoms 3 atoms 4 atoms 5 atoms 6 atoms 7 atoms 8 atoms 9 atoms 10 atoms 11 atoms

12 atoms

>12 atoms

H2 C3  c-C3H C5 C5H C6H CH3C3N CH3C4H CH3C5N HC9N c-C6H6 HC11N AlF C2H l-C3H C4H l-H2C4 CH2CHCN HC(O)OCH3 CH3CH2CN (CH3)2CO CH3C6H n-C3H7CN C60 AlCl C2O C3N C4Si C2H4* CH3C2H CH3COOH (CH3)2O (CH2OH)2 C2H5OCHO i-C3H7CN C70 C2 C2S C3O l-C3H2 CH3CN HC5N C7H CH3CH2OH CH3CH2CHO CH3OC(O)CH C2H5OCH3 C60

+ 

CH CH2H2 C3S c-C3H2 CH3NC CH3CHO C6H2 HC7N CH3CHCH2O

CH+ HCN C2H2* H2CCN CH3OH CH3NH2 CH2OHCHO C8H

CN HCO NH3 CH4 CH3SH c-C2H4O l-HC6H CH3C(O)NH2

CO HCO+ HCCN HC3N HC3NH+ H2CCHOH CH2CHCHO  C8H–

CO+ HCS+ HCNH+ HC2NC HC2CHO C6H– CH2CCHCN C3H6

CP HOC+ HNCO HCOOH NH2CHO CH3NCO H2NCH2CN CH3CH2SH

SiC H2O HNCS H2CNH C5N HC5O CH3CHNH CH3NHCHO

HCl H2S HOCO+ H2C2O l-HC4H CH3SiH3

KCl HNC H2CO H2NCN l-HC4N NH HNO H2CN HNC3 c-H2C3O NO MgCN H2CS SiH4  H2CCNH  NS MgNC H3O+ H2COH+ C5N–

NaCl N2H+ c-SiC3 C4H– HNCHCN

OH N2O CH3 HC(O)CN SiH3CN

PN NaCN C3N– HNCNH SO OCS PH3 CH3O SO+ SO2 HCNO NH4

+ SiN c-SiC2 HOCN H2NCO+

SiO CO2  HSCN NCCNH+

SiS NH2 H2O2 CH3Cl

CS H3+ C3H+

HF SiCN HMgNC

HD AlNC HCCO

FeO  SiNC O2 HCP CF+ CCP SiH AlOH PO H2O+ AlO H2Cl+ OH+ KCN CN– FeCN

https://www.astro.uni-koeln.de/cdms/molecules

Page 5: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Gas-phase reactions — 4401 Surface reactions — 532 Only 37 species were considered to react with C atoms on the surface of dust grains

http://kida.obs.u-bordeaux1.fr http://www.physics.ohio-state.edu:80/~eric/research_files/osu_09_2008

gC + gOH → gCO + gH gC + gOH → CO + H gC + gH2 → gCH2 Ea = 2500K, No low-temperature reaction

gC + gC2H2 → gC + gNH3 →

No associative channel

Information on surface reactions is often adopted from the gas-phase studies.

Surface reactions background

No surface reaction considered

Lack of solid experimental data on surface reactions

Page 6: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Surface reactions background

Surface reactions allow associative reactions A + B → AB; (H + H → H2 is efficient only on the surface)

Page 7: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Surface reactions allow associative reactions A + B → AB; (H + H → H2 is efficient only on the surface)

Surface reactions background

Page 8: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Surface reactions allow associative reactions A + B → AB; (H + H → H2 is efficient only on the surface)

Surface reactions background

Page 9: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Helium droplet experimental setup

Page 10: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Experimental study of surface reactions

Liquid helium as a third body

Page 11: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

0 50 100 150 200 250 3000.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

79 Å

91 Å

100 Å

112 Å

Ion

sig

na

l

Time (s)

130 Å

Measuring sizes of He droplets

0 5 10 15 202

4

6

8

10

Pre

ssu

re (

10

-9 m

ba

r)

Thousand He atoms per droplet

J. Phys. Chem. A, Vol. 114, No. 50, 2010

Page 12: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Measuring depletion caused by incorporation of one reactant

Page 13: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

1

2

3

4

5

6

Slope: m = 0.033

He

dro

ple

t be

am

de

plit

ion (

%)

Slope: m = 0.03

0 20 40 60 80 100

1

2

3

4

Slope: m = 0.023

H2

C2H

2

Portion of He droplets doped with H2 or C

2H

2 (%)

