Experiment: Mirror Langmuir Probe measurements reveal that the …labombard/Labombard... · 2013....

1
Mirror Langmuir Probe observations of edge plasma turbulence and the Quasi-Coherent Mode in Alcator C-Mod 1 B. LaBombard, 2 T. Golfinopoulos, 2 D. Brunner, 2 O.E. Garcia, 3 M. Greenwald, 2 J.W. Hughes, 2 R. Kube, 3 J.L. Terry, 2 S. Zweben 4 2 MIT Plasma Science and Fusion Center 1 Supported by USDoE Coop. Agreement DE-FC02-99ER54512 3 Plasma University of Tromsø 4 Princeton Plasma Physics Laboratory Langmuir probe B θ magnetic probe ~ Target EDA H-mode 0.0 0.4 0.8 MA 0 1 2 10 20 m -2 0 1 2 3 4 5 Tesla 0 Freq [kHz] -2 -1 0.0 log 10 100 200 0.0 0.5 1.0 1.5 seconds 40 30 20 10 mm 1120712027 Plasma Current Line Density H α B T Phase Contrast Imaging Frequency Spectrum Magnetic Probe Position Quasi-Coherent Mode ~ Investigate structure of Quasi-Coherent Mode using Mirror Langmuir and Magnetic (B θ ) probes Why study the QCM? A first-principles understanding of these modes is an important step towards unfolding the transport physics of the boundary layer. Coherent edge modes, such as the QCM (in H-mode) and the “weakly coherent mode” WCM (in I-mode) play key roles in pedestal dynamics, including regulating particle and impurity confinement without ELMS. Goal: -resolved , , , k ˜ n ˜ T e and relative phase angles ˜ B ˜ Phase propagation relative to V ExB , V de Unambiguously identify QC mode type (drift wave, interchange, ...) Radial width of mode layer Measurements: Experiment: Mirror Langmuir Probe measurements reveal that the Quasi-Coherent Mode is an electron drift-Alfven wave. - A 3-state, fast-switching voltage waveform is applied to a Langmuir Probe. - ‘Mirror LP’ responds to probe voltage, generates its own I-V response. - By active feedback, I sat , T e and V f ‘controls’ on MLP are adjusted to match that of Real LP. Important: These data are obtained from a single LP electrode. MLP bias: a “triple probe in the time domain” F e e d b a c k : C o u p l i n g C a p a c i t a n c e D u m m y P r o b e L a n g m u i r P r o b e E r r o r F e e d b a c k S y n c h r o n i z e d w i t h V o l t a g e W a v e f o r m E r r o r S i g n a l P r o b e C u r r e n t S i g n a l + - E l e c t r o n T e m p e r a t u r e M i r r o r C u r r e n t S i g n a l F l o a t i n g P o t e n t i a l 1 / T e V f L o g ( I s a t ) I o n S a t . C u r r e n t C u r r e n t M o n i t o r M i r r o r L a n g m u i r P r o b e ( b i a s e d R F t r a n s i s t o r s ) M i r r o r P r o b e C u r r e n t L a n g m u i r P r o b e C u r r e n t P l a s m a R e a l - T i m e O u t p u t : 3 - S t a t e V o l t a g e S o u r c e F e e d b a c k : W a v e f o r m A m p l i t u d e + . 6 8 T e a b c a c t i m e 0 - 3 . 3 T e V s 3 - S t a t e V o l t a g e W a v f o r m c a b c o a x i a l c a b l e c o a x i a l c a b l e P r o b e V o l t a g e S i g n a l V s - Real-time T e and I sat signals are used to adjust voltage drive amplitude and coupling capacitance. Result: - Real-time I sat , T e , and V f signals which ‘mirror’ that of Real LP [1] LaBombard, B. and Lyons, L., Rev. Sci. Instrum. 78 (2007) 073501; Lyons, L., Masters Thesis, EECS, MIT (2007). - Optimum “triple probe bias” is applied to a single electrode An electronic device 1 that adjusts its I-V response in real time to match that of an actual Langmuir probe What is a Mirror Langmuir Probe? Probe Voltage Waveform MLP Test Data -200 -100 0 100 volts -0.2 -0.1 0.0 0.1 0.2 amps -2 0 2 4 volts 0.0 0.5 1.0 1.5 2.0 μs -2 0 2 4 volts 0.9 μs Electron Collection Near floating Ion saturation Bias States Probe Current Response TTL Timing Pulses: Data Sample Timing MLP waits for switching transients to die away before taking data samples Bias Timing Voltage Current Voltage changes by up to 360V, settling in less than ~ 150ns TTL Timing - Bias TTL Timing - Data Sample MLP Fast-Switching Voltage Waveform: Samples I-V characteristic at three bias states in under 1 μs amps volts 600.08 600.12 600.16 600.20 ms eV 1120531021 NW 0.2 0.4 0.6 -100 -80 -60 -40 -20 20 40 60 80 Electron Temperature Floating Potential Ion Saturation Current 1120531021 NW amps volts eV 590 595 600 605 610 ms mm Distance into SOL 0.0 0.2 0.4 0.6 0.8 -100 -80 -60 -40 -20 0 20 40 60 80 -5 0 5 10 15 Electron Temperature Floating Potential Ion Saturation Current Data from a probe scan to the separatrix in an ohmic L-mode plasma Fluctuations in signals are not noise! These