Ultra-low-temperature C + H2 → HCH reaction

𝑚 = 𝑃𝑅1

𝐸𝑅

5𝑁𝐻𝑒

𝑃𝑅1 is portion of He droplets doped

with C atoms, 𝐸𝑅 amount of released energy, and NHe is an initial size of He droplets

𝐸𝑅 ≅ 34600 𝑐𝑚−1

Page 14: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

-30

-25

-20

-15

-10

-5

0

5

10

En

erg

y (

10

3 c

m-1)

C(3P0) + H2

Energy levels of the C + H2 reaction

-26844

-600

𝐸𝑅 ≅ 34600 𝑐𝑚−1

Page 15: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

1

2

3

4

5

6

Slope: m = 0.033

He

dro

ple

t b

ea

m d

ep

litio

n (

%)

Slope: m = 0.03

0 20 40 60 80 100

1

2

3

4

Slope: m = 0.033

H2

C2H

2

Portion of He droplets doped with H2 or C

2H

2 (%)

Ultra-low-temperature C + H2 → HCH reaction

𝑚 = 𝑃𝑅1

𝐸𝑅

5𝑁𝐻𝑒

𝑃𝑅1 is portion of He droplets doped

with C atoms, 𝐸𝑅 amount of released energy, and NHe is an initial size of He droplets

𝐸𝑅 = 𝐾𝑐𝑎𝑙𝑚

𝐾𝑐𝑎𝑙 is calibration constant. Based on the energy release in C + H2 reaction (26844 cm-1).

𝐾𝑐𝑎𝑙 = 813454 𝑐𝑚-1

Therefore, energy released in C + C2H2 reaction to be 18709 cm-1

T. Henning, and S. Krasnokutski Nat. Astron. (2019) doi: 10.1038/s41550-019-0729-8

Page 16: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

-40

-30

-20

-10

0

2B1

(3A")

(3B1)

(1A')

(3A")

(3A1)

Energ

y (

10

3 c

m-1)

C(3P0) + C2H2

(1A1)

Energy levels of the C + C2H2 reaction

R. I. Kaiser, et. al., J. Chem. Phys. 106, 1729 (1997)

J. Takahashi and K. Yamashita, J. Chem. Phys. 104, 6613 (1996)

18709 cm-1

18014 cm-1

Page 17: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

NHe = 20500 ER = 45738 cm-1

NHe = 145000 ER = 44586 cm-1

C + O2 → CO + O, C + O2 → CO2 reactions

On platinum crystal: C + O2 → CO + O → CO2 Walker & King JCP 112 (2000) 1937

Page 18: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

C + O2 → CO + O + 48346 cm-1

C + O2 → OCO + 92328.5 cm-1

Energy levels diagram of the C + O2 reaction

Lu et al., Science 346 (2014) 61

ER = 45738 cm-1

On platinum crystal: C + O2 → CO + O → CO2 Walker & King JCP 112 (2000) 1937

Page 19: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

C + H2 → HCH

Glycine formation pathway

Page 20: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Potential energy surface of HCH + CO2 + NH3 reaction

Triplet channel Singlet channel

MP2/6-311G+(d,p)

Page 21: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

C + H2 → HCH

Glycine formation pathway

Page 22: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Energy levels diagram of the C + NH3 reaction

APJ, 812:106, 2015

24784 cm-1

25210 cm-1

Page 23: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Energy levels diagram of the C + CO2 reaction

11230 cm-1 ccsd(t)/cc-pvQz

The existence of C2O2 was first suggested in 1913

S. Krasnokutski, et.al. PCCP (2019) doi:10.1039/C9CP01616C

Page 24: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Negative slope of C + Ar reaction

Page 25: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Origin of negative slope

Page 26: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Negative slope of C + Ar reaction

Page 27: Experimental Characterization of Low-temperature Surface ... · sh c-c 2 h 4 o l-hc 6 h ch 3 c(o)nh 2 co +hco hccn hc 3 n hc 3 nh+ h 2 cchoh ch 2 chcho c 8 h– co+ +hcs –hcnh+

Conclusions

• The experimental technique, which can be used to measure the energy released in reactions of a single pair of reactants was developed.

• These data can be directly compared with the results of quantum chemical computations leading to unequivocal conclusions regarding the reaction pathways, the presence of energy barriers, and the final reaction products.

• The ground reactions C + H2 → HCH and C + C2H2 → C3H2 are barrierless, and therefore should be considered in the modeling of the chemistry of the ISM.

• The barrierless formation of CHNH2, which is one of the key molecules of Strecker type synthesis, was found, suggesting an efficient formation of prebiotic molecules during condensation of C atoms on the surfaces of dust grains.

• After almost a hundred years of unsuccessful trials, we finally managed to detect an elusive molecule ethylenedione (C2O2).