are plasma fluctuations. Real-time signals of I sat , V f , and T e reported by Mirror Langmuir Probe 22,000 measurements of I sat , V f , and T e from a single electrode MLP waveforms from C-Mod fast-scanning probe Expanded time scale Immediate observation: I sat and T e fluctuations tend to track one another Real-time signals of I sat , V f , and T e reported by Mirror Langmuir Probe Use Fit data for remainder of poster 1 μs time resolution adequate to resolve plasma dynamics Post-processing computation of I sat , V f , and T e from I-V data yield nearly identical signals, but with no slew rate limitations Same data on expanded time scale Plasma potential = sh T e + V f Plasma density n = I sat /(2 Area C s ) q Vp+ Vp0 Vp- Ip+ Ip0 Ip- 160 155 165 170 175 180 Time (μs) after 0.6 seconds 1120531021 NW -300 -200 -100 0 volts -0.4 0.0 0.4 amps 0.2 0.4 0.6 amps -90 -70 -50 volts 50 70 90 eV Real-time MLP Fit MLP Electron Temperature Floating Potential Ion Saturation Current MLP Fit Probe Current Probe Voltage 1 μs Post-processing Fit I-V data are also recorded at high bandwidth Compute: Mirror Langmuir Probe -- a powerful new tool for investigating boundary n, T e , Φ profiles and turbulence Expanded time scale ~ 1.5 rad/cm; perturbation ~field-aligned [1] 1120712027 1.135 1.140 1.145 1.150 1.155 1.160 Freq [kHz] -1.0 0 log 10 Frequency Spectrum 1.135 1.140 1.145 1.150 1.155 1.160 [rad/cm] -1.0 0 log 10 [rad/cm] Poloidal Wavenumber Spectrum 1.135 1.140 1.145 1.150 1.155 1.160 seconds mm Probe Position 50 100 150 -4 -2 0 2 4 -4 -2 0 2 4 40 30 20 10 k Spectra from B θ pickup coils [1] J. Snipes, et al., PPCF 43 (2001) L23. ~ QCM has strong B θ , J // components ~ ~ 50kHz < f < 200kHz -0.10 0 0.10 mT 1.14680 1.14685 1.14690 1.14695 1.14700 Time (s) -1.0 -0.5 0 0.5 1.0 mT -10 -5 0 5 10 A/cm 2 B θ magnetic probe ~ QCM propagates in electron diamagnetic direction (lab frame) At location of QC mode layer: B r ~ 0.5 mT, J // ~ 5 A/cm 2 θ ) -4 -2 0 2 4 20 40 60 80 100 120 140 Frequency (kHz) -1.0 0.0 Cross-Power Spectrum, S(f,k -4 -2 0 2 4 (radians/cm) 20 40 60 80 100 120 140 Frequency (kHz) dr:12.mm ~ B r at mode layer ~Equivalent J // Measured Poloidal Field k k k B 0 Results from B θ probe: Langmuir probe Target EDA H-mode 0.0 0.4 0.8 MA 0 1 2 10 20 m -2 0 1 2 3 4 5 Tesla 0 Freq [kHz] -2 -1 0 log 10 100 50 150 0.0 0.5 1.0 1.5 seconds 40 30 20 10 mm Plasma Current Line Density H α B T Phase Contrast Imaging Frequency Spectrum Langmuir Probe Position Quasi-Coherent Mode 1120814028 N S W E Mirror Langmuir Probe investigation of Quasi-Coherent Mode Experimental setup: ˜ Plunge probe across QCM mode layer Does probe ‘kill the mode’? Use electrodes spaced in minor radius direction to assess probe perturbation effects Goals: Record response Determine mode layer width (?) , , , k ˜ n ˜ T e South North 1120814028 1.195 1.200 1.205 1.210 0.0 0.2 0.4 MW P rad Freq [kHz] -1.0 0 log 10 Frequency Spectrum [rad/cm] -1.0 0 log 10 [rad/cm] Poloidal Wavenumber Spectrum seconds mm Probe Position 50 100 150 Spectra from North-South electrodes 10 5 0 -5 -15 -2 0 2 4 -4 -2 0 2 4 k MLP passes through mode layer -- reveals density fluctuation with frequency and wavenumber of QCM log 10 -4 -2 0 2 4 20 40 60 80 100 120 140 Frequency (kHz) -1.0 0.0 -4 -2 0 2 4 (radians/cm) 20 40 60 80 100 120 140 θ ) Cross-Power Spectrum, S(f,k k 1120814028 : 1.1964 s Mode exists near LCFS Probe perturbs plasma at peak insertion (see P rad jump) Must examine other electrodes to see if probe is perturbing mode... Post mortum: leading edge of probe head showed melt damage Probe appears to pass through mode Frequency, poloidal wave number and propagation in electron diamagnetic direction -- consistent with B θ probe, PCI (and GPI) East Quasi-Coherent Mode lives at separatrix, in steep gradient region, with positive radial electric field => consistent with QCM kicking impurities out confined plasma onto open field lines QCM spans LCFS - From power balance: T e ~ 50 eV at LCFS (used here to set ρ = 0 location) - Profiles deeper into plasma are unreliable - QCM exists in region of positive E r (i.e. with ExB in ion dia. dir.) -2 0 2 4 6 8 10 ρ (mm) 0 1 2 10 20 m -3 0 1 0 40 20 60 eV 0 40 80 volts arb. units Density Electron Temperature Plasma Potential I sat Fluctuation Power 80 kHz < f < 120 kHz Profiles from East electrode 1120814028 - V dpe, V de are in opposite directions to V ExB in mode layer Quasi-Coherent Mode propagates at electron diamagnetic drift velocity in the plasma frame Frequency (kHz) 0 4 8 -1 0 log 10 -4 -2 0 2 4 6 8 10 kHz km/s km/s I sat Fluctuation Power -100 0 100 200 -5 0 5 10 15 ρ (mm) 1120814028 - V dpe, V de are stronger than V ExB in mode layer Velocities computed from East electrode profiles V de = T e r n b nB V dpe = r nT e b nB V ExB = b r B V de V dpe V ExB V ExB V dpe+ V ExB ) k θ (V dpe+ V ExB V de + V ExB ) k θ (V de + arb. units QCM - QCM propagates in e - dia. direction in the plasma frame QCM frequency is quantitatively consist with a k θ ~ 1.5 rad/cm mode propagating with velocity between V dpe and V de in the plasma frame. Radial extent of QCM fluctuation is mapped out separately by each electrode as they pass though layer 1120814028 1.194 1.200 1.206 Time (s) 10 5 0 -5 0.2 0.3 0.4 MW N S W W E E S N arb. units ρ (mm) Isat Pwr 80kHz < f < 120kHz East Probe Position P rad normalized Radial width of QCM is 3 mm Note: I sat power normalized to same peak value for in-going scan Time delay is seen among probes, consistent with their radial positions At peak insertion, P rad jumps up -- probe-induced impurity injection => electrodes likely affected; I sat power envelopes are different on out-going scan ~ ~ N S W E 0.0 0.2 0.4 0.6 0.8 1.0 -4 -2 0 2 4 6 8 10 ρ (mm) I sat Power 80kHz < f < 120kHz W E S N arb. units Ion Saturation Current A A B I sat scaled and ρ adjusted, such that profiles overlay amps B I sat power scaled, such that profiles overlay (using ρ values from ) A I sat and I sat Fluctuation Profiles Radial profiles of ion saturation current and QCM fluctuation envelope align from all four electrodes ~ ~ ~ I sat and I sat power profiles align, despite being recorded at different times by different probes Conclusion: QCM is not being attenuated by probe Radial width of Quasi-Coherent Mode layer is ~ 3 mm FWHM Simple Boltzmann electron response? Compute required to satisfy ˜ n = n exp ˜ ( ) / ˜ T e ] is ~1.5x larger than measured B ˜ n B ˜ n B ˜ n East 20 40 60 80 100 120 140 Frequency (kHz) -1.0 -0.5 0.0 20 40 60 80 100 120 140 Frequency (kHz) Phase Angle 0 2 2 - π - π π π log 10 [S(f, Φ )] 1.1964 s Cross Power Spectrum: Density and Potential ~ 10 m/s V r = ˜ n ˜ E / n B Potential lags Density with a phase angle of ~ 10 degrees => Drift wave => Drift wave Snapshot of QCM reveals large amplitude, ~in-phase, density, electron temperature and potential fluctuations 10 20 m -3 volts eV 200 250 Time (μsec) after 1.196 sec 300 350 400 1.6 1.2 2.0 40 50 60 70 80 90 100 110 120 Density Electron Temperature Plasma Potential Not a simple Boltzmann response T e ~ 45% n n ~ 30% T e T e ~ 45% -0.4 0.0 0.4 0.4 -0.4 0.0 0.4 -0.4 0.0 0.4 -0.4 0.0 n <n> nT e <nT e > ~ ~ ~ n <n> ~ Φ <T e > ~ Φ <T e > ~ 1 k // qR qR μ 0 k 2 T e ˜ J // ˜ n ˜ T e nT e ˜ T e 1 T e t ˜ A // // ˜ n ˜ T e nT e ˜ T e 1 B. Scott, PPCF, 39 (1997) 1635. Normalized electron pressure fluctuations exceed potential fluctuations by ~ 0.1 at their maxima Density fluctuations are smaller than Boltzmann Φ <T e > ~ < max ~ 0.1 ~ 0.1 But parallel electron force balance (Ohm’s law) in this case should include electron pressure and inductive E // associated with parallel current fluctuation 1 ˜ n ˜ T e nT e ˜ T e Plugging in values for QCM parameters yields: J // ~ ~ 6 A/cm 2 => Consistent with amplitude of J // inferred from magnetic probe. QCM is a electron drift-Alfven wave. ~ Non-Boltzmann response is consistent with measured EM character of the mode -- an electron drift-Alfven wave Mirror Langmuir Probe is a powerful new tool for investigating boundary n, T e , Φ profiles and turbulence MLP is revealing new insights on Alcator C-Mod’s Quasi-Coherent Mode in ohmic EDA H-mode plasmas: QCM spans LCFS region with a mode width of ~ 3mm Summary - Mode frequency at ~k θ V dpe in plasma frame - EM signature - Drives transport directly across LCFS - Measured amplitude of plasma potential, electron pressure and parallel current fluctuations -1 0 log 10 kHz -100 0 100 200 V ExB ) k θ (V dpe+ V ExB ) k θ (V de + QCM -4 -2 0 2 4 6 8 10 ρ (mm) qR μ 0 k 2 T e ˜ J // ˜ n ˜ T e nT e ˜ T e 0.4 -0.4 0.0 0.4 -0.4 0.0 nT e <nT e > ~ ~ Φ <T e > ~ ~ 0.1 -4 -2 0 2 4 6 8 10 I sat Fluctuation Power ρ (mm) arb. units 1.14680 1.14685 1.14690 1.14695 1.14700 Time (s) -1.0 -0.5 0 0.5 1.0 mT -10 -5 0 5 10 A/cm 2 dr:12.mm ~ B r at mode layer ~Equivalent J // QCM is an electron drift-Alfven mode as determined by:

Transcript of Experiment: Mirror Langmuir Probe measurements reveal that the …labombard/Labombard... · 2013....

  • Mirror Langmuir Probe observations of edge plasma turbulence and the Quasi-Coherent Mode in Alcator C-Mod1B. LaBombard,2 T. Golfinopoulos,2 D. Brunner,2 O.E. Garcia,3 M. Greenwald,2 J.W. Hughes,2 R. Kube,3 J.L. Terry,2 S. Zweben4

    2MIT Plasma Science and Fusion Center 1Supported by USDoE Coop. Agreement DE-FC02-99ER54512 3Plasma University of Tromsø 4Princeton Plasma Physics Laboratory

    Langmuir probe

    Bθ magnetic probe~Target EDA H-mode

    0.0

    0.4

    0.8

    MA

    0

    1

    2

    10

    20 m

    -2

    012345

    Te

    sla

    0

    Fre

    q [

    kHz]

    -2

    -1

    0.0

    log

    10100

    200

    0.0 0.5 1.0 1.5seconds

    4030

    20

    10

    mm

    1120712027

    Plasma CurrentLine Density

    Hα BT

    Phase Contrast Imaging Frequency Spectrum

    Magnetic Probe Position

    Quasi-Coherent Mode

    ~Investigate structure of Quasi-Coherent Modeusing Mirror Langmuir and Magnetic (Bθ) probes

    Why study the QCM?A first-principles understanding of these modes is an important step towards unfolding the transport physics of the boundary layer.

    Coherent edge modes, such as the QCM (in H-mode) and the “weakly coherent mode” WCM (in I-mode) play key roles in pedestal dynamics, including regulating particle and impurity confinement without ELMS.

    Goal:

    -resolved , , , k ñ T̃e and relative phase anglesB̃˜Phase propagation relative to VExB, Vde

    Unambiguously identify QC mode type (drift wave, interchange, ...)

    Radial width of mode layer

    Measurements:

    Experiment: Mirror Langmuir Probe measurements reveal that the Quasi-Coherent Mode is an electron drift-Alfven wave.

    - A 3-state, fast-switching voltage waveform is applied to a Langmuir Probe.

    - ‘Mirror LP’ responds to probe voltage, generates its own I-V response.

    - By active feedback, Isat, Te and Vf ‘controls’ on MLP are adjusted to match that of Real LP.

    Important: These data are obtained from a single LP electrode.

    MLP bias: a “triple probe in the time domain”

    Feedback:CouplingCapacitance

    Dummy Probe

    LangmuirProbe

    Error FeedbackSynchronizedwith VoltageWaveform

    Error Signal

    ProbeCurrentSignal

    +-

    ElectronTemperature

    MirrorCurrentSignal

    FloatingPotential

    1/Te

    Vf

    Log (Isat)

    Ion Sat.Current

    CurrentMonitor

    Mirror Langmuir Probe(biased RF transistors)

    MirrorProbeCurrent

    LangmuirProbeCurrent

    Plasma

    Real-TimeOutput:

    3-StateVoltageSource

    Feedback:WaveformAmplitude

    +.68Te

    ab c

    ac

    time

    0

    -3.3Te

    Vs

    3-State Voltage Wavform

    c

    a

    b

    coaxial cable

    coaxial cable

    ProbeVoltageSignal

    Vs

    - Real-time Te and Isat signals are used to adjust voltage drive amplitude and coupling capacitance.

    Result: - Real-time Isat, Te, and Vf signals which ‘mirror’ that of Real LP

    [1] LaBombard, B. and Lyons, L., Rev. Sci. Instrum. 78 (2007) 073501;Lyons, L., Masters Thesis, EECS, MIT (2007).

    - Optimum “triple probe bias” is applied to a single electrode

    An electronic device1 that adjusts its I-V responsein real time to match that of an actual Langmuir probe

    What is a Mirror Langmuir Probe?

    Probe Voltage Waveform

    MLP Test Data

    -200

    -100

    0

    100

    volts

    -0.2

    -0.1

    0.0

    0.10.2

    amps

    -2

    0

    2

    4

    volts

    0.0 0.5 1.0 1.5 2.0μs

    -2

    0

    2

    4

    volts

    0.9 μsElectron CollectionNear floatingIon saturation

    Bias States

    Probe Current Response

    TTL Timing Pulses:

    Data Sample Timing

    MLP waits for switching transients to die away before taking data samples

    Bias Timing

    Voltage

    Current

    Voltage changes by up to 360V,settling in less than ~ 150ns

    TTL Timing - Bias

    TTL Timing - Data Sample

    MLP Fast-Switching Voltage Waveform: Samples I-V characteristic at three bias states in under 1 μs

    amps

    volts

    600.08 600.12 600.16 600.20ms

    eV

    1120

    5310

    21 N

    W

    0.2

    0.4

    0.6

    -100-80-60-40-20

    20406080

    Electron Temperature

    Floating Potential

    Ion Saturation Current

    1120

    5310

    21 N

    W

    amps

    volts

    eV

    590 595 600 605 610ms

    mm

    Distance into SOL

    0.00.20.40.60.8

    -100-80-60-40-20

    020406080

    -505

    1015

    Electron TemperatureFloating Potential

    Ion SaturationCurrent

    Data from a probe scan to the separatrix in an ohmic L-mode plasma

    Fluctuations in signals are not noise!These are plasma fluctuations.

    Real-time signals ofIsat, Vf, and Te reportedby Mirror Langmuir Probe

    22,000 measurementsof Isat, Vf, and Te froma single electrode

    MLP waveforms from C-Mod fast-scanning probe

    Expanded time scale

    Immediate observation: Isat and Te fluctuations tend to track one another

    Real-time signals ofIsat, Vf, and Te reportedby Mirror Langmuir Probe

    Use Fit data for remainder of poster

    1 μs time resolution adequateto resolve plasma dynamics

    Post-processing computationof Isat, Vf, and Te from I-Vdata yield nearly identical signals,but with no slew rate limitations

    Same data on expandedtime scale

    Plasma potential = shTe +VfPlasma density n = Isat /(2 Area Cs)q

    Vp+ Vp0 Vp-

    Ip+ Ip0 Ip-

    160155 165 170 175 180Time (μs) after 0.6 seconds

    1120

    5310

    21 N

    W

    -300-200

    -100

    0

    volts

    -0.4

    0.0

    0.4

    amps

    0.2

    0.4

    0.6

    amps

    -90

    -70

    -50

    volts

    50

    70

    90

    eV

    Real-time MLP

    Fit

    MLP

    Electron Temperature

    Floating Potential

    Ion Saturation Current

    MLP

    Fit

    Probe Current

    Probe Voltage

    1 μs

    Post-processing Fit

    I-V data are also recordedat high bandwidth

    Compute:

    Mirror Langmuir Probe -- a powerful new tool forinvestigating boundary n, Te, Φ profiles and turbulence

    Expanded time scale

    ~ 1.5 rad/cm; perturbation ~field-aligned [1]

    1120712027

    1.135 1.140 1.145 1.150 1.155 1.160

    Fre

    q [

    kHz]

    -1.0

    0

    log 1

    0

    Frequency Spectrum

    1.135 1.140 1.145 1.150 1.155 1.160

    [ra

    d/c

    m]

    -1.0

    0

    log 1

    0

    [ra

    d/c

    m]

    Poloidal Wavenumber Spectrum

    1.135 1.140 1.145 1.150 1.155 1.160seconds

    mm

    Probe Position

    50

    100

    150

    -4

    -2

    0

    2

    4

    -4

    -2

    0

    2

    4

    40

    30

    20

    10

    k

    Spectra from Bθ pickup coils

    [1] J. Snipes, et al., PPCF 43 (2001) L23.

    ~

    QCM has strong Bθ, J// components~ ~

    50kHz < f < 200kHz -0.10

    0

    0.10

    mT

    1.14680 1.14685 1.14690 1.14695 1.14700Time (s)

    -1.0

    -0.5

    0

    0.5

    1.0

    mT

    -10

    -5

    0

    5

    10

    A/c

    m2

    Bθ magnetic probe~

    QCM propagates in electron diamagnetic direction (lab frame)At location of QC mode layer: Br ~ 0.5 mT, J// ~ 5 A/cm2

    θ)

    -4 -2 0 2 4

    20

    40

    60

    80

    100

    120

    140

    Fre

    qu

    en

    cy

    (kH

    z)

    -1.0

    0.0

    Cross-Power Spectrum, S(f,k

    -4 -2 0 2 4 (radians/cm)

    20

    40

    60

    80

    100

    120

    140

    Fre

    qu

    en

    cy

    (kH

    z)

    dr:12.mm

    ~ Br at mode layer

    ~Equivalent J//

    Measured Poloidal Field

    k

    k k B 0

    Results from Bθ probe:

    Langmuir probeTarget EDA H-mode

    0.0

    0.4

    0.8

    MA

    0

    1

    2

    10

    20 m

    -2

    012345

    Te

    sla

    0

    Fre

    q [

    kHz]

    -2

    -1

    0

    log

    10

    100

    50

    150

    0.0 0.5 1.0 1.5seconds

    4030

    20

    10

    mm

    Plasma CurrentLine Density

    Hα BT

    Phase Contrast Imaging Frequency Spectrum

    Langmuir Probe Position

    Quasi-Coherent Mode

    1120814028

    N

    S

    WE

    Mirror Langmuir Probe investigationof Quasi-Coherent Mode

    Experimental setup:

    ˜Plunge probe across QCM mode layer

    Does probe ‘kill the mode’? Use electrodes spaced in minor radius direction to assess probe perturbation effects

    Goals:Record response Determine mode layer width (?)

    , , , k ñ T̃e

    South

    North

    1120814028

    1.195 1.200 1.205 1.2100.0

    0.2

    0.4

    MW

    Prad

    Fre

    q [

    kHz]

    -1.0

    0

    log 1

    0

    Frequency Spectrum

    [ra

    d/c

    m]

    -1.0

    0

    log 1

    0

    [ra

    d/c

    m]

    Poloidal Wavenumber Spectrum

    seconds

    mm

    Probe Position

    50

    100

    150 Spectra from North-South electrodes

    10

    5

    0-5

    -15

    -2

    0

    2

    4

    -4

    -2

    0

    2

    4

    k

    MLP passes through mode layer -- reveals densityfluctuation with frequency and wavenumber of QCM

    log 1

    0

    -4 -2 0 2 4

    20

    40

    60

    80

    100

    120

    140

    Fre

    qu

    en

    cy

    (kH

    z)

    -1.0

    0.0

    -4 -2 0 2 4 (radians/cm)

    20

    40

    60

    80

    100

    120

    140

    θ) Cross-Power Spectrum, S(f,k

    k

    1120814028 : 1.1964 s

    Mode exists near LCFS

    Probe perturbs plasma at peak insertion (see Prad jump)

    Must examine other electrodes to see if probe is perturbing mode...Post mortum: leading edge of probe head showed melt damage

    Probe appears to pass through mode

    Frequency, poloidal wave number and propagation in electron diamagnetic direction -- consistent with Bθ probe, PCI (and GPI)

    East

    Quasi-Coherent Mode lives at separatrix,in steep gradient region,with positive radial electric field

    => consistent with QCM kicking impurities out confined plasma onto open field lines

    QCM spans LCFS

    - From power balance: Te ~ 50 eV at LCFS (used here to set ρ = 0 location)

    - Profiles deeper into plasma are unreliable

    - QCM exists in region of positive Er (i.e. with ExB in ion dia. dir.)

    -4 -2 0 2 4 6 8 10

    -4 -2 0 2 4 6 8 10

    -4 -2 0 2 4 6 8 10

    -2 0 2 4 6 8 10ρ (mm)

    0

    1

    2

    1020

    m-3

    0

    1

    0

    4020

    60

    eV

    0

    40

    80

    volts

    arb.

    uni

    ts

    Density

    Electron Temperature

    Plasma Potential

    Isat Fluctuation Power 80 kHz < f < 120 kHz

    Profiles from East electrode

    1120814028

    - Vdpe, Vde are in opposite directions to VExB in mode layer

    Quasi-Coherent Mode propagates at electrondiamagnetic drift velocity in the plasma frame

    Freq

    uenc

    y (k

    Hz)

    0

    4

    8

    -1

    0

    log 1

    0

    -4 -2 0 2 4 6 8 10

    kHz

    km/s

    km/s

    Isat Fluctuation Power-100

    0

    100

    200

    -505

    1015

    ρ (mm)

    1120814028

    - Vdpe, Vde are stronger than VExB in mode layer

    Velocities computed from East electrode profiles

    Vde =Te rn b

    nBVdpe = r

    nTe bnB

    VExB =b r

    BVdeVdpe

    VExB

    VExBVdpe+

    VExB)kθ(Vdpe+VExBVde+

    VExB)kθ(Vde +

    arb.

    uni

    ts

    QCM- QCM propagates in e- dia. direction in the plasma frame

    QCM frequency is quantitatively consist with a kθ ~ 1.5 rad/cm mode propagating with velocity between Vdpe and Vde in the plasma frame.

    Radial extent of QCM fluctuation is mapped out separately by each electrode as they pass though layer

    1120814028

    1.194 1.200 1.206Time (s)

    10

    5

    0

    -5

    0.2

    0.3

    0.4

    MW

    N

    S

    WW

    EE SN

    arb

    . un

    its

    ρ (m

    m)

    Isat Pwr 80kHz < f < 120kHz

    East ProbePosition

    Prad

    normalized

    Radial width of QCM is 3 mm

    Note: Isat power normalized to same peak value for in-going scan

    Time delay is seen among probes, consistent with their radial positions At peak insertion, Prad jumps up -- probe-induced impurity injection

    => electrodes likely affected; Isat power envelopes are different on out-going scan

    ~

    ~

    N

    S

    WE

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -4 -2 0 2 4 6 8 10ρ (mm)

    Isat Power80kHz < f < 120kHz

    W

    E

    SN

    arb

    . un

    its

    Ion SaturationCurrent

    A

    A

    B

    Isat scaled and ρ adjusted,such that profiles overlay

    am

    ps

    B Isat power scaled,such that profiles overlay (using ρ values from )

    A

    Isat and Isat Fluctuation Profiles

    Radial profiles of ion saturation current and QCM fluctuation envelope align from all four electrodes

    ~

    ~

    ~Isat and Isat power profiles align,despite being recorded at different times by different probesConclusion: QCM is not being attenuated by probe

    Radial width of Quasi-Coherent Mode layer is ~ 3 mm FWHM

    Simple Boltzmann electron response? Compute required to satisfy

    ñ = n exp ˜( ) /T̃e ] is ~1.5x larger than measured

    B

    ñB

    ñB ñ

    East

    20

    40

    60

    80

    100

    120

    140

    Fre

    qu

    en

    cy

    (kH

    z)

    -1.0

    -0.5

    0.0

    20

    40

    60

    80

    100

    120

    140

    Fre

    qu

    en

    cy

    (kH

    z)

    Phase Angle0

    2 2- π - π π π

    log 1

    0[S(

    f,Φ)]

    1.1964 s

    Cross Power Spectrum: Density and Potential

    ~ 10 m/sVr = ñẼ / n B

    Potential lags Density witha phase angle of ~ 10 degrees

    => Drift wave

    => Drift wave

    Snapshot of QCM reveals large amplitude,~in-phase, density, electron temperature and potential fluctuations

    1020

    m-3

    volts

    eV

    200 250Time (μsec) after 1.196 sec

    300 350 400

    1.6

    1.2

    2.0

    40

    50

    60

    70

    80

    90

    100

    110

    120

    Density

    Electron Temperature

    Plasma Potential

    Not a simple Boltzmann response

    Te~ 45%

    nn

    ~ 30% TeTe

    ~ 45%

    -0.4

    0.0

    0.4

    0.4

    -0.4 0.0 0.4

    -0.4 0.0 0.4

    -0.4

    0.0

    n

    nTe

    ~

    ~ ~

    n

    ~

    Φ

    ~

    Φ

    ~1k// ∼ qR

    qRμ0k 2 Te

    J̃ //ñT̃enTe

    ˜

    Te

    1Te t

    Ã// //ñT̃enTe

    ˜

    Te

    1B. Scott, PPCF, 39 (1997) 1635.

    Normalized electron pressure fluctuations exceedpotential fluctuations by ~ 0.1 at their maxima

    Density fluctuations are smaller than Boltzmann Φ

    ~<

    max~ 0.1

    ~ 0.1

    But parallel electron force balance (Ohm’s law) in thiscase should include electron pressure and inductiveE// associated with parallel current fluctuation1

    ñT̃enTe

    ˜

    Te

    Plugging in values for QCM parameters yields: J//~ ~ 6 A/cm2

    => Consistent with amplitude of J// inferred from magnetic probe.

    QCM is a electron drift-Alfven wave.

    ~

    Non-Boltzmann response is consistentwith measured EM character of the mode -- an electron drift-Alfven wave

    Mirror Langmuir Probe is a powerful new tool for investigating boundary n, Te, Φ profiles and turbulence

    MLP is revealing new insights on Alcator C-Mod’s Quasi-Coherent Mode in ohmic EDA H-mode plasmas:

    QCM spans LCFS region with a mode width of ~ 3mm

    Summary

    - Mode frequency at ~kθVdpe in plasma frame

    - EM signature

    - Drives transport directly across LCFS

    - Measured amplitude of plasma potential, electron pressure and parallel current fluctuations

    -1

    0

    log 1

    0

    kHz

    -100

    0

    100

    200 VExB)kθ(Vdpe+

    VExB)kθ(Vde +QCM

    -4 -2 0 2 4 6 8 10ρ (mm)

    qRμ0k 2 Te

    J̃ //ñT̃enTe

    ˜

    Te

    0.4

    -0.4 0.0 0.4-0.4

    0.0

    nTe

    ~ ~

    Φ

    ~

    ~ 0.1

    -4 -2 0 2 4 6 8 10

    Isat Fluctuation Power

    ρ (mm)

    arb.

    uni

    ts

    1.14680 1.14685 1.14690 1.14695 1.14700Time (s)

    -1.0

    -0.5

    0

    0.5

    1.0

    mT

    -10

    -5

    0

    5

    10

    A/c

    m2

    dr:12.mm

    ~ Br at mode layer

    ~Equivalent J//

    QCM is an electron drift-Alfven mode as determined by: