EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

288
TREE-NUREG-1150 for U.S. Nuclear Regulatory Commission EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 (STEAM GENERATOR TUBE RUPTURE TEST) r &. ROBERT L. GILLINS KENNETH E. SACKETT October 1977 ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION WJWU UrkKANUN3 UttlLt UNDE~ LON I KAL I kY-/b-L-U/- 131 U

Transcript of EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Page 1: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TREE-NUREG-1150 for U.S. Nuclear Regulatory Commission

EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3

(STEAM GENERATOR TUBE RUPTURE TEST) r

&. ROBERT L. GILLINS KENNETH E. SACKETT

October 1977

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

WJWU U r k K A N U N 3 UttlLt UNDE~ LON I KAL I kY-/b-L-U/- 131 U

Page 2: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Page 3: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Page 4: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Printed in the United States of America Available from

National Technical Information Senrice U.S. Department of Commerce

5285 Port Royal Road Springfield, Virginia 22161

Price: Printed Copy

"The NRC will make available data tapes and operational computer codes on research programs dealing with postulated losssf-coolant accidents in light water reactors. Persons requesting this information must reimburse the NRC contractors for their expenses in preparing copies of the data tapes and the operational computer codes. Requests should be submitted to the Research Applications Branch, Office of Nuclear Regulatory Research, Nuclear Regulatory Commission. Washington, D.C. 20555."

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Energy Research and Development Administration, nor the Nuclear Regulatory Commission. nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Page 5: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

EXPERIMENT DATA REPORT FOR SEMISCALE MOD-1

TEST S-28-3

(STEAM GENERATOR TUBE RUPTURE TEST)

Approved

D. J. w, Manager Semiscale Program

. . f Water $9 Research

. b

NOTICE

sponsored by the United States Covemrncnt. Neither the United Stater nor Ihe United Slates Department of h r g y , nor any of Iheir crnployeer, nor any of lheir contracton, subcontracton, or thcb employees, makes any warranty, expreu or Implied, or.anumes any legal liability or rcrponsibiity for the accuracy, cornplctcneu ar wrfuL8nt uf w y Inlormarlon, apparatus, product or procc5 dblored, or represents Ihat it6 usc would not

Page 6: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Distributed Under Category : NRC-2

Water Reactor Safety Research Systems Engineering

EXPERIMENT DATA REPORT FOR SEMISCALE MOD-1

TEST S-28-3

(STEAM GENERATOR TUBE RUPTURE TEST)

Robert L. Gillins Kenneth E. Sackett

EG&G IDAHO, INC.

October 1977

PREPARED FOR THE U.S. NUCLEAR REGULATORY COMMISSION

AND ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

IDAHO OPERATIONS OFFICE UNDER CONTRACT NO. EY-764-07-1570

Page 7: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

. . . . . , L r . d . ? . ' . : ? . 4 . ' ; . . . . . . . . . . . . . ......: . . , . . . . i _i :.... , . . - . - ,. .

Recorded test data are presented for Test S-28-3 of the Scmiscale'Mod-1 steam generator tube rupture test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesizedloss-of-coolant accident in a pressurized water reactor (PWR) system.

Test S-28-3 was conducted from initial conditions of 15 621 kPa and 555 K to investigate the response of the semiscale ~ o d - 1 ' system to a depressurization and reflood transient following a simulated doubleended offset shear of the broken loop cold leg piping. During the test, cooling water was injected into the cold leg of the intact and broken loops to simulate emergency core coolant injection, a ,PWR. Twelve steam generator tube ruptures were simulated by a controlldd iii,eLtidn f r o d a heated accu~nulalur illlo U . L ~ i ~ ~ t a c t loop hot leg.

The pilrpnse of this report is to make available the uninterpreted data from Test S-28-3 foi future data analysis and test rkp6rting aclivitie~! Tlle data, presenletlill Llle form of graphs in engineering units, have been analyzed only to the extent neceSSBrjs TO ensure that they are reasonable and consistent.

Page 8: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

SUMMARY

Test S-28-3 was performed as part of the Semiscale Mod-1 portion of the Semiscale Program conducted by EG&G Idaho, Inc. for the United States Government. This test is .

part of the steam generator tube rupture test series (Test Series 28) performed to investigate the response of the Mod-1 system to steam generator tube ruptures during a hypothesized loss-of-coolant accident (LOCA). The test objective specific to Test S-28-3 was to determine the lower limit on the range of steam generator tube ruptures over which high peak cladding temperatures can occur. Hardware configuration and test parameters were selected to yield a system response that simulates the response of a pressurized water reactor during a hypothesized LOCA with subsequent refill and reflood.

Test S-28-3 utilized the Semiscale Mod-1 system equipped with a pressure vessel with a 40-rod electrically heated core; an intact loop with pump, steam generator, and pressurizer; a broken loop with simulated pump, simulated steam generator, and rupture assemblies; and a pressure suppression system with header, pressure suppression tank, and heated steam supply system. High and low pressure coolant injection pumps and a coolant injection accumulator were ' provided for each system loop. An additional injection was provided for the intact loop hot leg. The intact loop hot leg injection flow rate was set to simulate the rupture of 12 steam generator tubes. For Test S-28-3 four heater rods were intentionally unpowered to simulate the effects of control rod guide tubes and the power in three heater rods was increased to produce a slightly peaked power profile.

The test was conducted from initial conditions of 15 621 kPa and 555 K (at the intact loop cold leg vessel inlet) with a simulated full size (200%) doubleended offset shear of the broken loop cold leg piping at an initial core power level of 1.40 MW, and an initial core inlet flow rate of 9.07 Q/s. The instantaneous offset shear of the broken loop cold leg piping was simulated by simultaneous (within 10 ms) actuation of the rupture assemblies. After initiation of blowdown, power to the heated core was reduced to simulate the predicted heat flux response of nuclear fuel rods during a LOCA. Blowdown was accompanied by simulated emergency core coolant injection into the cold leg piping of the intact and broken loops. This injection was followed by a controlled injection from a heated accumulator into the intact loop hot leg to simulate steam generator tube ruptures.

Test S-28-3 was generally conducted as specified. Conditions which did not conform to the specified test configuration were considered acceptable for analysis purposes within the test objectives. The instrumentation used generally functioned as intended. Of 220 measurements taken, 2 16 produced usable data.

Page 9: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

I. INTRODUCTION . . . . . ; . . . . . . . . . . . . . . . . . . . . . . . . . . 1

11. ' SYSTEM,.PROCEDURES, CONDITIONS, AND . . EVENTS FOR TEST S-28-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. .

1. SYSTEM CONFIGURATION AND TEST PROCEDURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

. , .

". . 2. 1NITIAL.TEST CONDITIONS AND SEQUENCE OF EVENTS . . . . . . . . . . . . . . . . . . . . . . . . . 5

111. DATA PRESENTATION . . . . . . . . . . . . . . ; . . . . . . . . . . . . . . 10

IV.. . REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,200

APPENDIX A - DATA ACQUISITION SYSTEM CAPABILITIES . . . . . . . . . . 201

APPENDIX B - POSTTEST ADJUSTMENTS TO DATA FROM. . SEMISCALE MOD-1 TEST S-28-3 . . . . . . . . . . . . . . . . . . . . . . . . 205

1. PRESSURE MEASUREMENTS . . . . . . . . . . . . . . . . . . . . . . 207

- 2. DIFFERENTIAL PRESSURE MEASUREMENTS . . . . . . . . . . . . 208

. . . . . . . . . . . . . . . . . . 3. MOMENTUM FLUX MEASUREMENT 2 1 1

. . . . . . . . . . . . . . . . . . . . . . . 4. DENSITY MEASUREMENTS 21 3

APPENDIX C - SELECTED DATA WITH ESTIMATED TOTAL ERROR BANDS FROM SEMISCALE MOD-I TEST $28-3 . . . . . . . . . . . . . . . 2 17

FIGURES . .

1. Semiscale Mod-l system for cold leg break configuration - isometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Semiscale Mod-1 system for cold leg break configuration - schematic . . . . . . . . . . . . . -. . . . . . . . . . . . . . . . . 4

Page 10: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Semiscale Mod-1 system and instrumentation for cold leg break configuration - isometric . . . . . . . . . . . . . . . . ' . . . 1 1

Semiscale Mod-1 system and instrumentation for cold leg break configuration - schematic . . . . . . . . . . . . . . . . . . 12

Semiscale Mod-1 pressure vessel - cross section showing instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . 13

Semiscale Mod-1 pressure vessel - isometric showing instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Semiscale Mod-1' pressure vessel - penetrations and instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Semiscale Mod-1 heated core - plan view . . . . . . . . . . . . . . . . . . . . 16

Fluid temperature in intact loop hot leg (TFU-1 and RBU-2), from -20 to 600 s . . . . . . . . .. . . . . . . . . . . . . 28

Fluid temperature in intact loop hot leg (TFU-1 and RBU-2), from -6 to 42 s. . . . . . . . . . . . . '. . . . . . . . . . . 28

Fluid temperature in intact loop (TFU-6), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Fluid temperature in intact loop (TFU-6), from -6 to 42 s . . .. . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . . 29

Fluid temperature in intact loop cold leg ( T F U - ~ ~ ~ ~ T F U - ~ O ) , ~ ~ O ~ I - ~ O ~ O ~ O O ~ . . . . . . . . . . . . . . . . . . . . . 30

Fluid temperaturc in intact 1oop.cold leg (TFU-7 and TFU-1 0), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . 30

Fluid temperature in intact loop cold leg (RBU-14A and TFU-14B), from -20 to 600 s . . . . . . . . . . . . . . . . . . 3 1

Fluid temperature in intact loop cold leg (RBU-1 $A mid TFU-14B), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . 3 1

Fluid temperature in intact loop (TFU-15), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

18. Fluid temperature in intact loop (TFIT-1 C), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Page 11: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fluid temperature in broken loop, vessel . . . . . . . . . . . . . . . . . . side (TFB-20 and TFB-23), from -20 to 600 s 33

Fluid temperature in broken loop, vessel . . . . . . . . . . . . : . . . . . . . side (TFB-20 and TFB-23), from -6 to 4 2 s

,: . 33

Fluid temperature in broken loop, pump side . . . . . . . . . . . . . . . . . (TFB-30, TFB-37, and TFB-42), from -20 to 600 s 34

Fluid temperature in broken loop, pump side . . . . . . . . . . . . . . . . . . (TFB-30, TFB-37, and TFB-42), from -6 to 42 s 34

Fluid temperature in inlet annulus (TFV-ANN-4A and ,

. . . . . . . . . . . . . . . . . . . . . . . . TFV-ANN-4M), from -20 to 600 s 35

Fluid temperature in inlet annulus (TFV-ANN-4A and . . . . . . . . . . . . . . . . . . . . . . . . . TFV-ANN-4M), from -6 to 42 s 3 5

Fluid temperature in downcomer annulus (TFV-ANN3 5A, TFV-ANN-70A, TFV-ANN-11 SAY and TFV-ANN- 1 56A),

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 36

Fluid temperature in downcomer annulus (TFV-ANN-35A, TFV-ANN-70A, TFV-ANN-11 SAY a ~ d TFV-ANN-156A), .

, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 36

Fluid temperature in upper plenum (TFV-UP+13), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 37

Fluid temperature in upper plenum (TFV-UP+ 1 3), ,

from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Fluid temperature in lower plenum (TFV-EP-2, TFV-LP-4, and.TFV-LP-7.), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . 38

Fluid temperature in lower plenum (TFV-LP-2, . . . . . . . . . . . . . . . . . . . . TFV-LP-4, and TFV-LP-7), from -6 to 42 s 38

Fluid temperature in core inlet (TFV-CORE-IN), . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 39 . ' % .

Fluid temperature in core inlet (TFV-COKE-IN ), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 39

Fluid temperature in core, Grid Spacer 5 . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . (TFGSCD-45), from -20 to 600 s 40

Page 12: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

34. Fluid temperature in core, Grid Spacer 5 . . . . . . . . . . . . . . . . . . . . . . . . . (TFGSCWS), from -6 to 42 s 40

35. Fluid temperature in core, Grid Spacer 6 . . . . . . . . . . . . . . . . . . . . . . . . (TFG6CW5), from -20 to 600 s 41

36. Fluid temperature in core, Grid Spacer 6 . . . . . . . . . . . . . . . . . . . . . . . . . (TFG6CD45), from -6 to 42 s 41

37. Fluid temperature in core, Grid Spacer 10 . . . . . . . . . . . . . . . . . . . . . . . (TFGI OAB45), from -20 to 600 s 42

38. Fluid temperature in core, Grid Spacer 10 . . . . . . . . . . . . . . . . . . . . . . . . . (TFCp1 OAB45), from -6 to 42 s 42

39. Fluid temperature ii.1 intact loop coolant injection line.(TFU-ECC-14), from -20 to 600 s . . . . . . . . . . . . . . . . . 43

40. Fluid temperature in intact loop coolant injection line (TFU-ECC-14), from -6 to 42 s . . . . . . . . . . . . . . . . . . "43

4 1. Fluid temperature in broken loop coolant injection line (TFB-ECC42), from -20 to 600 s . . . . . . . . . . . . . . . . . 44

42. Fluid temperature in broken loop- coolant injection line (TFB-ECC-42), from -6 to 42 s . . . . . . . . . . . . . . . . . . . 44

43. Fluid temperature in steam generator, feedwater line (TFU-SGFW), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . 45

44. Fluid temperature in steam generator, feedwater line (TFU-SGFW), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . 45

45. Fluid temperature in steam generator, steam dome (TFU-SGSD), from -20 to 600 s . . . . . . . . . . . . . . . : . . . . . . . . . 46

46. Fluid temperature in steam generator, steam dome (TFU-SGSD), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . 46

47. Fluid temperature in steam gcncrator, secondary side (TFU-SG1 , TFU-SG2, and TFU-SG3), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

48. Fluid temperature in steam generator, secondary side (TFU-SGl, TFU-SG2, and TFU-SG3), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii

Page 13: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fluid temperature in steam.generator rupture system accumulator (TFU-SGS3), from -20 to 600 s . . . . . . . . . . . . . . . . . . 48

Fluid temperature in steam generator rupture system '

accumulator (TFU-SGS3), from -6 to 42 s . . . . . . . . .. . . . . . . . . . . . 48

Fluid temperature in steam generator (TFU-SGS), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Fluid temperature in steam generator (TFU-SGS), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Fluid ternperaturc in steam generator (TFU-SGS-D), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Fluid tcmpcrature in steam generator (TFU-SGS-D), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Fluid temperature in pressurizer surge line (TFU-PRIZE), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Fluid temperature in pressurizer surge line (TFU-PRIZE), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1

Fluid temperature in pressure suppression tank (TF-PSS-33 and TF-PSS-130), from -20 to 600 s . . . . . . . . . . . . . . . . 52

Fluid temperature in pressure suppression tank (TF-PSS-33 and TF-PSS-130), from -6 to 42 s . . . . . . -. . . . . . . . . . . . 52

Material temperature in intact loop (TMU-1T16), fru~n -20 to GOO s . . . . . . . . . .. . . . . , . . . . . . . . . . . . , . . . . 53

Material temperature in intact loop (TMU-lT16), - from -6 to 42 s . . . . . . . . . . . . . . . .. . . . . . . . . -. . . . . . . . . . -53

Material temperature in broken loop (TMB-20B 16 ), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . ... . : . . . . . 54

Material temperature in broken loop (TMB-20B I G), . ,

from -6 to 42 s . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . . . ; . . 54

Material temperature in vessel filler (TMV-FI-11 5A and TMV-FI-1 56A), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . 55

Page 14: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

64. Material temperature in vessel filler (TMV-FI-11 5A and TMV-FI- 1 56A), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . .. . 5 5

65. Material temperature in vessel filler (TMV-FO-156A), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

66. Material temperature in vessel filler (TMV-FO-156A), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

67. Material temperature in vessel filler (TIV-FO-35A and TIV-FO-11 SA), from -20 to 600 s . . . , . . . . . . . . . . . . . . . . . . . 57

68. Materid temperature in vessel fdler (TIV-FO-35A and TIV-FO-11 5A), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . 57

69. Material temperature in core barrel inner diameter (TMV-CI-70A), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . 58

70. Material temperature in core barrel inner diameter (TMV-CI-70A), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . 58

71. Material temperature in core barrel inner diameter (TMV-CO-70A and TMV-CO-11 SA), from -20 to 600 s . . . . . . . . . . . . . 59

72. Material temperature in core barrel inner diameter (TMV-CO-70AandTM~-~0-115A),from-6to42s . . . . . . . . . . . . . . 59

73. Material temperature in core housing filler (TMV-HF-115 W, TMV-HF-127W, and TMV-HF-138W), from -20 to 600 s . . . . . . . . . . . . 60

74. Material temperature in core housing filler (TMV-FIF-11 SW, TMV-HF-127W, and TMV-HF-138W), from -6 to 42 s . . . . . . . . . . . . . . 60

75. Material temperature in steam generator (TMU-SG1, TMU-SG2, and TMU-SG3), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . 6 1

76. Material temperature in steam generator (TMU-SGl, TMU-SG2, andTMIJ-SG3),from-6to42s . . . . . . . , . . . . . . . . . . . . . . . . . 61

77. Core hentcr tcmpcrature, Rod D-4 (TH-D4-14 &id TH-D4-29), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . 62

78. Core heater temperature, Rod D 4 (TH-D4-14 and TH-D4-29), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Page 15: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

79. Core heater temperature, Rod E 4 (TH-E4-09, TH-E4-27, and TH-E4-55), from -20 to 600 s . . . . . . . : . . . . . . . . . . 63

80. Core heater temperature, Rod E-4 (TH-E4-09, TH-E4-27, and TH-E4-55), from -6' to 42 s . . . . . . . . : . . . . . . . . . ' 63

81. Core heater temperature, Rod E-5 (TH-E5-20 and TH-E5-25), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . 64

82. Core heater temperature, Rod E-5 (TH-E5-20 and TH-E5-25), from -6 to 42 s . . . . . . . . . . ; . . . . . . . . . . . . . . . . 64

83. Core heater temperature, Rod A 4 (TH-A4-09, TIT-84-29, and TH A1 3Y), from -20 to 600 s . . . . . . . . . . , . . . . . . 65

$4. Core heater temperature, Rod A 4 (TH-A4-09, TH-A4-29,and~~-~4-39),from-6to'42s . . . . . . '. . . . . . . . . . . . . 65

85 . Core heater temperature, Rod A-5 (TH-AS-29 and TH-A5-45), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . 66

86. Core heater temperature, Rod A-5 (TH-A5-29 and TH-A5-45), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

87. Core heater temperature, Rod B-3 (TH-B3-32), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

88. Core hcater temperature, Kod B-3 (TH-B3-32), from -6 to 42 s . . . . . . . . '. . . . . . . . . . . . . . .. . . . . . . - . . . . . .67

89. Core heater tempetarufe, Rod B-5 (TH-B5-29 did TH-B5-33). from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . 68

90. Core heater temperature, Rod B-5 (TH-B5-29 and TH-B5-33), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

91. Core heater temperature, Rod B-6 (TH-B6-29), from -20 to 6003 . . . . . . . . . . . . . . . . . . . . . I , , , . . . . . . . 69

92. Core heater temperature, Rod B 4 (TH-B6-29), . . f rom-6to42s . . . . . . . , . . . . . . . . . . . . . .'. . . . . : ' . . . . . - 69

93. Core heater temperature, Rod C-2 (THC2-381, . . from -20 to 600 s . . . . . . . . . . . . . . .. . .. . . . . . . .. . . . . . . '. . .70

. .

Page 16: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

94. Core heater temperature, Rod C-2 (TH-C2-38), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 70

95. Core heater temperature, Rod C-4 (TH-C4-20, . . . . . . . . . . . . . . . . . . TH-C4-26, and TH-C4-53), from -20 to 600 s 71

96. Core heater temperature, Rod C-4 (TH-C4-20, . . . . . . . . . . . . . . . . . . . TH-C4-26, and TH-C4-53), from. -6 to 42 s 71

97. Core heater temperature, Rod C-5 (TH-C5-28), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 72

98. Core heater temperature, Rod C-5 ' ( ~ ~ 4 2 5 - 2 8 ) , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fro111 -6 to 42 s 72

99. Core heater temperature, Rod C-6 (TH-C6-53), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 73

100. Core heater temperature, Rod C-6 (THC6-53), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10 1. Core heater temperature, Rod C-7 (TH-C7-07 and TH-C7-15), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . 74

102. Core heater temperature, Rod C-7 (TH427-07 and TH-C7-15), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . 74

103. Core heater temperature, Rod D-1 (TH-D 1-2 I), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

104. Core heater temperature, Rod D-1 (TH-D 1-2 1 ), from 6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '75

105. Core heater temperature, Rod D-2 (TH-D2-14 and TH-D2-61), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

106. Core heater temperature, Rod D-2 (TH-D2-14 and TH-D2-6 I), from -G to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

107. Core heater temperature, Rod D-3 (TH-D3-29 and TH-D3-39), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . 77

108. Core heater temperature, Rod D-3 (TH-D3-29 and TH-D3-39), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Page 17: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

109. Core heater temperature, Rod D-6 (TH-D6-25), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 78

110. Core heater temperature, Rod D-6 (TH-D6-25), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

1 1 1. Core heater temperature, Rod D-7 (TH-D7-20), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 79.

1 12. Core heater temperature, Rod D-7 (TH-D7-20), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 79

1 13. Core heater temperature, Rod D-8 (TH-D8-26 ), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 80

114. Core heater temperature, Rod B-8 (TH-D8-26), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 80

1 15. Core heater temperature, Rod E-1 (TH-E 1-33), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 81

1 16. Core heater temperature, Rod E- 1 (TH-El-33), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s : 81

1 17. Core heater temperature, Rod E-2 (TH-E2-33), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1 18. Core heater, temperature, Rod E-2 (TH-E2-33), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 82

1 19. Core heater temperature, Rod E-3 (TH-E3-05, TH-E3-20, and TH-E3-24), from -20. to 600,s . . . . . . . . . . . . . . . . . . . . . 83

120. Core heater temperature, Rod E-3 (TH-E3-05,. . TH-E3-20, and TH-E3-24), from -6 to 42 s . . . . . . . . . . . . . . . . . . . 83

12 1. Core heater temperature, Rod E-6 (TH-E6-08, . TH-E6-28, and TH-E6-37), from -20 to'600 s ; ' . . . . . ' . . :' . . . . . . . ; . 84

122. Core heater temperature, Rod E-6 (TH-E6-08, TH-E6-28, and TH-E6-37), from -6 to 42 s . . . . . . . . . . . . .' . . . . . . 84

123. Core heater temperature, Kod E-7 (TH-E7-44), from -20 to 600 s . . . . . . ; . . . . . . . . . . . , . . . . . . . . . . . . . 85

. . .

xii

Page 18: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

124. Core heater temperature, Rod' E-7 (TH-E7-44), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . . . . . . 85

125. Core heater temperature, Rod E-8 (TH-E8-14 and TH-E8-29), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

, 126. Core heater temperature, Rod E-8 (TH-E8-14 and

TH-E8-29), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

1 27. Core heater temperature, Rod F-2 (TH-F2-07, TH-F2-22, and TH-F2-25), from -20. to 600 s . . . . . . . . . . . . . . . . . . 87

128. Core heater temperature, Rod F-2 (TH-F2-07, TH-F2-22, and TH-F2-25), fro111 -6 to 42 s . . . . . . . . . . . . . . . . . . . 87

129. Core heater temperature, Rod F-4 (TH-F4-14, TH-F4-29, and TH-F4-44), from -20 to 600 s . . . . . . . . . . . . . . . . . . 88

130. Core heater temperature, Rod F-4 (TH-F4-14, TH-F4-29, and TH-F4-44), from -6 to 42 s . . . . . . . . . . . . . . . . . . . 88

13 1. Core heater temperature, Rod F-5 (TH-FS-20, . . . . . . . . . . . . TH-F5-26, TH-F5-33, and TH-F5-53), from -20 to 600 s 89

132. Core heater temperature, Rod F-5 (TH-F5-20, TH-F5-26, TH-E5-33, and TH-F5-53), from -6 to 42 s . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . 89

133. Core heater temperature, Rod G 3 (TH-G3-13), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

134. Core heater tempcraturc, Rod C-3 (TH-C3-13), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

135. Core heater temperature, Rod G-4 (TH-G4-29, TH-G4-33, and TH-G4-38), from -20. to 600 s . . . . . . . . . . . . . . . . . . 9 1

136. Corc hcatcr tcmpcrature, Rod G-4 (TII-G4-29, TH-G4-33, and TH-G4-38), from -6 to 42 s . . . : . . . . . . . . . . . . . . . . 91

137. Core heater temperature, Rod G 5 (TH-G5-14 and 'l'H-G5-24), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . 92

138. Core heater temperature, Rod G 5 (TH-GS-14 and TH-GS-24), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . 92

Page 19: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

139. Core heater temperature, Rod H-5 (TH-H5-32), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

140. Core heater temperature, Rod H-5 (TH-H5-32), from - 6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

141. Pressure in intact loop (PU-13 and PU-1 SL), from -20 to 600 s . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . 94

142. Pressure in 'intact loop (PU-13 and PU-1 SL), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . 94

143, Pressure in broken loop, vessel side (PB-2 1 ~ n d PR-23), flvnl-20 to 600s , . . . . ; . . . . . . . . . . . a . . . . . . . 95

144. Presyure in broken loop, vessel side (PB-21 a

and PB-23), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

145. Pressure in broken loop, vessel side (PB-CN I), from -20 to 600 s . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

146. Pressure in broken loop, vessel side (PB-CN I), from -6 to 42 s . . . . . . . . .. . . . . . . . . . . . . . . .. . . .. . . . . . . . 96

147. Pressure in broken loop, pump side (PB-37 .

and PB42), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . 97

148. Pressure in broken loop, pump side (YH-37 and PB42), f r u ~ ~ ~ -6 Lo 42 s . . . . . . . . . . . . . . . . . . . . . . . . . .- .. 97

149. Pressure in broken loop, vessel side (PB-HN I), from-20toGOOs . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . 98

150. Pressure..in broken loop, vessel side (PB-HN'l ),. f rom-6to42s . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . - . . . . 98-

15 1. Pressure in vessel (PV-UP+l 0 and PV-LP-166), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . ' . . . . . . . . . . . . 99

1 52. Pressure in vessel (PV-UP+I 0 and PV-LP- 166), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . , . . . . . , 99

153. Pressure in intact loop accumulator (YU-ACCI), from-20to600s . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . 100

xiv

Page 20: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

154. Pressure in intact loop accumula'for (PU-ACC I), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 100

155. Pressure in broken loop accumulator (PB-ACC2), from-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

156. Pressure in broken loop accumulator (PB-ACC2), f rom-6to42s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

157. Pressure in steam generator, secondary side (PU-SGSD), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . , . . . . . 102

158. Pressure in steam .generator, secondary side (PU-SGSD), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

159. Pressure in steam generator, tube rupture simulated accumulator (PU-SGS3), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . 103

160. Pressure in steam generator, tube rupture simulated accumulator (PU-SGS3), from -6 to 42 s .. . . . . . . . . . . . . . . . . . . . . 103

16 1. Pressure in pressurizer (PU-PRIZE), from-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

162. Pressure in pressurizer (PU-PRIZE), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . .' . . ; . . . . . . 104

163. Pressure in pressure suppression tank (P-PSS), . from-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

1 6 4 . Pressure in pressure suppression taflk (P-PSS), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

165. Differential pressure in intact loop (DPU-3-7), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

1 66. Differential pressure in intact loop (DPU-3-7), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

167. Differential pressure in intact loop (DPU-6=SGIP), from-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

168. Differential pressure in. intact loop (DPU-6-SGIP),. from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Page 21: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

169. Differential pressure in intact loop (DPU-SGOP-7), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s 108

170. Differential pressure in intact loop (DPU-SGOF-7), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 108

17 1. Differential pressure in intact loop (DPU-7- lo), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 109

172. Differcntial pressure in intact loop (DPU-7-10), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s ; . . . . 109

173. Differential pressure in intact loop, low range . .

(DPU 12 lOL), from -20 to 600 s . . . . . . . . . . . . . . . ; . . . . ' . . I10

174. Differential pressure in Intact loop, low range . . . . . . . . . . . . . . . . . . . . . . (DPU-12-lOL),from-6to42s . . . . ; 110

175. Differential pressure in intact loop (DPU-12-15), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 11 1

176. Differential pressure in intact loop (DPU-12-15), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 11 1

1 77. Differential pressure in intact loop (DPU-15-3), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s 112

178. Differential pressure irl Intact loop (DPU-15-3), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f rom-6to42s 112

179. Differential pressure in intact loop, low range . . . . . . . . . . . . . . . . . . . . . . . . . . (DpU- 1 5-3L), from -20 to 600 s 1 13

180. Differential pressure in intact loop, low range . . . . . . . . . . . . . . . . . . . . . . . . . . (DPU-15-3L),from-6to42s 113

18 1, Differential pressure in DPU-PRESLL), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 114

1 82. Differential pressure in pressurizer (DPU-PRESLL), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . frnm -6 to 42 s .: 114

183. Differential pressure in intact loop (DPU-PR44, . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Irom -20 to 600s 115

Page 22: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

184. Differential pressure in intact loop (DPU-PR4), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f rom-6to42s 115

1 85. Differential pressure in broken loop (DPB-2 1 -IANN), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s 116

186. Differential pressure in broken loop (DPB-2 1 -IANN), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f rom-6to42s 116

187. Differential pressure in broken loop (DPB-23-CNl), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s 117

188. Dilferential pressure in broken loop (DPB-23CN 1 ), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-6 t o 4 2 s 117

189. Differential pressure in broken loop (DPB-CN1-24), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s 118

190. Differential pressure in broken loop (DPB-CN 1-24), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f rom-6to42s ,118

1 9 1. Differential pressure in broken loop (DPB-30-43), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s 119

1 92. Differential pressure in broken loop (DPB-3043), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-6 t o 4 2 s : 119

193. Differential pressure in broken loop (DPB-32U-36L), . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s 120

194. Differential pressure in broken loop (DPB-32U-36L), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f r o m - 6 t o 4 2 s . . 120

. . 195. Differential pressure in broken loop (DPB-36L-37),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s , 121

196. Differential pressure in broken loop (DPB-36L-37), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f rom-6to42s 121

197. Differential pressure in broken loop (BPB-38-46), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s 122

198. Differential pressure in broken loop (DPB-38-40), . . . . . . . . . . . . . . . . . . . . . . from -6 to 42,s ; . . . . . . . . . . . 122

xvii

Page 23: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

199. Differential pressure in broken loop (DPB-4042), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f rom-20to600s 123

200. Differential pressure in broken loop (DPB-4042), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f rom-6 to42s : . 123

201. Differential pressure in broken loop (DPB-HN143), from -20 to 600 s . . . . . . . . . . . . . . . , . . . . . . . . . 124

202. Differential pressure in broken loop (DPB-HN143), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 124

203. Differential pressure in vessel (DPV-UP-IANN), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 125

204. Differential pressure in vessel (DPV-UP-IANN), . . . . : . . . . . . . . . . . . . . . . . . . . . . f rom-6 to42s . . . . . . . : .- ,125

205. Differential pressure in vessel (DPV-0-9GQ), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 126

206. Differential pressure in vessel (DPV-0-9GQ), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s ,126

207. ~ifferential pressure in vessel (DPV-9-26QQ1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20luGOOs ~. 127

208. Differential pressure in vessel (DPV-9-26QQ), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 127

209. Differential pressure in vessel (DPV-9-1-66QQ), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 128

2 10. Differential pressure in vessel (DPV-9-166QQ), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 128

2 1 1. Differential pressure in vessel (DPV-26-55QM), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -20 to 600 s 129

21 2. Differential pressure in vessel (DPV-26-55QM), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-6 t o 4 2 s . . 129

2 13. Differential pressure in vessel (DPV'55-11 UMM), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s 130

2 1 4. Differential pressure in vessel (DPV-5 5-1 1 OMM), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 130

xviii

Page 24: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

2 15. Differential pressure in vessel (DPV-110-156MQ), from-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

216. Differential pressure invessel (DPV-110-lS6MQ), f rom-6to42s . . .'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

2 17. Differential pressure in vessel (DPV-156-173QQ), from-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

21 8. Differential pressure in vessel (DPV-156-173QQ), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

2 19. Differential pressure in vessel (DPV-166Q+1 O), '

from -20 to 600 s . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 133

220. Differential pressure in vessel (DPV-166Q+10), f rom-6to42s . . . . . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . . 133

221. Differential pressure in intact loop accumulator (DPU-ACC.1-TB), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . 134

222. Differential pressure in intact loop accumulator (DPU-ACCI-TB), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . 134

223. Differcntial prcssurc in brokcn loop accumulator (DPBACC2-TB), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . 13 5

224. Differential pressure in broken loop accumulator (DPB-ACC2-TB), from -6 to 42 s . . . . . . . . . . . . . . ' . . . . . . . . . . 135

225. Differential pressure in steam generator secondary (DPU-SGSEC), from -20 to 600 s . . . . . . . . . .. . . . . . . . . .- . . . . . 136

. 226. Differential pressure in steam generator secondary (DPU-SGSEC), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . 136

227. Differential pressure across steam generator outlet orifice (DPU-SGDISC), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . 137

228. Differential pressure across steam generator outlet orifice (DPU-SGDISC), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . 137

229. Differential pressure between simulated rupture injection . line and Spool 6 (DPU-SGSd), from -20 to 600 s . . . . . . . . . . . . . . . . 138

Page 25: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

230. Differential pressure between simulated rupture injection line and Spool 6 (DPU-SGS-6), from -6 to 42 s . . . . . . . . . . . : . . . . . 138

23 1. Differential pressure in intact loop tube'rupture simulated accumulator (DPU-SGS3-TB), from -20 to 600 ss . . . . . . . . . . . . . . . . 139

232. Differential pressure in intact loop tube rupture simulated .

accumulator (DPU-SGS3-TB), from -6 to 42 s . . . . . . . . . . . . . . . . . . 139

233. Differential pressure in pressure suppression tank (DP-PSS-TB), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . 140

234. Differeqtial pressure in pressure suppression tank (DP-PSS-TB), TlulilG to 42 3 . . . , . . . . ; . , . . . . . . . . . . . . . . 140

235. Volumetric flow in intact loop (FTU-1 and FTU-9), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 141

236. Volumetric flow in intact loop (FTU-1 and FTU-9), f r o m - 6 t o 4 2 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

237. Volumetric flow in intact loop (FTU-13 and FTU-15), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

238. Volumetric flow in intact loop (FTU-13 and FTU-15), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

239. Volumetric flow in intact loop (FTB-21), from. 20 to 600 B , . . . . . . . . . . . . . , , . . . . . . . . .. . . . , , . . 143

240. Volumetric flow in intact loop. (FTB-21);. :

from.-6 t o 4 2 s .. .. ... . .. . . . . , . . . . . . . . . . . . . . . . . .. . .. . . . 1.43

24 1. Volumetric flow in broken loop (FTB-30 and . FTB-37), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . , . . . 144

242. Volumetric flow in broken loop (FTB-30 and ._ . .

FTB-37), huln -6 lo 42 s . . . . . . . -. . . . . . . . . . . . . . .. . . . . . . 144'

243. Volumctric flow in core entrance (FTV-CORE-IN), . from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

244. Volumetric flow in core entrance (FTV-CORE-IN), - ? from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Page 26: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

245. Volumetric flow in intact loop high pressure . . . . . . . . . . . . . . . . . . . injection line (FTU-HPIS), from -20.to 600 s 146

246. Volumetric flow in intact loop high pressure injection line (FTU-HPIS), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . 146

247. Volumetric flow in broken loop high pressure . . . . . . . . . . . . . . . . . . . injection line (FTB-HPIS), from -20 to 600 s 147

'b.

248. Volumetric flow in broken loop high pressure . . . . . . . . . . . . . . . . . . . . injection line (FTB-HPIS), from -6 to 42 s 147

249. Volumetric flow in intact loop low pressure . . . . . . . . . . . . . . . . . . injection line (FTU-LPIS), from -20 to 600 s 148

250. Volumetric flow in intact loop low pressure . . . . . . . . . . . . . . . . . . . . . injection line (FTU-LPIS), from -6 to 42 s 148

25 1. Volumetric flow in broken loop low pressure . . . . . . . . . . . . . . . . . . injection line (FTB-LPIS), from -20 to 600 s 149

252. Volumetric flow in broken loop low pressurc . . . . . . . . . . . . . . . . . . . . injection line (FTB-LPIS), from -6 to 42 s 149

253. Volumetric flow in intact loop accumulator discharge . . . . . . . . . . . . . . . . . . . . . . . line (FTU-ACCl), from -20 to 600 s 150

254. Volumetric flow in intact loop accumulator . . . . . . . . . . . . . . . . . . . . discharge line (FTU-ACCl), from -6 to 42 s 150

255. Volunietric flow in broken loop accumulator discharge line (FTBACC2), from -20 to 600 s . . . . . . . . . . . . . . . . . . . 15 1

256. Volumetric flow in broken loop accumulator ,

. . . . . . . . . . . . . . . . . . . discharge line (FTB-ACC2), from -6 to 42 s 1 5 1

257. Volumetric flow in intact loop steam generator tube rupture simulated accumulatar (FTU-SGS), f ~ o m -20 to 600 s . . . . . . . . . . . . . . 152

258. Volumetric flow in intact loop steam generator tube rupture . . . . . . . . . . . . . . . simulated accumulator (FTU-SGS), from -6 to 42 s 152

259. Volumetric flow from pressurizer (FTU-PRIZE), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s 153

xxi

Page 27: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

260. Volumetric flow from pressurizer (FTU-PRIZE), from -6 to 42 s . . . . . . . . . . . . . . .' . . . . . . . . . . . . . . . . . . 153

26 1. Fluid velocity in vessel (FTV-40A and FTV+OM), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .' 154

262. Fluid velocity in vessel (FTV-40A and FTV40M), . .

f rom-6to42s . . . . . . . . . . . . . . ' . . . . . . . . . . ..:. . . . . . . . 154

263. Momentum flux in intact loop (FDU-1 ), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' 155

264. Momentum flux in intact loop (FDU-I), .

f r o m - C i t o 4 2 s . . . . . . . . . : . . . . . . . . . . . . . . . . . i . . . . . . 155

265. Momentum flux in intact loop (FDU-5), . .

from -20 to 600 s . . . . . . . . . . . . . . . . . . . '. . . . . . . . .. . . . 15'6

266. Momentum flux in intact loop (FDU-5), f rom-6to42s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' . . . 156

267. Momentum flux in intact loop (FDU-lo), from-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . :. . . . . 157

268. Momentum.flux in intact loop (FDU-lo), f rom-6 to42s . . . . . . . . . . . . . . . . . . . . . '. . . . . . . .- . . . . . 157

269. Momentum flux in intact loop (FDU-13), from-20to600s . . . . . . . . . . . . . . . . . . ; :. . . . . . . . . . . . 158

270; Momentum flux in.intact loop (FDU-13), . . f iam-6.to42s . . . . . . . . . .. .. . . :. . . . . . .' . . . . - . . . . . . . ;': 158

27 1. Momentum flux in broken loop (FDB-2 I), from -20 to 600 s . . . . . . . . : . .. . . . ., . . . ' . . . . . . '. . . .' . . . . ' 159

- . .

272. Momentum flux in broken loop (FUB-'2 1 j, from-6 t 6 4 2 s . . . . . . .' . . . . . . .' . . . . . . . ' . . : . . . ' . . . . .. .'.; 159

273. Momentum flux in broken loop (FDB-23), from-20to600s . . . . . . . '. . . . . . . . . . . . : . . . . . . . . .. . . : 160

274. Momentum flux. in broken loop (FDB-23), , . . . , .

. . . from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . .". . . . . ; . . .' 160

xxii

Page 28: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

275. Momentum flux in broken loop (FDB30), from -20'to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1

276. Momentum flux in broken loop (FDB30), from -6 to 4 2 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

277. Momentum flux in broken loop (FDB-37), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

278. Momentum flux in broken loop (FDB-37), from -6 to 4 2 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

279. Momentum flux in broken loop (FDB42), . . from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

280. Momentum flux in broken loop (FDB-42), from -6 to 4 2 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

281. Momentum flux in core entrance (FDV-CORE-IN), . .

from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '164

282. Momentum flux in core entrance (FDV-CORE-IN), f r o m - 6 t o 4 2 s . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

. . . 283. Denisty in intact loop (GU-IT and GU-1 B), . from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 1.65

284. Density in intact loop (GU- 1T and GU-1 B), from -6 to 4 2 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

285. Density in intact loop (GU-1 C), from - 2 0 t 0 6 0 0 ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

286. Density in intact loop (GU-IC), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

287. Density in intact loop (GU-5VR and GU-IOVR), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

288. Dcnsity in intact loop (CU-SVR and GU-I OVR), from -6 t o 4 2 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

289. Density in intact loop (GU-13VR), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Page 29: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

290. Density in intact loop (GU-13VR), from -6 to 42 s . . . . . . . ' . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

291. Density inintact loop (GU-1ST and GU-ISB), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

292. Density in intact loop (GU-1 ST and GU-1 SB), from -6 to 42 s . . , . . . . . . . . ., . . . . . . . . . . . . . . . . . . . . . . 169

293. Density in intact loop (GU- 1 SC), from-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

294. Density in intact loop (GU-lSC), f r ~ n i -6 to 42 R . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . 170

295. Density in broken loop (GB-2 1T and GB-21B),from-20to600s . . . . . . . . . . . . . . . . . . . . . . . . .. . . 171

296. Density in broken loop (GB-21T and, GB-21B),from-6to42s . . . . . . . . . . . . . . . . . . '. . . . . . . . . . 171

297. Density in broken loop (GB-2 lC), from-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

298. Density in broken loop (GB-21C), from -6 to 42 s . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . 172

299. Density in broken loop (GB30T and GB30B), from-20to6UOs . . . ,. . . . . . . . . . . . . . . . :. . . . . . . . . . . . 173

300. Density in broken loop (GB30T and GB30B), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 173

301. Density in broken loop (GB-30C), from-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 174

302. Density in broken loop (GB30C), from -6 to 42 s . . . , . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 174

' 303. Density in broken loop (GB-37HZ), from-20to600s . . . . . . . . . . . . . . . . . . . . ,. . . . . . . . . . . . 175

304, Density in broken loop (GB-37HZ), from -6 to 42 s . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Page 30: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

305. Density in broken loop (GB-42VR), f rom-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

306. Density in broken loop (GB-42VR), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

307. Density in vessel (GV-COR-ISOHZ), f rom-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

308. Density in vessel (GV-COR-1 SOHZ), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 177

309. Density in xessel (GVLP-165HZ and . . . . . . . . . . . . . . . . . . . . . . . . GVLP-172HZ), from -20 to 600 s 178

3 10. Density in vessel (GVLP-165HZ and GVLP-172HZ), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . 178

3 1 1. Mass flow in intact loop (FDU-1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . GU-lC),from-20 to 600s '179

3 12. ass flow in intact ~OO<(FDU-I, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GU-lC),from-6to42s 179

3 13. Mass flow in intact loop (FTU-1, GU-1 C), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

314. Mass flow in intact loop (FTU-1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GU-IC), from -6 to 42 s 180

3 15. Mass flow in in tact loop (FDU-5, . . . . . . . . . . . . . . . . . . . . . . . . . . . CU-SVR), from -20 to 600 E 18 1

3 16. Mass flow in intact loop (FDU-5, GU-SVR), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

3 17. Mas flow in intact loop (FTU-9, GU- 1 OVR), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . 182

3 18. Mass flow in intact loop (FIT-9, . . . . . . . . . . . . . . . . . . . . . . . . . . . GU-lOVR), from -6 to 42 s 182

3 19. Mass flow in intact loop (FDU-10, . . . . . . . . . . . . . . . . . . . . . . . . . . GU-1OVR),from-20to600s 183

xxv

Page 31: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

320; Mass flow in intact loop. (FDU-10, . . . . . . . . . . . . . . . . . . . . . . . . . . . GU-1 OVR), from -6 to 42 s 1 83

321. Mass flow in intact loop (FDU-13; . . . . . . . . . . . . . . . . . . . . . . . . . . GU-13VR), from -20 to 600 s 184

322. Mass flow in intact loop (FDU-13, . . . . . . . . . . . . . . . . . . . . . . . . . . GU-13VR),from-6to42s ; 184 .

323. M&s flow in intact loop (FTU-13, . . . . . . . . . . . . . . . . . . . . . . . . . GU-13VR), from -20 to 600 s 185

324. Mass flow in intact loop (FTU-13, . . . . . . . . . . . . . . . . . . . . . . . . . . . GU-13VR'),from-6 t o 4 2 s 185

325. Mass flow in intact loop (FTU-15, . . . . . . . . . . . . . . . . . . . . . . . . . . . . GU-1 SC), from -20 to 600 s 186

326. Mass flow in intact loop (FTU-15, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GU-1 SC), from -6 to 42 s 186

327. Mass flow in. broken loop (FDB-21, . . . . . . . . . . . . . . . . . . . . . . . . . . . . GB-21.C), from -20 to 600 s 187'

328. Mass flow in broken loop (FDB-21, . . . . . . . . . . . . . . . . . . . . . . . . . . . . GB-21'C),from-6to42s 187

329. Mass flow in broken loop (FTB-21, . . . . . . . . . . . . . . . . . . . . . . . . . . . . GB-2 1 c), from -20 to 600 s 188.

330. M.ass..flow in broken loop (FTB-21, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GB-2.lC), fromid to 42 s 188

33 1. Mass flow in broken loop (FDB-30, . . . . . . . . . . . . . . . . . . . . . . . . . . . GB-30C), froin -20 to 600 s 189

332. Mass flow in broken loop (FUB-3Uy . . . . . . . . . . . . . . . . . . . . . . . . . . . . C;B-30Cjy from -6 to 42 s 189

333. Mass flow in broken loop (FTB-30, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GB-30C), from -20 to 600 s 190

334. Mass flow in broken loop (FTB3.0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GB-3OC),from-6to42s 190

xxvi

Page 32: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

335. Mass flow in broken loop (FDB-37, GB-37HZ), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1

336. Mass flow in broken loop (FDB-37, GB-37HZ), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1

337. Mass flow in broken loop (FTB-37, GB-37HZ), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . ; . . 192

338. Mass flow in broken loop (FTB-37, GB-3 7HZ), from -6 to 42 s . . . . . . . ' . . . . . . . . . . . . . . . . . . . . . 192

339. Mass flow in vessel (FDV-CORE-IN, GV-COR-1 SOHZ), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . 1 93

. . 340. ass flow in vessel (FDV-CORE-IN,

GV-COR-lSOHZ),from-6 t o 4 2 s . . . . . . . . . . . . . . . . . . . . . . . . 193

34 1. Mass flow in vessel (FTV-CORE-IN, GV-COR-1 SOHZ), from -20 to 60'0 s . . . . . . . . . . . . . . . . . . . . . . . 194

342. Mass flow in vessel (FTV-CORE-IN, GV-COR-1 SOHZ), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . 194

343. Core heater rod total power (PWRCOR T-1 and PWRCOR T-2), from -20 to 600 s . . . . . . . . . . . . . . . .. . . . . . . 195

344. Core heater rod total power (PWRCOR T-1 and PWRCOR T-2), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . -. . . 195

345. Core heater voltage (VOLTCOR-T), from -20 to 600 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

346. Core heater voltage (VOLTCOR-T), from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 196

347. Core heater total current (AMPCOR-T), f rom-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 197

348. Core heater total current (AMPCOR-T), p

from -6 to 42 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

349. Primary pump current (PUMPU-CUR), f rom-20to600s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Page 33: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

350. Primary pump current (PWU-CUR), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 198

35 1. Primary pump speed (PWPU-RPM), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from-20to600s 199

3 52. Primary pump speed (PUMPU-RPM), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from -6 to 42 s 199

B-1 . Geometry used for processing of density data . . . . .

. . . . . . . . . . . . . . . . . . . obtained from two-beam gamma densitometers : . . 21 5

C-1 . Fluid temperature in :broken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . loop ('I'FB-23) : 225

C-2. Fluid ternperaturc in downcomer annulus (TFV-ANN-3 5A) 225 < . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C-3. Fluid temperature in lower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . plenum (TFV-LP-7) 226

C-4. Fluid temperature in pressurizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . surge line (TFU-PRIZE) ,226

C-5. Material te~nperature in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . intact loop (TMU-1 T 16) 227

C-6. Material temperature in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vepel Tiler (TMV-CI-70A) 227

C-7. Core heater temperature, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rod E-4 (TH-E4-09) 228

C-8. Core heater temperature, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Rod E-4 (TH-E4-27) 228

C-9. Core hm ter temperature, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rod E-4(TH-E4-55) 229

GI 0. Pressure in intact loop, . . _ .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spool 13 (PU-13) 229

C-1 1. Pressure in.broken loop, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spool23 (PB-23) : 230

xxviii

Page 34: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

C-12. Differential pressure in intact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . loop (DPU-7-10) 230

(2-13. Differential pressure in intact loop (DPU- 1 2- 1 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1

C-14. Volu'metric flow in intact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . loop (FTU-1) 23 1

C-15. Volumetric flow in intact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . loop'(FTU- 1 5). '23 2

C-16. Volumetric flow in intact loop hidl pressure injection line

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (FTU-HPIS) 232

C-17. Volumetric flow in intact loop low pressure injection line (FTU-LPIS) . . . . . . . . . . . . . . . . . . . . . 233

. . C-18. Volumetric flow in intact loop,

. . . . . . . . . . . . . . . . . . . . . accumulator discharge line (FTU-ACC 1 ) 233

C-19. Fluid velocity in vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (FTV-40A) 234

C-20. Fluid velocity in vessel (FTV-40M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

C-2 1. D%cnsity in intact loop (GU-IT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

C-22. Density in intact loop (GU-1B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ., . 235

C-23. Density in intact loop (GU-1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

C-24. Density in intact loop (GU-1 OVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

C-25. Density in intact loop (GU-1ST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

C-26. Density in intact loop (GUzlSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

xxix

Page 35: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

.C-27. Density in'intact.'.loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (GU-15C) : 238

C-28. Density in vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (GV-COR-1 SOHZ) 238

C-29. Density in vessel (GVLP-165MZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,239

C-30. Density in vessel (GVLP-172HZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

C-3 1. Mass flow in intact loop (FDU-1,CU-1C) . . . . . . . . . . . . . .

C-32. Mass flow in intact loop (FTU- 1, GU-1 C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

(2-33. Mass flow in intact loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (FDU-5, GU-SVR) 241

' C-34. Mass flowin intact loop (FTU- 13, GU- 1 3VR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1

C-35. Mass flow in intact loop (FTU-15, GU-1 SC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

C-36. Mass flow in broken loop (FDB-21, GB-2 1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

c-"37. Mass flow m broken loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (FTB-2.1, 'GB-2 1 C) 243

C-38. Mass flow in vessel (FTV-CORE-1N;GV-COR-150HZ) . . . . . . . . . . . . . . . . . . . . . . . . 243

I. Conditions at Blowdown Initiation . . . . . . . . . . . . . . . . . . . . . . . 6 '

11. Primary Coolant Temperature Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prior to Rupture 7

>. . , . .

. . 111. Water Chemistry Prior to Blowdowri . . . . . . . . . . . . . . . . . . . ;. . . . 8

XXX

Page 36: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

. . . . . . . . . . . . . . . . . . . . . IV. Sequence of Events During Test S-28-3 9

. . . . . . . . . . . . . . . V. Data Presentation for Semiscale Mod-1 Test S-28-3 17

B-I. Constants for Pressure Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . Corrections (Test S-28-3) 208

B-11. Constants for Differential Pressure . . . . . . . . . . . . . . . . . . . . . Measurement Corrections (Test S-28-3) 2 10

B-111; Constants for Momentum Flux . . . . . . . . . . . . . . . . . . . . . I Measurement Corrections (Test S-28-3) 21 2

B-IV. Constants for Density Measurement Conversions . . . . . . . . . . . . . . . . . . . . . . . . to Engineering Units (Test S-28-3) 2 14

. . . . . . . . . . . . . . . . . . . . . . C-I. Random Error Variance (Test S-28-3) 2 1 9

C-11. General Measurement Engineering Error . -. . . . . . . . . . . . . . " , . . . . . . . . . Sources and Error Values (Test S-28-3) : 245

C-111. Time Periods when Flow Regime Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . wereApplied(Test S-28-3) 250

xxxi

Page 37: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

EXPERIMENT DATA REPORT FOR SEMISCALE MOD-1

TEST S-28-3

(STEAM GENERATOR TUBE RUPTURE TEST)

I. INTRODUCTION

The Semiscale Mod-1 experiments represent the current phase of the Semiscale Program conducted by EG&G Idaho, Inc. for the United States Government. The program, which is sponsored by the Nuclear Regulatory commission through the Energy Research and Development Administration, is part of the overall program designed to investigate the response of a .pressurized water reactor (PWR) system to a hypothesized loss-of-coolant accident (LOCA). The underlying objectives of the Semiscale Program are to quantify the physical processes controlling system behavior during a LOCA and to provide an experimental data base for assessing reactor safety evaluation models. The Semiscale Mod-1 Program has the further objective of providing support to other experimental programs in the form of instrumentation assessment, optimjzation of test series, selection of test parameters, and evaluation of test results.

Test S-28-3 was conducted June 30, 1977 in the Semiscale Mod-1 system as part of the steam generator tube rupture test series (Test Series 28). This series was designed to obtain thermal-hydraulic response data from blowdown, refill, and reflood transients in a simulated nuclear reactor with a heated core to study system response during a LOCA with steam generator tube ruptures. The specific objective of Test S-28-3 was to determine the lower limit on the range of steam generator tube ruptures over which high peak cladding temperatures can occur. The intact loop hot leg injection flow rate was set to simulate the rupture of 12 steam generator tubes. Hardware configuration and test parameters were selected to yield a system response that simulates the response of a PWR to a hypothesized LOCA wilh subsequent refill and reflood.

The purpose of this report is to present the test data in an uninterpreted but readily usable form for use by the nuclear community in advance of detailed analysis and interpretation. Section 11 briefly describes the system configuration, procedures, initial test conditions, and events that are applicable to Test S-28-3; Section I11 presents the data graphs and provides comments and supporting information necessary for interpretation of the data. A description of the overall Semiscale Program and test series, a more detailed description of the Semiscale Mod-1 system, and a description of the measurement and data processing techniques and uncertainties can be found in Reference 1.

Page 38: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

11. SYSTEM, PROCEDURES, CONDITIONS, AND EVENTS FOR TEST S-28-3

The following system configuration, procedures, initial test conditions, and events are specific to Test S-28-3 as indicated.

1. SYSTEM CONFIGURATION AND TEST PROCEDURES

The Semiscale Mod-1 system used for this test consisted of a pressure vessel with internals, including a 40-rod core wit11 3G electrically hcoted rods; an intact loop with steam generator, pump, and, pressurizer; a broken loop with simulated steam generator, simulated pump, and two rupture assemblies; coolant injection accumulators for Uie cold legs of the intact and broken loops, and a heated accumulator for the intact loop hot leg; high and low pressure injection pumps for each of thc system loops; and a pressure suppression systcm with a suppression tank, header, and heated steam supply system. For Test S-28-3, the volume of the lower plenum was reduced to 0.014 980 m3 by the addition of a metal fdler piece. Semiscale Mod-1 experirnerltal system configuration information is described further in Reference 1. Figures 1 and 2 show the system configuration for Test S-28-3.

For Test S-28-3,33 rods of the 40-rod electrically heated core were operated at a peak power density of approximately 35.05 kW/m, three rods (Rods D4 , E4, and E-5) were operated at a peak power density of 36.88 kW/ni to yield ii slightly peakcd power profile, and four rods (Rods C-3, U-5, F-3, and H-6) were unpowered to sinlulatc thc cffcct of control rod guide tubes. The resulting total core power was approximately 1.40 MW.

In preparation for the test, the accumulators for the intact and broken loop cold legs were filled with treated demineralized water, drained to the specified initial levels, a d

pressurized with nitrogen to 4223 kPa. The steam generator rupture system accumulator for the intact loop hot leg was filled with treated demineralized water, drained to the specified initial level, heated to 549 K, and pressurized to '1570 kPa. The systern was riled with treated demineralized water and vented a l stl-attgic points tu cnsuro a liquid full systcm. Prior to warmup the system was pressurized to check for leakage, system instrumentation was checked, and transducer readings were initialized. warmup to initial test conditions was accomplished with the heaters in the vessel core. Heatup of the broken loop piping was accnmplinhcd with bypass lines which served tn allow circulation through the brvkerl loop. During warmup, the purification and sampling systems were valved into the primary system to maintain water chemistry requirements and to provide a water sample at system conditions for subsequent analysis. At 55.6-K-temperature intervals during war~nup, detector readings were sampled to allow the integrity of the measurement instrumentation and the operability of the data acquisition system to be checked.

Prior to the initial core power level being established, the pressure suppression system was pressurized to 227 kPa with saturated steam from the steam supply system. After the core power was increased to 1.40 MW, initial test conditions were held for 360 s to establish

Page 39: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Simulated steam generator:

-", Steam

generator

Pressurizer

Fig. 1 Semiscale Mod-1 system f o r cold leg break configuration -- isometric.

.- .

equilibrium in the system. At the end of this period all auxiliary systems including. the bypass .lines were isolated tq prevent blowdown through those systems.

.

The system was successfully subjected to a simulated doubleended cold leg break through two rupture assemblies and two b1.owdown nozzles, each having a break area of 0.000 243 m2. Pressure to operate the rupture assemblies and initiate blowdown was taken .

t

from an acculnulator system filled with watcr and pressurized to 15 600 kPa with gaseous nitrogen. Immediately (within 0.02 s) after initiation of blowdown, the lines to the accumulator were again isolated. The effluent from the primary system was eje~led h t o the pressure suppression system which was vented to maintain a constant pressure of 227 kPa. At blowdown, power to the primary coolant circulation pump was reduced and the pump was allowed to coast down to a speed of 1470 rpm which was maintained for the duration of the test. During the blowdown transient, power to the electrically heated core was automatically controlled to simulate the thermal response of nuclear heated fuel rods.

Page 40: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Steam generator

p r o k e n loop injection line

Expansion joint

Steam generator s

'. ----------1 ---- - - J

INEL-B-3073

F i g . 2 Semiscale Mod-1 system for cold leg break configuration -- .

schematic.

Page 41: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

For Test S-28-3, the coolant injection systems were arranged to discharge into both system loops at the cold leg injection points (Spool 14 and Spool 42). The high pressure coolant injection pumps were started immediately after initiation of blowdown (0 s) and continued to the end of the test (640 s). Low pressure coolant injection was initiated 25 s after blowdown at a system pressure of 1103 kPa and continued until test termi- nation (640 s). Coolant injection from the intact loop accumulator (CI-T-1) started 16.7 s after blowdown, and nitrogen discharge began 52 s after rupture and was terminated 84 s after blowdown. The broken loop accumulator (CI-T-2) began injection 3 s after blowdown, nitrogen discharge began 27 s after .rupture and was terminated 65 s after blowdoWn. The steam generator rupture system accumulator (CI-T-3) began injection at 39 s at a system pressure of 480 kPa and was terminated 640 s after blowdown.

2. INITIAL TEST CONDITIONS AND SEQUENCE OF EVENTS

Conditions in the Semiscale Mod-1 system at initiation of blowdown are given in Tables I and 11, the primary system water chemistry prior to blowdown is given in Table 111; and the sequence. of events relative to rupture is given in Table IV.

Page 42: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE I .

CONDITIONS AT BLOWDOWN INITIATION

Test S-28-3

[a I Measured - Specified

core power (MW) 1.40 1.43 + - 0.01

In tac t loop cold leg f lu id temperature (K)

Hot leg t o cold leg temperature d i f fe rent ia l ( K ) 37.5 36.7 f .0,5

Pressurizer pressure (kPa) 15 621 15 603 f 172

Pressurizer 1 i'qui d mass (kg) [ b l 9.3 9.07

Steam generator feedwater temperature ( K ) 505.4 + 6

497 - 1 7

Steam generator 1 iquid level (from. bottom of tube sheet) (cm) 267.3 294.6

Broken 1 oop f 1 ui d temperature (pump-sidc) ( K ) 590.6. 589 - 594

Broken loop f lu id temperature (vessel-side) ( K )

Not 553.9 Specified

Intact loop cold leg flow ( ~ 1 s ) 9.07 LC]

Pressure suppression tank water level (cm)

Pressure suppression tank pressure (kPa)

Pressure suppression tank water terrrperature ( K )

[a] Measured i n i t i a l conditions a re taken from dig i ta l scan read jus t pr ior to blowdown. Those measured conditions whSch did not w e t t he s p ~ c i f i e d i n i t i a l conditions were considered acceptable fo r analysis purposes within the t e s t objectives.

[b] Pressurizer 1 iquid mass including surge 1 ine.

[c] Flow i s not specified, since i t must be adjusted to achieve the required different ial temperature across the .core. , - . . . -

Page 43: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE I 1

PRIMARY COOLANT TEMPERATURE DISTRIBUTION PRIOR TO RUPTURE[^]

Detec tor Temperature (K)

Vessel 1 ower plenum (upper p o r t i o n above f i l l e r b lock) TFV-LP-7 555.6

I n t a c t loop ho t l e g (near vessel ) RBU-2 I 593

I n t a c t loop c o l d l e g (near pump i n l e t ) TFU- 10 554.7

I n t a c t loop c o l d l e g (near vessel ) RBU- 1 4A 555.4

Broken loop c o l d l e g (near nozz.le)! TFB-23 554

Broken l o o p ' h o t l e g (near vessel ) TFB-30 590.6 ..... .. .

>.

Broken loop c o l d l e g (near nozzle) TFB-42 588.9 ..

[a] Data taken f rom f i n a l d i g i t a l scan 0.5 s before blowdown.

Page 44: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE I11

WATER CHEMISTRY PRIOR TO BLOW DOWN[^] -

Tes t ' S-28-3

PH 10.46.

Conductivity 'pmho/cm)

L i t h i u m me)

Chlorides (ppm)

Fl uori des (pg/me) [ b l

Total gas ( c c l a ) 169.5

Suspended sol ids (ppm) 1.90

[a ] Water sample taken a t a system pressure of approximately 15 603 kPa and a system temperature of dppr-uiirnalely 556 K (cold I q ) .

[b] Present ana ly t i ca l methods prevent accurate determination of f luor ides a t concentrations of l e s s than 0.4 ppm.

Page 45: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE I V

SEQUENCE OF EVENTS DURING TEST S-28-3[a1

Time R e l a t i v e Event t o Rupture ( s )

Core power 1 eve1 es tab l ished -1 028

Bypass l i n e s valved o u t o f system -2.5

Blowdown i n i t i a t e d

Pump power reduced 0

High pressure i n j e c t i o n system pumps

s t a r t e d [ b l

ECC accumulators valved i n 0

Steam generator feedwater and discharge valves c losed

Core power decay t r a n s i e n t s t a r t e d 2.87

Low pressure i n j e c t i o n systern pumps

s t a r t e d [b 1 31.6

Cc I Core power t r i p p e d o f f 647

[a] A t ime-con t ro l l ed sequencer was used t o c o n t r o l c r i t ' i c a l events du r ing the t e s t .

[b] I n j e c t i o n f rom ECC accumulators and h igh and low pressure i n j e c t i o n system pumps does n o t s t a r t u n t i l system pressure drops below accumulator o r pump pressure, respec t i ve l y .

[c] Core power t r i p p e d manually a t t e rm ina t i on o f t e s t .

Page 46: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

111. DATA PRESENTATION

The data from Semiscale Mod-1 Test S-28-3 are presented with brief comment. Processing analysis has been performed only to the extent necessary to obtain appropriate engineering units and to ensure that the data are reasonable and consistent. In all cases, in converting transducer output to engineering units, a homogeneous fluid was assumed. Further interpretation and analysis should consider that sudden decompression processcs such as those occurring during blowdown may have subjected the measurement devices to nonhomogeneous fluid conditions.

The performance of the system during Test S-28-3 was monitored by 220 detectors. The data obtained were recorded on both digital and analog data acquisition systems. The analog system was used to provide better resolution capabilily (needed as input Po various data analysis codes). The long-term data (-32 to 640 s) presented in this report were recorded at an effective sample rate of 1.369 points per second. Long term plots are given for -20 to 600 s rather than for the full 640-s recording time to provide better resolution. Short-term data and plots (-6 to 42 s) were recorded at an effeclive sa~illlple~ratc of 19.1 7 points per second.

The data are presented in some instances in the form of composite Wphs to facililale comparison of the values of given variables at several locations. The scales selected for the graphs do not reflect the obtainable resolution of the data. (The data processing techniques are described turther in Reference 1 a d Appcndix A).

Figures 3 through 8 and Table V provide supporting information for interpretation UP the data graphs shown in Figures Y through 352 and pruvidt: ~eldlire locations of all detectors used during Test S-28-3. Table V groups the measurements according to measurement type; identifies the specific measuremefit locativri a d iailge of thc detector and actual recording range of the data acquisition system; provides brief comrncnts regarding the data; and references the measurements and commejlts to the corresponding figure. Figures 9 through 352 present all the blowdown and reflood data obtained. Time zero on the graphs is the time 01 ~upture initiation. Appendix A provides information explaining the data acquisition system capabilities. Appendix B provides information explaining posttest data processing for data conversivli into engineering units and data adjustments. Presented in Appendix C is an analysis of selected data which provide a guide to the iincertainty associated with data measurements in the Semiscale Mod-1 system.

Page 47: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TMU-SG1 TMU-SG2 TMU-S03 DW-SO-DISC DPU-SGOP-7 TFU-SGSD

Simulated steam generator

TMU-1T 16

Fig. 3 Semiscale Mod-1 system and instrumentation for cold leg break configuration -- isometric.

Page 48: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

PU-SGSD DPU-SG-SEC DPU-PR-4 TFU-SG1 TFU-SG2 TFU-SG3

TMU-SG2 Broken loop injection line TMU-SG3 Steam generator

DPU-SG-DISC

Y

DPU-15-3L Suppression tank

GI Accu~tlulrtu~ Intact loop CI-T-3

INEL-54310

Fig. 4 Semiscale Mod-1 system and instrumentation for cold leg break configuration -- schematic.

Page 49: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Elevation 141.9

125

100.

75

50

25

O

-25

, a0

-75

-100

-125

-150

-175

-200

-225

-250

-275

-300

-325

-350

-375

-400

-425

-450

-475 -487.52

-

-

.-

-

6 -

-

-

-

-

-

-

-

-

-

' -

-

-

-

-

-

-

-

- A-

T

Page 50: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Distance from Distance from cold leg E ( c m L

DPV-166Q+10 DPV-UP-IANN

FTV-~OM TFV-ANN-7OA--/$ -tm.eo -1 -212.22 77.80

DPV-55-110MM DPV-26-55QM TFV-AN N-l15A

DPV-55-1 IOM M 7

GV-COR-150HZ -x~.o8

DPV-158-173QQ DPV-110-156MQ

GV-COR-150HZ -312 U" -387.35

TFV-ANN-156A -396 24 -405 64

DPV-166Q+10 -408 94 JIB 10

DPV-9-166QQ 431 80

PV LP 166Q 436 88 -442 IL

-DPV-150-173QQ

GVLP- 165HZ GVLP-172HZ

# INEL-A-4307 I

Fig. 6 Semiscale Mod-1 pressure vessel -- isometric showing instrumentation.

Page 51: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fig. 7 Semiscale Mod-1 pressure vessel -- penetrations and instrumentation.

Page 52: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 location 0 "npowered rod Cold leg Elevation of thermocouple

above bottom of core heated length

INEL-A-4308

Fig. 8 Semiscale Mod-1 heated core -- plan view.

Page 53: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Measurement

FLUID TEMPEWTURE

I n t a c t Loo2

TFU-I

Broken Loop

TFB-20

I n l e t Annulus

TFV-ANN-4A

TFV-ANN-4M

Downcomer Annulus

Upper Plenum

Trv-uP113

Lower Plenum

TFV-LP-2

Core

TFV-CORE-IN

TABLE V

DATA PRESENTATION FOR SEMISCALE HOD-l TEST 5-28-3

RanqeLal

Data Acquisi t ion Location and ~omnents '~ ] Detector , System ~ i g u r e [ ~ ] Measurement ~omnents '~ ]

Chromel-Alumel thennocouples unless spec i f ied otherwise.

0 t o 1533 K 0 t o 584 K

Hot leg, Spool 1. 54 cm fmm vessel 0 t o 820 K 9, 10 center.

Hot leg. Spool 2. 117 cm fmm vessel 0 t o 811 K 0 t o 811 K 9, 10 center (plat inum reslstance bulb).

Hot leg, Spool 6. 290 cm.fmm vessel ll. 12 center.

Cold l e g ? Spool 7. 624 cm from vessel 13, 14 center.

Cold leg, Spool 10. 367 cm from 13..14 . vessel center.

Cold leg, Spool 14. 109 cm fmm 0 t o 811 K 0 t o 811 K I S , 16 vessel center, upstream of co ld l e g i n j e c t i o n p o r t (platinum reslstance bulb). .

Cold leg, Spool 14. 99 cm from 15. 16 vessel center, downstream of co ld l e g i n j e c t i o n port.

Cold leg, Spool 15, 54 cm from 17, 18 vessel center.

0 t o 1533 K 0 t o 820 K

Cold leg. Spool 20. 52 cm from 19. 20 vessel center.

Cold leg. Spool 23. 232 cm from 19. 20 vessel center. upstream o f vessel- side nozzle.

l lot Icg, Spool 30, 40 cm frnm 21, 22 vessel center.

Cold leg, Spool 37. 703 cm from 21. 22 vessel cau~lrr. along hot leg, d i s - charge o f simulated steam generator.

Cold leg. Spool 42, 1054 cm from 21. 22 vessel center along hot leg. upstream of pump-side nozzle.

10 cm below co ld leg centerl ine. 0 t o 1033 K 0 t o 701 K . 0.5 cm from vessel wal l . Type J iron-constantan thermocouples.

0". 23, 24

180'. 23. 24 '

Centered i n annulus. Type J i ron- 0 t o 1033 K 0 t o 701 K constantan thermocouples.

89 cm below co ld leg cnnterl ine. 25. 26 oO.

178 cm below co ld l e g centerl ine, 16 , a6 oO.

292 CUI below co ld I c g ccntcr l ine . oO. 396 cm below co ld l e g centerl ine, oO.

0 t a 1533 K 0 t o 820 K

I n upper plenum. 34 cm above co ld l e g center l ine a t 180°.

On f l u i d thermocouple rack. 2.54 cm 0 t o 1533 K 0 t o 820 K from vessel center, 45'.

5 cm above top o f lower plenum f i l l e r block.

10 cm above top o f lower plenum f i l l e r block.

18 cm above top o f lower plenum f i l l e r block.

I n core flow mixer box. 381 cm 0 t o 1533 K 0 t o 820 K below cold leg center l ine (a p a r t of FOV-CORE-IN).

25, 26 Questionable data. appears t o be reading vessel f i l l e r temperature

Page 54: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

. ~ a n q e [ ~ I

Data Acquisit ion Location and ~ o m n e n t s [ ~ I Detector System ~ i g u r e [ ~ ] ~easurement ~ o m n e n t s ~ ~ ] Measurement '

Core Gr id Spacers

Gr id Spacer 5 140 cm below co ld l eg center1 ine, 0 t o 1533 K 0 t o 1579 K 54.6 cm above top o f heated length.

Thenocouple i n space defined by Columns C and 0. Rows 4 and 5.

Grid Spacer 6

TFG-6CO-45

193 cm below co ld l eg centerl ine. 1.3 cm above top o f heated length.

Themcouple i n space defined by Columns C and D, Rows 4 and 5.

Grid Spacer 10

TTG-IOAD-45

363 cm below co ld l eg center l ine a t bottom o f heated length.

T l~rn~ecuuple i n space detined by Columns A and 0, Rows 4 and 5.

ECC System

TFU-ECC- 14 I n SC l i n e leadlno loop $pool 14. .

I n ECC l i n e leading t o broken loop Spool 42.

Steam Generator

TFU-SGFW I n feedwater l i n e leading t o steam gLllLl "Lu, .

TFU-SGSD I n steam dome, 329 cm above bottom of tube sheet.

TFU-SGI Seco.ndary side, 30 cm above bottom of tube sheet.

Secondary side, 61 cm above bottom of tube sheet.

Secondary side. 122 cm above bottom of tube sheet.

Steam Generator R~#ptn#ra (#ctam

TFU-SGS3

TFU-SGS

I n b o f t ~ m of Accumllatnr Tank T.1

I n i n j ec t i on l i n e lcading from Accumulator Tank 1-3 jwt, lnprtream of junct ion wi th Spool 6.

IR d ra i n of i n j ec t i on l i n e leading f r o m Acclmwlat6r Tank T-3.

.Pressurizer

TFU-PRIZE I n surge l ine. near pressurizer 0 t o 1533 K 0 t o 820 K 55 , 56 ex i t , between turbine f l o m t e r 11111 I I I . H F P I ~ V ~ V C ~

Pressure Suppression System

TF-PSS-33 84 cm from bottom of tank.

TF-PSS-130

MATERIAL TEMPERATURE

330 cm from bottom of tank.

Chrome1 -Al umel thermocouples unless specif ied otherwise.

I n tac t Loop

TMU- IT1 6 Hot leg. Spool 1. top. 1.6 mn from p i p e 10, 54 s~ rlwll vessel center.

Cold leg. Spool 20. bottom. 1.6 mn from pipe ID. 52 CIII Tt.um vessel center.

vessel F i l l e r

TMV-FI-lI5A

Type J iron-constantan 0 t o 1033 K

292 cm below cold leg centeyline, 1.6 mu fmm f i l l e r In. no. 396 cm below co ld l eg centerl lne, 1.6 mn from f i l l e r 10, 0'.

396 cm below cold leg centerl ine, 1.65 cm from f i l l e r ID. OO.

Page 55: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE V (con t inued l

Ranqela'

Data Acqu is i t ion Detector System ~ i q u r e l ~ ] Measurement ~ o m n e n t s [ ~ ~

0 t o 1033 K 0 t o 701 K

. 67. 68

Locat ion and ~omnents '~ ' Measurement

Vessel F i l l e r Insu la to r

TIV-FO-35A 89 cm below c o l d l e g cen te r l ine . 0".

292 cm below c o l d l e g cen te r l ine , oO.

Core Bar re l

INV-CI-7OA

Type J i ron-constantan t h e m c o u p l e s

178 cm below c o l d I c g cen te r l ine , 1.6 Ttmm core b o r r c l ID, 0".

178 cm below c o l d l e g cen te r l ine . 1.6 mn from core bar re l OD, 0'.

292 cm below c o l d l e g cen te r l ine , 1.6 mn from core bar re l fin. 0'.

Core Housing F i l l e r

TMV-HF-I15W On core housing f i l l e r , 292 cm below Cold l e g cenLr~ . l inor. 5 mn from ou ter surface, 315'.

On core housing f i l l e r . 323 cm below c o l d l e g cen te r l ine . 5 mn from ou ter surface. 315O.

TMV-HF-I 3BW On core housing f i l l e r . 351 cm below c o l d l e g center1 ine. 5 mn from ou ter surface, 315O.

Steam Generator

TMU-SRl On a steam generator tube, 30 cm above bottom of tube sheet, on Uu o f tube.

On a steam generator tube. 61 cm above bottom of tube sheet, on OD o f tube.

On a steam gcncrator tube, 122 cm above bottom o f tube sheet, on OD o f tube.

CORE HEATER CLADDING TEMPEMTURES

Chrome1 -Alumel thermocouples.

High Power Heaters

TH-D4-14 TH-04-29

Heater a t Column D. Row 4. Thermo- couples 36 cm (270°) and 74 cm (315O) above bottom of core.

HPatar a t Column E. Row 4. Ihermo- ciluples 23 cm (180'). 69 cm (go0), and 140 cm (0') above bottom o f core.

Heater a t ~ o l u m ; ~ E, ROW 5. T h e m - c n ~ t p l s s 51 cm (180") and 64 cm (90') above bottom of core.

LOW Power Heaters

TH-A4-09 TH-A4-29 TH-A4-39

Heater a t Column A. Ruw 4. T h e m - couplcs 23 cm (105O), 74 cm (240'). and 99 cm (300°) above bottom o f core.

Heater a t Column A. Row 5. T h e m - couples 74 cm (180') and 114 cm (255') above boll on^ o f care.

Heater a t Column 0. Row 3. T h e m - couple 81 cm (135') above bottom of core.

Heater a t Column B. ROW 5. T h e m . couples 74 cm (150") and 05 cm (4!i0) aboye bottom of core.

Heater a t coiumn 0. Row 6. T h e m - couple 74 cm (45") above bottom o f core.

Heater a t Column C. Ruw 2. T h e m - couple 97 cm ( 1 2 S 0 ) above bottom o f core.

Page 56: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE V (cont inued l

Measurement Locat ion and ~ o m n e n t s [ ~ l

Low Power Heaters (cont inued l

Tll-C4-20 ' Heater a t Column C. How 4. Thenm- TH-C4-26 couples 51 cm (150'). 66 cm (75'). TH-C4-53 and 135 cm (300') above bottom

of core.

TH-C5-28 Heater a t Column C, Row 5. T h e m - couple 71 cm (315') above bottom o f core.

TH-C6-53 Heater a t Column C. Row 6. T h e m - couple 135 un (270') above bottom o f core.

TH-C7-07 Heater a t Column C, Row 7. T h e m - TH-C7-15 couples 18 cm (345O) and 38 cm (255O)

d h v e burrom o r core.

TH-?I -21 l lcnt~r a t Cn111mn n. RIIW 1. Thnmn- couple 53 cm ( 3 3 0 ~ ) above bottom of core.

P ~ - b 2 - i 4 Heater a t Column 0. Row 2. Thenm- IH-02-61 couples 36 cm (0') and 155 cm (270')

above bottom of core.

TH-03-29 Heater a t Column 0, Row 3. Thermo- TH-03-39 couples 74 cm (150') and 99 cm

(210°) above botrvm o f core.

TH-06-25 lleater a t Culu~ml 0. Row 6. T h e m - couple 64 cm (255') above bottom of cnrs.

~w-n7-20 Heater a t Column 0, now 7. Thermo- couple 51 cm (60') above bottom o f core.

TH-08-26 Heater a t Column 0. Row 8. T h e m - couple 69 cm (180') above bottom o f core.

TH-El-33 Heater a t Column E. Row 1. Thenm- couple 84 cm (60") above bottom o f core.

TH-E2-33 Heater a t Column E. Row 2. T h e m - rntlplo FU rm (?15') a k v o bottom o f core.

TH-E3-05 Heater a t Column E. Row 3. T h c m - TH-El-20 couples 13 un (15'). 51 cm (165°). 711-C3-24 a ~ l d 61 cm (IS') ahnvt! hnrtnm nf

cure.

Heater a t Column E. Row 6. T h e m - couples 20 un (150°). 71 cm (285°), and 94 cm (330') above bottom of core.

TH-E7-44 Heater a t Column E. Row 7. T h e m - couple 112 cm (195') above bottom of core.

TH-E8-14 Heatel. a t Cululm~ E. Row 8. T h e m - TH-E8-29 couples 36 an (150°) and 74 un (225O)

above bottom of core.

Heater a t Column F. Row 2. Thenm- couples 18 cm (255'). 56 cm (105'). and 64.cm (On) above bottom o f core.

TH-F4-14 Heater a t Column F, Row 4. Thermo- TH-F4-29 couplea 36 cs (90'). 74 cm (165'). TH-F4-44 and 112 cm (210') above bottom of

cul'e.

TH-F5-20 Heater a t S01i1mn F. ROW 6. T h o r n TH-PB-LO CDUPI~S 51 em (255"). 66 cm (165'). TH-F5-33 84 cm (315'). and 135 cm (30') TH-F5-53 above bottom o f core.

~ ~ - ~ 3 - 1 3 Heater a t Column G. Row 3. T h e m - ~:colrlns 33 I:~I (150') above bottom o t core.

TH-G4-29 Heater a t Column 6. Row 4. T h e m - TH1T4.77 cOupl0C 71 Cm 300q)1 01 Cm (225"). IH-L4-XI and 91 un (30" above bottom of core.

TH-G5-14 llcater a t Colunn~ G, Ruw 5. Thenm- TH-G5-24 couples 36 un (45') and 61 un (330')

above bottom of core.

'I H-Hb-32 Heater a t Column H. Row 5. T h e m - couple 81 cm (45") above bottom o f core.

~ange[']

Data Acqu is i t ion Detector System ~ i s u r e [ ~ ] Measurement ~ o m n e n t s [ ~ ]

101, 102 Data fo r TH-C7-15 i s questionable p r i o r t o .blo%tdo\m, appcosl cor rec t alLrl. bluwdown.

. 109, 110

111, 112

113, 114

115, 116

117, 118

119, IPU

Page 57: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE V (con t inued l

Ranqeral

Data Acqu is i t ion Locat ion and ~ o m n e n t s [ ~ ] Detector System ~ l g u r e [ ~ ] ~easurement ~ o m n e n t s [ ~ ] Measurement

PRESSURE

I n t a c t Loop

Cold leg, Spool 13, 138 cm from vessel center.

0 t o 3447 kPa 0 t o 3561 kPa 141, 142 Detector saturated t o t=18 s. Cold leg. Spool 15. 55 cm from vessel center, t o atmosphere ( low range).

Cold leg. Spool 21. 112 cm from vessel center.

Cold leg, Spool 23, 235 cm from vessel center, upstream uf ~ ~ o z z l e ( t e e o f f OP tap) .

Cold leg, Spool 23, vessel-s ide nnzzle. nozzle th roa t , 245 cm from vessel cen te r along c o l d leg, oO.

Cold leg. Spool 37, 718 cm from vessel center along ho t leg.

Cold leg, Spool 42, 1057 cm from vessel center along ho t leg, up- stream of ump s ide nozzle ( tee o f f OP tap!. - Pump-side nozzle. nozzle th roa t . 1066 cm from vessel center along ho t l e g ( tee o f f DP tap)

Vessel

PV-UP+lO I n upper ple~aula. 26 cm above c o l d 0 t o 17 237 n t o 21 261 kPa 151, 152 l e g cen te r l ine , mounted on standoff, kPa 30°.

I n upper p a r t o f lover plenum. 0 t o 20 604 0 t o 31 226 kPa 151, 152 422 cm below c o l d l e g cen te r l ine , kPa mounted on standuff . 225".

0 t o 6895 kPa

I n i n t a c t loop accumulator. 0 t o 8629 kPa 153, 154

I n broken loop accumulator. 0 t o 8368 kPa 155. 156

ECC System

PU-ACCI

Pa-ACCZ

Steam Generator

PU-SGSO Secondary s ide steam dnma. 0 t o 20 6a4 O t o 1 3 6 7 8 k P a 157,158 k Pa

Steam Generator Rupture System

vu-SGSJ III vessel s imu la t ing stcam 0 t,n 61345 kPa 0 Lo 8368 kPa 159, 160 generator tube rupture. (Vessel aaoumulatQr. )

Prcssur izc r

PU-PRIZE Pressurlzer steam dome. 0 t o 17 237 0 t o 22 060 kPa 161. 162 , kPa

Pressure Suppression system

P-PSS

DIFFERENTIAL PRESSURE

Suppression tank tnp.

E leva t ion di f ference between transducer taps i s zero unless otherwise speci f ied.

l n t a c t Loop

DPU-3-7 Hot l e g Spool 3, 158 cm f m m vessel +I270 cm center i u c u l d I r g S v w l 7. 507 em &ar from vessel center. Spool 3 tap i s 46 cm above Spool 7 tap.

Hnt leu. So001 G. 290 cm from +I270 cm vessel center t o steam generator F a t e r i n l e t plenum. 368 cm from vessel center. Spool 6 tap i s 41 cm below SGIP tap.

Page 58: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE V (cont inucd l

~anse[ ' l

Data Acquisit ion Detector System Measurement .

I n tac t Loop (cont in

DPU-SGOP-7

Location and ~omnents'~'

4 ~ i g u r e ' ~ ] Measurement ~ o m n e n t s [ ~ ~

From steam generator ou t l e t plenum 683 cm from vessel center along co ld l eg t o co ld leg Spool 7, 587 cm from vessel center, including o r i f i ce . Spool 7 tap i s 89 cm below SWP tap.

+I270 cm +I69 kPa water

169. 170 Data acquisition system saturated near t=O s.

Steam generator ou t l e t t o pump. I n l e t , co ld l eg spool 7 , stl'! un fmm vessel center, t o cold l eg Spool 10, 359 cm from vessel center.

+I27 un i a t e r

171. 172 Data acquis i t ion system safllrated in termi t tent ly between t=O s and t=3 5.

Pump ou t l e t t o pump i n l e t , co ld l eg Spool 12. 192 cm from vessel center. t o co ld leg Spool 10, 359 cm rtms vessel CetlLer. Ipuul 10 Lap i s 25 y below Spool 12 tap.

Detector fai led.

Pump ou t l e t t o pump i n l e t . co ld leg Spool IC, 19C rul rtun vessel center. t o co ld leg Snnnl In. 359 r m from vessel center. Spool 10 tap i s 25 un below Spool 12 tap (low range).

Cold l eg Spool 12. 192 un fmm vessel center, t o co ld l eg Spool 15. 55 cm from vessel center.

Cold l eg t o hot leg; co ld leg Spool 15, 55 un from velsel center, t o hot l e g Spool 3. 158 cm from vessel center. Spool 15 tap i s 22 cm below Spool 3 tap.

Cold l eg t o hot leg, co ld leg Spool 15, 55 cm from vessel center, t o not l eg Spool 3, Ibn cm trom vessel center. Spool 15 tap i s 22 cm below Spool 3 tap ( low range).

173. 174 Detector saturated t o t=6 s.

+254 cm t33.9 kPa water

175. 176 Data acquis i t ion system saturated in termi t tent ly between t=D s and t=3 s and near t=40 s.

177. 178

+33.5 kPa 179. 180 Data acquisit ion system saturated t o t4 s.

+254 cm i a t e r

Pressurizer water leve l . Eleva- t i o n dif ference between taps i s 135 cm. Lower tap i s 9 cm above prersurizer ex i t .

Pressurizer bottom to Spool 4. Eleva- t ion r l i f f ~ r p n c p hptwppn taps i s 157 cm. Spool 4 tap i s 140 cm below uressut.izer r x i L.

23456 kPa 183, 184 Data acquis i t ion system aaturotcJ liian~ t - 0 Lo 1-11 r .

Broken Loop

UPB-21-IANN Cold 'leg Spool 21. 112 cm from vessel center, t o vessel i n l e t annulus, 23 cm below co ld leg center l ine a t 22!i0. I n l e t annulus tap i s 23 cm below Spool 21 tap.

+254 cm water

Cold.leg. Spool 23, 235 cm from .u..?s,.I I.I.III.VI CII PCSICI->I~~ nozzle throat. 245 cm from vessel center.

Vessel-side nozzle throat. 245 CIII

fmm vessel center t o Spool 24. 264 cm from vessel center.

Iny, IYO

191. 192 Overranged from t=D t o t=16 s. Across ent i re broken loop hot , leg including rupture assembly; hot l e g Spool 30. 45 cm from vessel t o co ld leg Spool 43, 1086 un from vessel center along hot leg.

Across simulated steam generator o r i r i c e d>smbly, hot leg Spool 32 upper tap, 189 cm from vessel center. t n Sponl 36 l n w r tap, 617 r m fmm vesse l~cenrr r . Spool 32 upper rap i s 41 cm above Spool 36 l o q r tap.

Across nozzle assembly. Spool 36 lower tap. 617 an from vessel center along hot leg t o Spool 37. '

718 cm from vessel center along hot leg. Spool 37 tap i s 102 cm below Spool 36 lower tap.

Across simulated pump. co ld leg Spool 38. 776 un from vessel center along hot Icg. t o cold leg Spool 40. 929 cm from vessel center along hot leg.

Page 59: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE V (cont inued)

~anae[']

Data A c q u i s i t i o n Detector System ~ i g u r e [ ~ ] Measurement ~ o m n e n t s [ ~ ] Measurement

Broken Loop ( c o n t i

DP8-40-42

Locat ion and tomnentsCa'

Across elbow lead ing t o spool up- stream o f pump-side nozzle. Cold l e g Spool 40. 929 un from vessel center along h o t leg, t o Spml 42, 1057 un f rom vessel center along ho t leg. Spool 40 tap i s 102 cm below Spool 42 tap.

+I27 cm 3 6 . 2 kPa 199. 200 Detector saturated near t=O s. water

Spool 42 upstream o f pump-side nozzle, In57 rm from vessel center along hot l e g t o n n n l s th roa t . 1066.cm from vessel center along ho t leg.

5 3 843 kPa Detector f a i l e d

Pump-side nozzle. nozzle t h r o a t 1066 cm from vessel center along ho t leq t o Spool 43 1086 cm from vessel center along'hot leg.

DPV-UP-IANN Uppcr plcnum. 27 un above c o l d l e g c e n t e r l i n e a t 30' t o i n l e t annulus, 23 cm below co ld l e g center- l l n e a t 225O. E leva t ion di f ference between taps i s 48 cm.

t7K2 cm water

I n l e t annulus c o l d l e g c e n t e r l i n e a t 90'. t o 23 cm below c o l d l e g center- l i n e a t 225'. E leva t ion d i f fe rence between taps I s 23 cm.

+I27 un water

I n l e t annulus, 23 cm below co ld l e g c e n t e r l i n e a t 22S0, m downcomer gap. 66 cm below c o l d l e g c e n t e r l i n e a t 225'. ElevdLlurn di l repence between taps i s 43 cm.

+I27 cm Cater

I n l e t annulus, 23 cm below c o l d l e g c e n t e r l i n e a t 225". t o lower plenum, 422 cm below c o l d l e g c e n t e r l i n e a t 225'. E leva t ion di f ference be- tween taps i s 399 cm.

+762 cm water

Across p a r t o f downcaner. 66 cm (225') t o 140 cm (180"). below c o l d l e g cen te r l ine . Elevat ion di f ference between taps i s 74 cm.

t127 cm Cater

Across p a r t o f douncomer, 140 cm (180°) t o 279 cm,(180°), below c o l d l e g cen te r l rne . E leva t ion d i f fe rence between taps i s 140 cm.

Across p a r t o f downcomer. 279 cm (180°) t o 396 FIIO (225"). below co ld l e g cen te r l ine . t l e v a t i o n di f ference between taps i s 117 cm.

Across p a r t of lower plenum. 396 cm (225O) t o 139 cm (225'). below cn ld l e g cen te r l rne . E leva t ion d i f fe re l lee between taps i s 43 un.

+51 cm water

217. 218 Data a c q u i s i t i o n system saturated near t=O s.

219. 220 Lower plenum. 422 cm below c o l d l e g c e n t e r l i n c a t 226O t o upper plenum, 27 cm above c o l d l e g c e n t e r l i n e a t 3Us. Eleva t ion d l r r r t . r r s e between taps i s 395 un.

ECC SYSTEM

OPU-ACCl -TD Top t o bottom of i n t a c t loop dccu~t~u la to r . E leva t ion d i f f c rcnce between taps i s 274 cm.

+762 cm water

Top t o bottom of broken loop accumulntnr. FlPvat inn d i f fe rence between taps i s 213 un.

+I27 cm water

- Steam Generator

DPU-SGZSEC ' Secondary side, d i f f e r e n t i a l pressure taps a t 114 cm and 320 cm above bottom of tube sheet. E leva t ion d i f f e r e n c e between taps i s 206 un.

t254 cm water

DPU-SG-DISC Across v e n t u r i Lube, 168 cm down- stream from steam generator d i s - charge.

9 2 7 0 cm water

Page 60: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE V (cont inued)

- -

Oata Acqu is i t ion Measurement Loca t ion and ~ o m n e n t s [ ~ ] . Detector System ~ i q u r e [ ~ ' Measurement ~ o m n e n t s ' ~ ]

Steam Generator Rupture System

From instrumented spool piece - +6895 kPa ' 9 2 3 0 kPa 229. 230 i n s imulated tube rup tu re i n j e c t i o n l i n e t o ho t l e q Spool 6. 318 cm from vessel center.

OPU-SGS3-TB Top t o bottom o f steam generator +I270 cm t108 kPa 231, 232 rup tu re system accumulator tank. i a t e r

Pressure Suppression Sysrem

OP-PSS-TB Top t o bottom o f pressure +762 cm 5 0 3 kPa 233, 234 suppression tank. E leva t ion water d i f f e r e n c e between taps i s 338 cm.

Oata a c q u i s i t i o n system range may exceed ra ted de tec to r range; however. . tu rb inc rc3ponlc i 3 I l ~ t c u t LU rlvw late, wall boyond t h c r a t c d rangc.

VOLUMETRIC FLOW RATE Turbine f l o m e t e r , b i d i r e c t i o n a l .

I n t a c t Loop

FTU-I

)- in. Schedule 160 pipe.

+O t o 75.7 r l s 235, 236 Oata a c q u i s i t i o n system saturated a t tz39.5 s.

+75.7,r/s - 235. 236

Hot leg, Spool 1. 42 cm from vessel cen te r .

Cold leg, Spool 9, 393 cm from vessel center.

~ 7 5 . 7 a16 237, 238 Oata a c q u i s i t i o n systcm satun'atrd #leal' L=40 s.

6 3 . 1 11s 237, 238

co ld leg , Spool 13, 163 cm from vcsscl ccn tc r .

Cold leg. Spool 15, 42 cm from vessel center.

Broken L o o t

FTP-21

Schedule 160 pipe.

+75.7 81s 239, 210 Signal p r i o r t o blowdown i s noise.

+50.5 LIS 241, 242 Signal p r i o r t o blowdown i s a notse.

Cnld leg , Spnnl 21, 116 cm from vessel center; 3- in. pipe.

Hot leg, Spool 30, 63 cm from vessel celllev; 3 - i l l . p ipe.

Cold leg , Spool 37. 739 cm from v c u c l ccn tc r aloirg h o t leg : C - i n . pipe.

Core - FTV-CORE-IN L69.4 81s 243. 244 Data a c q u i s i t i o n system sa tu ra ted

between t=39 s and t=41 s and near t -48 s.

Entrance t o core. 401 cm below c o l d l e g cen te r l ine . .

ECC System

FTU-HPIS +0.315 r / s 245. 246 . Signal p r i o r t o blowdown i s noise.

I n l i n e imnediately a f t e r HPIS pump fo r I n t a c t loop. 112-i'n. 1 IIII!.

FTB-HPIS

FTU-LPIS

I n l i n e imned ia te ly a f t e r HPIS pump f o r broken loop. 112-in. l i n e .

+0.315 L l s 249, 250 Data acqu is t ion system saturated a t t*O s and t=35 s. Signal

' p r i o r t o blowdown i s noise.

I n l i n e lead ing from LPlS plnnp f o r i n t a c t loop. 112-in. l i n e .

FTB-LPIS

FTU-ACCI

FTB-ACC2

I n l i n e lead ing from LPlS pump f o r broken loop. 314-in. I i n e .

I n l i n e lead ing from i n t a c t loop accumulator. I - i n . I i n e .

255,'256 , Oata a c q u i s i t i o n system saturated from t=32 t o to48 s.

I n l i n e lead ing from broken loop accumulator, 1- ln. l l h e .

Steam Generator Rupture System

FTU-SGS I n simulated tube rup tu re i n j e c t i o n l i n e .

t0.315 11s 257, 258 Ind ica ted f low data p r i o r t o t -40 s i s due t o purging low LnnperaLuve wdter from SGS

. . accumulator.

1-112-in. t u r b i n e Pressur izer

FTU-PRIZE Surge l i n e .

Page 61: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE V (contlnuedl

~anqe '~ '

Oata Acqulsit lon Location and Detector System ~ i g u r e ' ~ ] -

Turbine flowneter. b ld l rec t lona l .

Measurement ~omnents'~] Measurement

FLU10 VELOCITY

102 cm below cold leg centerl ine. t0.762 t o +15'.24 mls 261. 262 OO. 35.24 mls

102 cm below co ld l eg centerline. 9 .762 t o 55.24 m/s 261, 262 180'. 55.24 mls

Oata acquisition system saturated fmm t-40 t o t=44 s.

Oata acquis i t ion system saturated in termi t tent ly from t=39 t o t=42 s.

MOMENTUM FLUX Orag dlsc. b ld i rec t iona l . Orag dlsc data may exh ib i t s i gn i f l can t temperature dependence. Orag dlsc data should be used only ror short- term t rans ient response.

I n tac t Loop

FDU- I

3-ln. plpe.

Hot leg. Spool I. 6il on fmm vessel center; target slze 2.22 cm.

Hot leg. Spnnl 5. 256 cm from vessel center; target size 2.54 cm.

Cold leg. Spool 10, 349 cm from vessel center; target slze 2.22 cm.

Cold leg, Spool 13, 138 cm from vessel center; target size 2.22 cm.

Broken Loop

FOB-21 Cold leg. Spool 21. 134 cm fmm 5 9 8 t o 5 0 4 915 t66 774 271, 272 vessel centcr. 3- in. plpe: target kgls-s2 s lze 1.67 cm.

kg/m-s2

Cold leg, Spool 23. 238 cm from +298 t o 5 8 0 067 5 5 5 319 273. 274 vessel center, upslream o f vessel igtm-s2 side nozzle, 2-ln. pipe; target

kg/m-s2

s lze 1.03 cm.

Detector saturated from t=O to t'2 s.

Hot leg. Spool 30, 52 cm fmm 5 9 8 t o 5 9 290 5 7 280 275, 276 vessel center. 3- in. pipe; target kg,m-s2 s lze 1.67 cm. kglm-s2

Questlonable data. drag dlsc was mounted hor izonta l ly and possibly f i l l e d wi th co ld water.

Cold leg. Spool 37, 725 cm from 9 9 8 t o 5 8 0 067 t374 272 277, 278 vessel center along hot leg, steam kglm-s2 generator outlet. ver t ica l plpe,

kg/m-s2

2-in. pipe; target slze 1.03 cm.

Questlonable data. drag dlsc was mounted hor lzonta l ly and possibly f i l l e d wi th co ld water.

Cold leg, Spool 42. 1057 cm fmm 9 9 8 t o 9 7 2 627 3 6 5 320 279. 280 vessel center along hot leg, up- stream o f pump-side nozzle, down- kg1m-s2 kglm-s2

stveam of l n j cc t l on point. 2- ln pipe; t a r y r l s l r e 1.03 em.

Vessel

FDV-CORE-IN I n core flow mixer box. 381 cm +1.M t o 5977 5725 281, 282 below culd leg centerl jne; target ig,m-s2 s lze 2.54 cm. kghn-s2

DENSITY

In tac t Looe

H O ~ leg, Spool 1, 77 cm from vessel center. T (top) ranges 270 t o 36n0. R (bottom) ranges 30 t o 33D0. C. mathematical composite of T and 8.

GU-IT GU-1B GU-lC

GU-5VR

GU-IOVR

Hot leg. Spool 5, 246 cm from vessel center, ver t ica l .

co ld leg. spool 10, 356 un fmm vessel center. ver t ica l .

co ld leg. b p w i 1,. 142 cm rtGx vessel center. ver t ica l .

GU-151 GU- I HI GU-15C

Cold leg. Spool 15. 77 cm fmm vessel center. T (tnp) ral8yi.s 270 t~ 36OV. B (bottom) ranges 30 t o 330°. C, mathematlcal composite o f T and 8.

Page 62: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

~ a n q e [ ~ ]

Data Acqu is i t ion Locat ion and ~ o m m e n t s ~ ~ ] Detector System - ~ i q u r e ' ~ ' Measurement

1.6 t o 1600 0 t o 1600

kg/m3 kglm3

Measurement

Broken Loop

Cold leg , Spool 21, 123 cm from vessel center. T ( top) ranges 270 t o 360'. B (bottom) ranges 30 t o 330°. C, mathematical

' composite of T and 8.

Detector fa i led . Cold leg , Spool 23. 235 cm from vessel center, v e r t i c a l .

Hot leg , Spool 30. 49 cm from vessel center. T ( t o p ) ranges 270 t o 360'. B (bottom) ranges 30 t o 330'. C, mathematical composite of I and 8.

Cold leg, Spool 37. 711 cm from vessel center along ho t leg , acroq? v e r t i c a l pipe. s imulated steam aeneratnr r l i < r h a r p ~

Cold leg , Spool 42, 1057 cm from vessel center along ho t leg, v e r t i c a l .

GV-COR- 150HZ Core f l o w mixer box, 386 cm below c o l d l e g center1 ine. hor izon ta l . 0 t o 1130".

Upper p a r t of lower plenum, 419 cm below c o l d l e g cen te r l ine . 4.379 cm below downcomer e x i t , hor izon ta l . 0 t 0 1 8 0 ° .

Lower lenum 437 cm below c o l d l e g centeryine. i 2 cm below downcomer e x i t . hor izon ta l , 90 t o 270'.

. Pressur izer

GU-PRIZE

5 - ,

MASS FLOW RATE - - .'

Surge l i n e . 1.6 t o 1600 0 t o 1600

kg/mJ kglm3

Detector fa i led .

Mass f l o w r a t e nhtained by com- Rangc fo r ma33 flow .is b i n i n g dens i ty (gamna attenua- LIUII i r c n n i q u e l Wltq.vblumet i c !3!~'Ik? 2?!cE!p,,!L f l o w r a t e ( t u r b i n e f lowneter r p r i n ca lc~ l la t . inn . momentum f lux (d rag d isc ) .

I n t a c t Loop

FDU-1, GU-1C FTU.1. CU-1C

FDU-5, GU-5VR

FTU-9. GU-IOVR

FDU-10. GU-IOVR

FDU-13, GU-13VR FTU-13. GU-13VR

FTU-15. GU-15C

Broken Loop

FOB-21, GB-21C FTE 21, GD 21G

FDB-23. GB-23VR

FDB-30, GB-3OC FTB-30. GB-30C

FOB-37, GB-37HZ FIU-31, GB-XIHf

Yrhh.l FDV-CORE-IN GV-COX-lWH1

FTV-CORE-IN GV-COR-150HZ

Pressur izer '

FTU-PRIZE GU-PRIZE

Hot leg . Spool 1.

Hot leg, Spool 5. . . Cold leg. Spool 9.

Cold leg , Spool 10.

Cold leg, Spool 13.

Cold leg . Spool 15.

327. 428 Zignal p r i n r tn hlsydawn i c 329. 330 noise.

FY-S'VH dotcokor f d i l ~ d . -

331, 332 bignal p r i o r t o blowdown i s 333. 334 , noise.

Cold leg , Spool 21.

Cnld IPQ. Spnnl 77

Hot leg . Spool 30.

Cold leg . Spool 37. 335. 33G S i y l 1 ~ 1 llrlnvr t o blowdown $6 397, 338 . noise.

Fntranre t n rnrq.

Entrancc t o core.

I d V . J IU

GU-PRIZE de tec to r fa i led . Pressurizer surge l i n e

Page 63: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE V (continued)

Oata Acquisi t ion Measurement Location and Detector System ~ i q u r e [ ~ ] Measurement ~ o m ? n t S [ ~ ~

CORE CHARACTERISTICS

PWRCOR 1-1 Core power. 0 t o 1600 kW

O to 2047 kw I 343. 344 and

PYRCOR 1-2 Core power. 0 t o 1600 kW 0 to 2563 kU

VOLTCOR-T Core voltage. 0 to 200 Vdc 345. 346

MPCOR-T Core current. 0 t o 10 000 A 0 t o 9645 A 347. 348

PUMP CHARACTERlSTICS

PUMPU-CUR Pump curranl.. 0 t n 4 4 A 349, 350 0 t o 25 A

PUMPU-RPM Pump speed. 0 to 3600 rpm 0 t o 3600 rpn 351. 352

[a] Statements a t the beginning of a measurement category regarding locat ion and comnents. range, and f igure apply t o a l l subsequent measurements w i t l ~ i r ~ Line given category unlcss specified otherwise.

[b] Detectors which were subjected t o overrange condit ions during port ions o f the t e s t were capable o f withstanding these condit ions without change i n operat ing or measuring characrer ls t ics wttrl~ Lllr physical condit ions wcre agatn w i t h i n the detector range.

Page 64: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fig . 9 F lu id tempera ture i n i n t a c t loop ho t l eg (TFU-1 and RBU-Z), from -20 t o 600 s.

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 30 .0 W0.0 5 0 . 0 TIME AFTER RUPTURE ( s )

Fig . 1 0 F lu id tempera ture i n i n t a c t loop h o t l e g (TFU-1 and RBU-Z), from -6 t o 42 s.

Page 65: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100 . 0 . 100. 200 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 9 )

Fig. 11 F lu id temperature i n i n t a c t loop (TFU-6), from -20 t o 600. s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9-0.0 5 0 . 0 T I M E AFTER RUPTURE t s )

Fig. 12 F l u i d temperature i n i n t a c t loop (TFU-6), from -6 t o 42 s .

Page 66: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100. 0 . 100. 200 . 300. 400 . 500. 600 . T I M E AFTER RUPTURE ( s )

Fig . 1 3 F lu id tempera ture i n i n t a c t loop co ld l e g (TFU-7 and TFU-lo), from -20 t o 600 s .

7 w w .

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s l

Fig. 1 4 F lu id tempera ture i n i n t a c t loop co ld l e g (TFU-7 and TFU-lo), from -6 t o 42 s .

Page 67: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

A TFU- 148

-ioo. 0. loo. 200. 300. 400. 500. 600. T I H E AFTER RUPTURE ( r )

Fig . 15 F l u i d temperature i n i n t a c t loop c o l d l e g (RBU-14A and TFU-14B), from -20 t o 600 s.

200. -10.0 0.0 10.0 20.0 30.0 40.0 50.0

T I M E AFTER RUPTURE ( s )

F ig . 16 F l u i d temperature i n i n t a c t loop c o l d l e g (RBU-14A and TFU-ISB), f rom -6 t o 42 s.

Page 68: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

2 0 0 . -100. 0 . 100. 200 . 300 . 9 0 0 . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( r )

Fig . 17 F l u i d temperature i n i n t a c t loop (TFU-15), f rom -20 t o 600 s .

2 0 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( s )

Fig . 18 F l u i d temperature i n i n t a c t loop (TFU-15), f rom -6 t o 42 s .

Page 69: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s )

Fig. 19 F l u i d temperature i n broken loop, vessel s i d e (TFB-20 and TFB-23), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

Fig . 20 F l u i d temperature i n broken loop, vessel s i d e (TFB-20 and TFB-23), from -6 t o 42 s.

Page 70: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

300. -100 . 0 . 100. 200. 300. 'too. 500. 600 .

T I M E AFTER RUPTURE ( 9 )

F i g . 21 F l u i d temperature i n broken loop, pump s i d e (TFB-30, TFB-37, and TFB-42), from -20 t o 600 s.

500

'too

300 - 1 0 . 0 0 . 0 10.0 2 0 . 0 3 0 . 0 bO.0 5 0 . 0

T I M E AFTER RUPTURE ( s )

F ig . 22 F l u i d temperature i n broken loop, pump s ide (TFB-30, TFB-37, and TFB-42), from -6 t o 42 s. -.,

Page 71: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . 23 F l u i d temperature i n i n l e t annul us (TFV-ANN-4A and TFV-ANN-4M) , from -20 t o 600 s.

1"".

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T l t l E AFTER RUPTURE ( s )

F i g . 24 F l u i d temperature i n i n l e t annul us (TFV-ANN-4A and TFV-ANN-4M), f rom -6 t o 42 s.

Page 72: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

1 1 1 1 . 1 I I

I I I I I I + TFV-ANN-115A I 1 1 1 1 I 0 TFV-ANN-156A

- 1 0 0 . 0 . 100. 200 . 300 . . 400 . 500 . 600 . TIME AFTER RUPTURE ( s 1

F i g . 25 F l u i d temperature i n downcomer annul us (TFV-ANN-35A, TFV-ANN-70A, TFV-ANN- 1 15A, and TFV-ANN- 156A), f rom -20 t o 600 s.

- - -

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 TIME AFTER RUPTURE ( s )

Fig . 26 F1 u i d temperature i n downcomer annul us (TFV-ANN-35A, TFV-ANN-70A, TFV-ANN-11 5A, and TFV-ANN-156A), from -6 t o 42 s.

Page 73: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

boo. - 100 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 600 .

T I M E AFTER RUPTURE ( s )

Fig. 27 F ' lu id temperature i n upper plenum (TFv-~P+13), f rom -20 t o 600 S.

4 0 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( s )

Fig . 28 F l u i d temperat.ure i n upper plenum (TFV-UP+13), f rom -6 t o 42 s .

Page 74: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100. 6 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 8 )

F ig . 29 F l u i d temperature i n lower plenum (TFV-LP-2, TFV-LP-4, and TFV-LP-7), f rom -20 t o 600 s .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

F ig . 30 F l u i d temperature i n lower plenum (TFV-LP-2, TFV-LP-4, and TFV-LP-7), f rom -6 t o 42 s .

Page 75: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. ZOO. 300 . 9 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 9 )

Fig. 31 Fluid temperature in core in le t (TFV-CORE-IN), from -20 t o 600 s .

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 40 .'O 5 0 . 0 T I M E AFTER RUPTURE ( r )

F i y . 32 Fluid temperature i n core in le t (TFV-CORE-IN), from -6 to 42 s.

Page 76: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 200 . 3004 400 . 5 0 0 . 600 . T I HE AFTER RUPTURE ( s 1

F i g . 33 F l u i d temperature i n core, G r i d Spacer 5 (TFG-~CD-45), f rom -20 t o 600 s.

rso. - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( s 1

F ig . 34 F l u i d temperature i n core, G r i d Spacer 5 (TFG-5CD-45), from -6 t o 42 s .

Page 77: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

BOO.

8 0 0 .

- Y Y

7 0 0 . W a 3 k

6 0 0 . W a r W

5 0 0 . 0 L.

3 A (L C O O .

300 . - 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 600 .

T I M E AFTER RUPTURE ( r ) F ig . 35 F l u i d temperature i n core, G r i d Spacer 6 (TFG-6CD-45), from -20 t o 600 s.

- 1 0 . 0 0 . 0 10 .0 2.0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I . H E AFTER RUPTURE ( r )

Fig. 36 F l u i d temperature i n core, G r i d Spacer 6 (TFG-~CD-45), from -6 t o 42 s .

Page 78: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fig. t o 6

8 0 0 .

7 0 0 .

6 0 0 .

5 0 0 .

9 0 0 .

3 0 0 . - 1 0 0 . 0 . 100. 2 0 0 . 300 . 900,. 5 0 0 . 600

T I M E AFTER RUPTURE ( 9 )

37 Fluid temperature i n core, Grid Spacer 10 (TFG-10AB-45), from - 00 s .

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 bO.0 5 0 . 0 T I M E AFTER RUPTURE ( r )

Fig. 38 Fluid temperature i n core, Grid Spacer 10 ( T F G - 1 0 ~ ~ - 4 5 ) , from -6 t o 42 s .

Page 79: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100 . 0 . 100. 200 . 300 . 4 0 0 . 5 0 0 . 600 . T I M E AFTER RUPTURE ( s 1

Fig . 39 F l u i d temperature i n i n t a c t l oop coo lan t i n j e c t i o n l i n e (TFU-ECC- 14), f rom -20 t o 600 s .

2 7 5 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( s )

Fig. 40 F l u i d temperature i n i n t a c t l oop coo lan t i n j e c t i o n l i n e (TFU-ECC- 14), f rom -6 t o 42 s .

Page 80: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

275. -100 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 .

T I H E AFTER RUPTURE (.s 1

F ig . 41 F l u i d temperature i n broken l oop coo lan t i n j e c t i o n l i n e (TFB-ECC- 42), from -20 t o 600 s.

275 . - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( S )

F ig . 42 F l u i d temperature i n broken l oop coo lan t i n j e c t i o n l i n e (TFB-ECC- . " ' - 1 ,. 42), f rom -6 t o 42 s. . ,

Page 81: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100. 0 . 100. 2 0 0 . 300 . 9 0 0 . 500 . 6 0 0 . T I M E AFTER RUPTURE ( r )

Fig . 43 F l u i d temperature i n steam generator, feedwater 1 i n e (TFU-SGFW) from -20 t o 600 s.

. .-. - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( r )

F ig . 44 F l u i d temperature i n steam generator, feedwater l i n e (TFU-SGFW), f rom -6 t o 42 s.

Page 82: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

1 1 1 1 , 1 1 1 1 [ 1 1 1 1 , 1 1 , 1 [ , 1 ,

TFU-SGSD

- -

- 1 0 0 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 9 )

F ig . 45 F l u i d temperature i n steam generator, steam dome (TFU-SGSD), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 b 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( a )

F ig . 46 F l u i d temperature i n steam generator, steam dome (TFU-SGSD) , from -6 t o 42 s.

Page 83: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- -

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T r n E AFTER RUPTURE ( s

F i g . 47 F l u i d temperature i n steam generator , secondary s i d e (TFU-SG1 , TFU-SG2, and TFU-SG3), f r om -20 t o 600 s.

- 1 0 . 0 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 10 .0 T I M E AFTER RUPTURE ( r )

F i g . 48 F l u i d temperature i n steam genera to r , secondary s i d e (TFU-SGI , TFU-SG2, and TFU-SG3), f rom -6 Lo 42 s.

Page 84: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3.0 . 0 qO.0 5 0 . 0 T I M E AFTER RUPTURE ( r )

Fig. 50 Fluid temperature i n steam generator rupture system accumulator (TFU-SGS3), from -6 to 42 s . . . . .. . , . .,,, , . , -

Page 85: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fig . 51 F l u i d temperature i n steam generator (TFu-SGS), from -20 t o 60(

F ig .

0 . 100 . ZOO. 3 0 0 . 9 0 0 . 5 0 0 . 6 0 0 T I M E AFTER RUPTURE ( 9 )

'too

- - -

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

52 F l u i d temperature i n steam generator (TFU-SGS), from -6 t o 42 s .

Page 86: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100. 0 . 100. 200 . 300 . 900 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( r )

Fig. 53 F l u i d temperature i n steam generator (TFU-SGS-D), from -20 t o 600 s .

t- ; r o o . W a I: W t-

380. - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ('s)

F i g . 54 Fluid temperature in steam generator (TFU-SGS-D), from -6 t o 42 s .

Page 87: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

5 0 0 . - 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 600 .

T l f l E A F T E R RUPTURE ( s )

F ig . 55 F l u i d temperature i n p ressu r i ze r surge 1 i n e (TFU-PRIZE) , from, -20 t o 600 s.

6 0 0 .

- 5 7 5 . Y CI

W a 2 b

5 5 0 . a W a I: W I-

0 - 525 . 3 J

. LC

5 0 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0

T I M E AFTER RUPTURE ( s

F i g . 56 F l u i d temperature i n p ressu r i ze r surge 1 i n e (TFu-PRIZE), from t o 42 s.

Page 88: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- ' too. Y -

2 5 0 . - 1 0 0 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( $ 1

F ig . 57 F l u i d temperature i n pressure suppression tank (TF-PSS-33 and TF-PSS-130), f rom -20 t o 600 s .

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 ' to. 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

F ig . 58 F l u i d temperature i n pressure suppression tank (TF-PSS-33 and TF-PSS- 1 30), from -6 t o 42 s.

Page 89: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . 59 Material temperature in i n t a c t loop (TMu-1T16), from -20 t o 600 s .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( r )

F i g . 60 Material temperature i n i n t a c t loop (TMU-1T16), from -6 t o 42 s .

Page 90: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

G O O .

- 100 . 0 . 100. 200 . 300 . 400 . 5 0 0 . 600 . T I ME AFTER RUPTURE ( s 1

Fig. 61 Material temperature in broken loop (TMB-20B16), from -20 to 600 s.

Fig.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I ME AFTER RUPTURE ( r

6 2 Material temperature in broken loop (TMB-20B16), from -6 to 42 s.

Page 91: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . 63 M a t e r i a l temperature i n vessel f i l l e r (TMV-FI-11 5A and TMV-FI- 156A), f rom -20 t o 600 s .

3 5 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 SO. 0

T I M E AFTER RUPTURE ( s 1

Fig,. 64 M a t e r i a l tempe.rature i n vessel f i 1 l e r (TMV-FI-115A and TMV-FI- 1 56A)., f rom -6 t o 42 s .

Page 92: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

3 5 0 . - 1 0 0 . 0 . 100. 2 0 0 . 300 . q 0 0 . 5 0 0 . 8 0 0 .

T I H E AFTER RUPTURE ( s )

Fig. 65 Material temperature in vessel filler (TMV-FO-156A), from -20 to 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 r o . 0 5 0 . 0 T I M E AFTER RUPTURE ( 9 )

Fig. 66 Material temperature in vessel filler (TMV-FO-156A), from -6 to 42 s.

Page 93: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

K ' too .

350 . - 100 . 0 . 100. i ? O O . 300 . 400 . - 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( s )

Fig . 67 M a t e r i a l temperature i n vessel f i l l e r (TIV-FO-35A and TIV-FO- 115A), f rom -20 t o 600 s.

6 0 0 .

5 5 0 .

5 0 0 .

'+so.

' t o o .

350 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( r 1

Fig . 68 M a t e r i a l temperature i n vesse l f i l l e r (TIV-FO-35A and TIV-FO- 115A), f rom -6 t o 42 s .

Page 94: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- - - l o o . 0 . l o o . 2 0 0 . 300 . r o o . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 9 )

Fig. 69 Material temperature in core barrel inner diameter (TMV-CI-70A) , from -20 to 600 s.

ti'bo. - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( 9 )

Fig. 70 ,Material temperature in core barrel inner diameter (TMV-CI-7OA), from -6 to 42 s.

Page 95: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

350 . - 100 . 0 . 100. 200 . 300 . 400 . 5 0 0 . 6 0 0 .

T I M E A F T E R RUPTURE ( r ) F ig . 71 Ma te r i a l . temperature i n core b a r r e l i n n e r diameter (TMV-CO-70A and TMV-CO-115A), f rom -20 t o 600 s.

5 9 0 .

990 . 5.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E A F T E R RUPTURE ( s 1

F ig . 72 M a t e r i a l temperature i n core b a r r e l i n n e r diameter (TMV-CO-70A and TMV-CO-115A), f rom - G t o 42 s.

Page 96: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

3 0 0 . - 1 0 0 . 0 . 100. 2 0 0 . 300 . W O O . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( s )

Fig. 73 Material temperature in core housing f i l ler (TMV-HF-1 1 5 ~ , TMV-HF- 127W, and TMV-HF-138W), from -20 to 600 s.

I MV-HF- 1 2 7 W

d L W .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 SO. 0 T I M E AFTER RUPTURE ( 9 )

Fig. 74 Material temperature in core housing filler (TMV-HF-115W, TMV-HF- 127W, and TMV-HF-138W), frorn -6 to 42 s.

Page 97: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- -

- 100 . 0 . 100. 2 0 0 . 300 . 900 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( r ) .

F i g . 75 M a t e r i a l temperature i n steam gene ra to r (TMU-SG1 , TMU-SG2, and TMU-SG3), from -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 50.. 0 T I M E AFTER RUPTURE ( s )

F i g . 76 M a t e r i a l temperature i n steam genera to r (TMU-SG1 , TMU-SG2, and TMU-SG3), from -6 t o 42 s .

Page 98: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 4 0 0 . 5 0 0 . 600 . T I M E AFTER RUPTURE ( s )

F i g . 77 Core h e a t e r temperature, Rod D-4 (TH-D4-14 and TH-D4-29), f rom -20 t o 600 S .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E -AFTER RUPTURE ( s )

F i g . 78 Core hea te r temperature, Rod D-4 (TH-D4-'14 and TH-D4-29), f rom -6 t o 42 S.

Page 99: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

250. -100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 .

T I H E AFTER RUPTURE ( r 1

F ig . 79 Core heater temperature, Rod E-4 (TH-E4-09, TH-E4-27, and TH-E4-55), from -20 t o 600 s.

4 0 0 . - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0

T I M E AFTER RUPTURE ( r )

Fig , 80 Core heater temperature, Rod E-4 (TH-~4-09, TH-E4-55), ' from -6 t o 42 s.

4 0 . 0 5 0 . 0

TH-E4- 27, and

Page 100: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

CO

RE

H

EA

TE

R

TE

MP

ER

AT

UR

E

(K

I C

OR

E

HE

AT

ER

T

EM

PE

RA

TU

RE

(

Kl

Page 101: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- - -

- 100 . 0 . 100. 200 . 300 . 400 . 5 0 0 . 600 . T I M E AFTER RUPTURE ( 9 )

F i g . 83 Core heater temperature, Rod A-4 (TH-A4-09, TH-A4-29, and "

TH-A4-39), from -20 t o 600 s .

T I M E AFTER RUPTURE ( r )

Fig. 84 Core heater tenlyernd lure, Rod A-4 (TIi-A4-03, TH-All-29, and TH-A4-39), from -6 t o 42 s.

Page 102: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-

- 100 . 0 . 100. 2 0 0 . 300 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s )

F i g . 85 Core hea te r temperature, Rod A-5 (TH-A5-29 and TH-A5-45), f rom -20 t o 600 S .

. . Y u

I n n n .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

F i g . 86 Core hea te r temperature, Rod A-5 (TH-A5-29 and TH-A5-45), f rom -6 t o 42 S.

Page 103: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 500 . 6 0 0 . T I M E AFTER RUPTURE ( s )

F i g . 87 Core hea te r temperature, Rod B-3 (TH-B3-32), f rom -20 t o 600 5'.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I ME AFTER RUPTURE ( r

F i g . 88 Core hea te r temperature, Rod B-3. (TII-B3-32), f r om -6 t-o 42 s.

Page 104: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . 89 C -20 t o 6C

r e heater temperature, Rod 8-5 (TH-B5-29 and TH-B5-33), f r ~ S .

7 w u .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E A F T E R R U P T U R E ( 9 )

F i g . 90 Core heater temperature, Rod B-5 (TH-B5-29 and TH-~5-33) , from -6 t o 42 S .

Page 105: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

250. - 100 . 0 . 100. 200 . 300 . 400 . 5 0 0 . 6 0 0 .

T I t lE AFTER RUPTURE ( 5 1

F ig . 91 Core hea te r temperature, Rod B-6 (TH-B6-29), f r om -20 t o 600 s.

6 0 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M € AFTER RUPTURE ( 9 )

F i g . 92 Core h e a t e r temperature, Rod B-6 (TH-B6-29), f r om -6 t o 42 s.

Page 106: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1.00. 0 . 100. 2 0 0 . 300 . 900.. 5.00. 600 . T l H E AFTER RUP.TURE ( s.1

F i g . 93 Core heater temperature, Rod C-2 (TH-C2-38), from -20 to 600 s.

F i g . 94 Core heater temperature, Rod C-2 (TH-C2-38), from -6 to 42 s.

Page 107: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. ? O O . 300 . 9 0 0 . 5 0 0 . 6 0 0 . T I M E A F T E R RUPTURE ( s )

F i g . 95 Core heater temperature, Rod C-4 (TH-C4-20, TH-C4-26, and TH-C4-53), f rom -20 t o 600 s.

. - - - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E A F T E R RUPTURE ( s )

F ig . 96 Core heater temperature, Rod C-4 (TH-C4-20, TH-C4-26, and TH-C4-53), f rom -6 t o 42 s.

Page 108: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . 97 Core heater temperature, Rod C - 5 (TH-C5-28), from -20 t o 600 s.

6 0 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I ME AFTER RUPTURE ( r 1

F i g . 98 Core heater temperature, Rod C-5" (TH-C5-28), from -6 t o 42 s .

Page 109: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 600 . T I M E AFTER RUPTURE ( r )

F i g . 99 Core heater temperature, Rod C-6 (TH-C6-53), from -20 t o 600 s.

500.1 - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 ' to . 0 5 0 . 0

T I M E AFTER RUPTURE ( s

Fig . 100 Core ,heater temperature, Rod C-6 (TH-~6-531, from -6 t o 42 s.

Page 110: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 200 . 300 . 9 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 5 )

F i g . 101 Core hea te r temperature, Rod C-7 (TH-C7-07 and TH-C7-15), f rom -20 t o 600 S.

5 0 0 . -1 '0 .0 0 . 0 10 .0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( s )

F ig . 102 Core hea te r temperature, Rod C-7 (TH-C7-07 and TH-C7-15), from -6 t o 42 S. ., . .

Page 111: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

CO

RE

H

EA

TE

R

TE

MP

ER

AT

UR

E

(K)

2

CO

RE

H

EA

TE

R

T E

MP

ER

AT

UR

E

(K

7

d.

a

(P

C

L

C

~g

4

Q)

U)

0

C

A

I n,

111

4

0

-I

LL

0

0

0

0

0 0

-0

0

UI

0

0

P

p P

0

0

0

0

0

00

0

0

0

0

0'

0

0

0

1

1

ID

ID

3

J

ID

CD

* *

rt

0

ID

0

rt

'I

ID 'I

0

rt

rt

ID

4 .-

3

+

ID --

rD

11

'I

xo

'I

r'l-

* 0

* m

o

rt

cf

r

r

B'

'I

'I 70

0

7

4

'm

+

IU

A

l)

A

'"0

4

V1

0

On 2

JT

U

CY

c

C0

I

C

I 0

'

-I

-I

0

4

- +

bJ

-

c

--I c 0

-I

l)

I no

J=

m

1 m

-

u

(r(

I3

- -

0

I -

I @

.

N

Y

3 -0

- -=

V

0

w

Y

0

Y

+l

-h

'I

7

E

s

- - 0

2 I U

I I

R:

0

OI

0

0

c+

rt

0

0

e 0

0

0

0

0

ln

0

., p

Page 112: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s

F i y . 105 Core heater temperature, Rod D-2 (TH-D2-14 and TH-D2-61), from -20 t o 600 S .

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 3 )

F i g . 106 Core heater temperature, Rod D-2 (TH-D2-14 and TH-D2-61), from - 6 t o 42 S.

Page 113: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

2 5 0 . - 100 . 0 . 100. 200.. 300 . 4 0 0 . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( 9 )

F i g . 107 Core heater temperature, Rod D-3 (TH-D3-29 and TH-D3-39), from -20 t o 600 S .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

F i g . 108 Core heater temperature, Rod D-3 (TH-D3-29 and TH-D3-39), f rom -6 t o 42 's .

Page 114: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

250. -100. 0. 100. 200. 300. 400. 500. 6 0 0 .

T I M E AFTER RUPTURE ( r )

F i g . 109 Core heater temperature, Rod D-6 (TH-D6-25), from -20 to 600 s.

1 1 1 1 1 1 1 1 1 1 1 1 1 1

-10.0 0.0 1.0 . O 20.0 30.0 40.0 50 T I M E AFTER RUPTURE ( r )

F i g . 110 Core heater temperature, Rod D-6 (TH-D6-25), from -6 to 42 s.

Page 115: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . 1 1 1

0 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 60( T I M E AFTER RUPTURE ( 9 1

Core heater temperature, Rod D-7 (TH-D7-20), from -20 to 600

6 0 0 . - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( 9 )

F i g . 112 Core heater temperature, Rod D-7 (TH-D7-20), from -6 to 42 s.

Page 116: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

2 5 0 . - 1 0 0 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 500 . 6 0 0 .

T I M E AFTER RUPTURE ( r )

F i g . 11 3 Core heater temperature, Rod D-8 (TH-D8-26), f rom -20 t o 600 s.

6 0 0 . - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 bO.0 5 0 . 0

T I M E AFTER RUPTURE ( 9 )

F i g . 11 4 Core heater temperature, Rod D-8 (TH-D8-26), f rom -6 t o 42 s.

Page 117: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s )

F i g . 1 1 5 Core heater temperature, Rod E-1 (TH-El-33), from -20 to 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( r )

FSy. 116 Core heater temperature, Rod E-1 (TH-El-33), from -6 t o 42 s .

Page 118: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . 11 7 Core heater temperature, Rod E-2 (TH-E2;33), from -20. to 600 s.

. O 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 1 I HE A F T E R RUPTURE. (*r

F i g . 118 Core heater temperature, Rod E-2 (TH-E2-33),, from -6 to 42 s.

Page 119: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100. 0. 100. 200. 300. 400. 500. 60C T I M E AFTER RUPTURE ( 9 ) .

Fig. 119 Core heater temperature, Rod E-3 (TH-E3-05, TH-E3-20, and TH-E3-24), from -20 to 600 s.

-lO..O 0.0 10.0 20.0 30.0 90.0 50.0 T I M E AFTER RUPTURE ( 9 )

F i g . 120 Core heater temperature, Rod E-3 ( ~ ~ - ~ 3 - 0 5 , TH-E3-20, and TH-E3-24), from -6 to 42 s.

Page 120: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

---I n

CO

RE

H

EA

TE

R

TE

MP

ER

AT

UR

E

(K)

mrt

. c

+-t

0 c+

es +

u -

mm

x

m

2 "

0

CO

RE

H

EA

TE

R

TE

MP

ER

AT

UR

E

(K)

4.7

Page 121: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

250 . -100 . 0 . 100. 200 . 300 . 400 . 500.. 6 0 0 .

T I M E AFTER RUPTURE '(s)

Fig. 123 Core heater temperature, Rod E-7 (TH-E7-44), f rom -20 to 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 Q O . 0 5 0 . 0 T I M E AFTER RUPTURE ( 9 )

F ig . 124 Core heater temperature, Rod E-7 (TH-E7-44), from -6 to 42 s.

Page 122: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

2 5 0 . - 100. 0 . 100. 200 . 300 . boo. 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( r )

F i g . 125 Core heater temperature, Rod E-8 (TH-E8-14 and TH-E8-29), from -20 t o 600 S .

6 0 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I PIE AFTER RUPTURE ( s 1

F i g . 126 Core heater temperature, Rod E-8 (TH-E8-14 and TH-E8-29), from - 6 t o 42 S .

Page 123: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 9 )

F i g . 127 Core hea te r temperature, Rod F-2 (TH-F2-07, TH-F2-22, and TH-F2-25), f r om -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 TIME AFTER RUPTURE ( r )

F ig . 128 Core hea te r temperature, Rod F-2 (TH-FZ-U'I, 'TH-F2-22, and TH-F2-25), f r om -6 t o 42 s.

Page 124: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . TIHE AFTER RUPTURE ( 9 )

Fig. 129 Core heater temperature, Rod F-4 (TH-F4-14, TH-F4-29, and TH-F4-44), from -20 to 600 s.

4 0 0 . - 1 0 . 0 0 . 0 10 .0 2 0 . 0 .30 .0 4 0 . 0 5 0 . 0

TIHE AFTER RUPTURE ( r ) Fig. 130 Core heater temperature, Rod F-4 (TH-F4-14, TH-F4-29, and PH-F4-44), from -6 to 42 s.

Page 125: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T l H E AFTER RUPTURE ( r

F i g . 131 Core hea te r temperature, Rod F-5 (TH-F5-20, TH-F5-26, TH-F5-33, and TH'F5-53), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . C T I M E AFTER RUPTURE ( r )

F ig . 132 Core hea te r temperature, Rod F-5 (TH-F5-20, TH-F5-26, TH-F5-33, and TH-F5-53), f rom -6 t o 42 s.

Page 126: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 600 . T l ME AFTER RUPTURE ( r

F i g . 133 Core heater temperature, Rod 6-3 (TH-G3-13), from -20 t o 600 s

- X A n n . -

- 1 0 . 0 0 . 0 1 0 . 0 20 . .O 3 0 . 0 4 0 . 0 50 0 T I M E AFTER RUPTURE ( .r 1

F i g . 134 Core heater temperature, Rod 6-3 (TH-G3-13), from -6 t o 42 s.

Page 127: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . 135 Core heater temperature, Rod 6-4 (TH-G4-29, TH-G4-33, and TH-G4-38), from -20 to 600 s.

5 0 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 . 4 0 . 0 5 0 . 0

T I M E A F T E R RUPTURE ( 9 )

Fig . 136 Core heater temperature, Rod 6-4 (TH-G4-29, TH-G4-33, and TH-G4-38), from -6 to 42 s.

Page 128: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . 137 Core h e a t e r temperature, Rod 6-5 (TH-G5-14 and TH-G5-24), f rom -20 t o 600 S .

-1 .0 .0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 bO.O 5 0 . 0 T I M E AFTER RUPTURE ( r 3

F i g . 138 Core h e a t e r temperature, Rod G-5 (TH-G5-14 and TH-G5-24), f rom - 6 t o 42 S .

Page 129: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-

-100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 600 . T I HE AFTER RUPTURE ( r 1

Fig. 139 Core heater temper.ature, Rod H-5 (TH-H5-32), from -20 t o 600 s.

d V V .

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

F i g . 140 Core heater temperature, Rod H-5 (TH-H5-32), from - 6 to 42 s.

Page 130: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 . - 1 0 0 . 0 . 100 . .200. 3 0 0 . 9 0 0 . 5.00. 6 0 0 .

T It lE AF1E.R RUPTURE C S 1

F i g . 141 Pressure i n i n t a c t l o o p (PU-13 and PU-15L), from -20 t o 600 s .

0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

TIME AFTER RUPTURE ( 9 )

F i g . 142 Pressure i n i n t a c t loop (PU-13 and PU-15L), f rom -6 t o 42 s.

Page 131: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 200 . 300 . 9 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( r )

F i g . 143 Pressure i n broken loop, vessel s i d e (PB-21 and, PB-23), f rom -20 t o 600 S .

T I M E AFTER RUPTURE ( r 1

F ig . 144 Pressure i n broken loop, vessel s i d e (PB-21 and PB-23), f rom -6 t o 42 s.

Page 132: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 . - 1 0 0 . 0 . 100 . 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( r

Fig. 145 Pressure in broken loop, vessel side (PB-CNl), from -20 to 600 s .

0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 ' to . 0 5 0 . 0 .

T I M E AFTER RUPTURE ( r

Fig. 146 Pressure in broken loop, vessel side (PB-CNl), from -6 to 42 s .

Page 133: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F ig . 147 Pressure i n broken loop, pump s i d e (PB-37 and PB-42), f rom -20 t o 600 S.

0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( r )

Fig . 148 Pressure i n broken loop, pump s i d e (PB-37 and PB-42), f rom -6 t o 42 s.

Page 134: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 20 T IHE AFTEF

1 . 300. 400 . 500 . 6 0 0 . RUPTURE ( s )

F i g . 149 Pressure in broken loop, vessel side (PB-HNl), from -20 t o 600 s.

F i g . 150 Pressure in broken loop, vessel side (PB-HNl), from -6 t o 42 s.

Page 135: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 . - 100 . 0 . 100. 2 0 0 . 300 . ' t o o . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( r l

F i g . 151 Pressure i n vessel (PV-UP+10 and PV-LP-166), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 'to. 0 5 0 . 0 T I H E AFTER RUPTURE ( 9 ' )

F ig . 152 Pressure i n vessel (PV-UP+10 and PV-LP-IGG), f rom -6 t o 42 s.

Page 136: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F ig . 153 Pressure i n i n t a c t loop accumulator (PU-ACCl), from -20 t o 600 s.

2 0 0 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 r o . o 5 0 . 0

' T I M E AFTER RUPTURE ( r )

F ig . 154 Pressure i n i n t a c t loop accumulator (PU-ACCl), f rom -6 t o 42 s.

Page 137: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 . -100. 0 . 100. 200. 300. 400. 500. 600 .

1 IHE AFTER RUPTURE ( r 1

F ig . 155 Pressure i n broken loop accumulator (PB-ACCE), from - 2 0 ' to 600 s.

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( r 1

F i g . 156 Pressure, i n broken loop accumulator (PB-ACCZ), from -6 t o 42 s.

Page 138: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 9 )

F ig . 157 Pressure i n steam generator , secondary s i d e (PU-SGSD), f rom -20 t o 600 S.

5 5 0 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( r )

F ig . 158 Pressure i n steam generator, secondary s i d e (PU-SGSD) , fr.om -6 t o 42 S .

Page 139: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

7000 . -100 . 0 . 100. 200 . 300. 400 . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( 9 )

Fig . 159 Pressure i n steam generator, tube r u p t u r e s imulated accumulator (PU-SGS3), from -20 t o 600 s.

Fig. 160 Pressure i n steam generator, tube r u p t u r e s imu la ted accumulator (PU-SGS3), from -6 t o 42 s.

Page 140: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( r )

F i g . 161 Pressure i n pressurizer ( P U - P R I Z E ) , from -20 t o 600 s.

- 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 b 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

F ig . 162 Pressure i n pressurizer (PU-PRIZE), from -6 t o 42 s .

Page 141: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

100. - 100 . 0 . 100. 2 0 0 . 300 . boo. 500 . 600 .

T I M E AFTER RUPTURE ( 5 )

Fig. 163 Pressure i n pressure suppression tank (P-PSS), from -20 t o 600 s.

100. - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 bO.O 5 0 . 0

T I M E AFTER RUPTURE ( 5 )

Fig . 164 Pressure i n pressure suppression tank (P-PSS), f rom -6 t o 42 s,

Page 142: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

10. 0 . 100. 2 0 0 . 300 . boo. 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( r )

Fig. 165 Different ia l pressure in i n t ac t loop (DPu-3-7), from -20 t o 600 s.

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( r )

Fig. 166 Different ia l pressure i n i n t a c t loop (DPU-3-7), from -6 t o 42 s .

Page 143: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 2 5 . - 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 .

T I H E AFTER RUPTURE ( 9 )

Fig . 167 D i f f e r e n t i a l pressure i n i n t a c t loop (DPU-6-SGIP), f rom -20 t o 600 S.

2 0 0 .

i 5 0 .

100.

5 0 .

0 .

- 5 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 .

T I M E AFTER RUPTURE ( s )

Fig . 168 D i f f e r e n t i a l pressure ' i n i n t a c t ' loop (DPU-6-SGIP) , from -6 t o 42 S .

Page 144: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- - - T I M E AFTER RUPTURE ( 9 )

Fig. 169 Di f fe ren t ia l pressure in i n t a c t loop (DPU-SGOP-7), from -20 t o 600 S .

a

5 Inn.

- 2 0 0 . - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( r ) Fig. 170 Different ia l pressure in i n t a c t loop (DPU-SGOP-7), from -6 t o 42 S .

Page 145: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E A F T E R RUPTURE ( 9

F ig . 171 D i f f e r e n t i a l pressure i n i n t a c t loop (DPU-7-10), f rom -20 t o 600 S.

2 0 . 0

1 5 . 0

1 0 . 0

5 . 0

0 . 0

- 5 . 0 - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E A F T E R RUPTURE ( r 1 Fig . 172 D i f f e r e n t i a l pressure i n i n t a c t loop (DPU-7-10), from -6 t o 42 S .

Page 146: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 2 0 . - 1 0 0 . 0 . 100. 2 0 0 - 300 . 400 . 5 0 0 . 600 .

T I M E AFTER RUPTURE ( s )

Fig . 173 D i f f e r e n t i a l p r e s s u r e i n i n t a c t loop, low range (DPU-12-lOL) , from -20 t o 600 s.

- 5 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 Q O . 0 5 0 . 0

T I M E AFTER RUPTURE ( s

Fig . 174 D i f f e r e n t i a l p r e s su re i n i n t a c t loop , low range (DPU-12-10~) , from -6 t o 42 S.

Page 147: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T l M E A F T E R RUPTURE ( s 1

Fig . 175 D i f f e r e n t i a l pressure i n i n t a c t loop (DPU-12-15), f rom' -20 t o 600 S.

- 2 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E A F T E R < R U P T U R E ( r )

Fig. 176 D i f f e r e n t i a l pressure i n i n t a c t loop (DPu-1 2-15), from -6 t o 42 S .

Page 148: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 2 5 . - 1 0 0 . 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( s )

F ig . 177 D i f f e r e n t i a l pressure i n i n t a c t l oop (DPU-15-3), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 , 5 0 . 0 T I M E AFTER RUPTURE ( s )

F ig . 178 D i f f e r e n t i a l pressure i n i n t a c t l oop (DPU-15-3), f rom -6 t o 42 s.

Page 149: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 4 0 0 . 5 0 0 . 600 . T I H E A F T E R R U P T U R E ( s

Fig . 179 D i f f e r e n t i a l pressure i n i n t a c t loop, low range (DPU-15-3L), f rom -20 t o 600 s.

- 25 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E A F T E R RUPTURE ( r ) Fig . 180 D i f f e r e n t i a l pressure i n i n t a c t loop, low range (DPU-15-3L), f rom -6 t o 42 s.

Page 150: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...
Page 151: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 4 0 0 . 5 0 0 . 6 0 0 . ' T I M E AFTER RUPTURE ( s )

Fig. 183 Differential pressure i n i n t ac t loop (DPU-PR-4), from -20 t o 600 S .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s

Fig. 184 Differential pressure i n i n t a c t loop (DPU-PR-4), from -6 t o 42 S .

Page 152: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 3 0 . - 1 0 0 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( s

Fig. 185 Differential pressure in broken loop (DPB-21-IANN), from -20 to 600 S .

i n . b

- 3 0 . - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( 9 )

Fig. 186 Differential pressure in broken loop (DPB-21-IANN) , from -6 to 42 S .

Page 153: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E . A F T E R RUPTURE ( s 1

Fig . 187 D i f f e r e n t i a l pressure i n broken loop (DPB-23-CN~ ), f rom -20 t o 600 S .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E A F T E R RUPTURE ( r )

Fig . 188 D i f f e r e n t i a1 pressure i n broken 1 oop (DPB-23-CN1) , from -6 t o 42 S.

Page 154: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( r )

F ig . 189 D i f f e r e n t i a l pressure i n broken loop (DPB-CNI-24), from -20 t o 600 S.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I ME AFTER RUPTURE ( r 1

Fig . 190 D i f f e r e n t i a l pressure i n broken loop (DPB-CNI-24) , from -6 t o 42 S.

Page 155: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 9 )

Fig . 191 D i f f e r e n t i a l pressure i n broken l oop (DPB-30-43), f rom -20 t o 600 S.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( r 1

Fig . 192 D i f f e r e n t l a l pressure in broken loop (DPB-30-431, f rom -6 t o 42 S .

Page 156: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 9 )

F ig . 193 D i f f e r e n t i a l pressure i n broken loop (DPB-32~-36~) , f rom -20 t o 600 S .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

F i g . 194 D i f f e r e n t i a l pressure i n broken loop (DPB-32U-36L), f rom - 6 t 0 4 2 ~ . .

Page 157: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( r )

F ig . 195 D i f f e r e n t i a l pressure i n broken l oop (DPB-36L-37), f rom . -20 t o 600 S .

- 2 0 0 . a a a - w 150. a 3 U) U)

100. a J a I

C so.

Z W a W LL 0 . LL LI

0

-50 ; - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( 9 )

F ig , 196 D i f f e r e n t i a l pressure i n broken l oop (DPB-36L-37), from - 6 t o 42 s.

Page 158: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I ME AFTER RUPTURE ( r 1

F i g . 197 Different ia l pressure i n broken loop (DPB-38-40), from -20 t o 600 s .

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( r

Fig. 198 Different ia l pressure i n broken loop (DPB-38-40), from -6 t o 42 S.

Page 159: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 20 . -100 . 0 . 100. 2 0 0 . 300 . boo. 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( s ) Fig. 199 Differential pressure i n broken loop (DPB-40-423, from -20 t o 600 S .

- 2 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 bO.0 5 0 . 0

T I M E AFTER RUPTURE ( r ) Fig. 200 Different ia l pressure i n broken loop (DPB-40-42), from -6 t o 42 S .

Page 160: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E A F T E R RUPTURE ( s )

Fig. 201 Differential pressure in broken loop (DPB-HN1-43), from -20 to 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E A F T E R RUPTURE ( r )

Fig. 202 Differential pressure in broken loop (DPB-HN1-43), from -6 to 42 S.

Page 161: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( r )

Fig. 203 Differential pressure in vessel (DPV-UP-IANN) , from -20 to 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( r 1

Fig. 204 Differential pressure in vessel (DPV-UP-IANN), from -6 to 42 s.

Page 162: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g .

100 . 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 T I M E AFTER RUPTURE ( r )

205 D i f f e r e n t i a l p ressure i n vessel (DPV-0-9GQ) , from -20 t o 600

LO.

- 2 0 . -10.0 0.0 10.0 '20.0 30.0 q0.0 50.0

T I M E A F T E R R U P T U R E ( s )

Fig . 206 D i f f e r e n t i a l pressure i n vessel (DPV-0-9GQ), f rom -6 t o 42 s.

Page 163: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s )

Fig . 207 D i f f e r e n t i a l pressure i n vessel (DPV-9-26QQ), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 9 )

F ig . 208 D i f f e r e n t i a l pressure i n vessel (DPV-9-26QQ), from -6 t o 42 s.

Page 164: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 1 0 0 . ZOO. 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( r )

Fig. 209 Differential pressure in vessel (DPV-9-166QQ), from -20 to 600 s.

- 5 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( r ) Fig. 210 Differential pressure in vessel (DPV-9-166QQ), from -6 to 42 s.

Page 165: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 600 . T I M E AFTER RUPTURE ( $ 1

Fig . 211 D i f f e r e n t i a l p ressu re i n vessel (DPV-26-55QM), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 9 )

F ig . 21 2 D i f f e r e n t i a l pressure i n vessel (DPV-26-55QM), f rom -6 t o 42 s.

Page 166: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 600 . . T I ME AFTER RUPTURE ( r 1

Fig. 213 ~ifferential'pressure in vessel (DPV-55-llOMM), from -20 to 600 s.

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( r )

Fig. 214 Differential pressure in vessel (DPV-55-llOMM), from -6 to 42 s.

Page 167: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( r )

Fig. 215 Differential pressure in vessel (DPV-110-156MQ), from -20 to 600 s.

/

2 0 .

- 1 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( r ) Fig. 216 Differential pressure i n vessel (DPV-110-156MQ), from -6 to 42

Page 168: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-I.

a

DIF

FE

RE

NT

IAL

P

RE

SS

UR

E

(kP

s)

I I

L-

"

d

IE

U)

0

m

0

03

-.

- 0

0

0

0

0

Page 169: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-75. - 100 . 0 . 100. 2 0 0 . 300 . 4 0 0 . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( 5 )

Fig. 219 Differential pressure in vessel (DPV-166Q+10), from -20 to 600 s.

- . W V .

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 30'. 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 5 )

Fig. 220 Differential pressure in vessel (DPV-166Q+10), from -6 to 42 S .

Page 170: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . boo. 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s )

F i g . 221 D i f f e r e n t i a1 pressure i n i n t a c t loop accumulator (DPU-ACC1-TB) , f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 b 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

Fig . 222 D i f f e r e n t i a l pressure i n i n t a c t l oop accumulator (DPU-ACC1-TB), f rom -6 t o 42 s.

Page 171: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100 . 0 . 100. 2 0 0 . 300 . 4 0 0 . 5 0 0 . 6 0 0 . T I H E AFTER RUPTURE ( r 1

F i g . 223 D i f f e r e n t i a l p ressure i n broken 1 oop accumulator (DPB-ACC2-TB) , f rom -20 t o 600 s.

- 1 0 . 0 . o . o ' 10.,0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( r 1

F i g . 224 n i f f e r e n t i a l pressure i n broken 1 oop accumulator (DPB-ACC2-TB) , f rom -6 t o 42 s.

Page 172: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s )

Fig. 225 Different ia l pressure i n steam generator secondary (DPU-SG-SEC) , from -20 t o 600 s .

Page 173: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fig. 227 Differentia (DPU-SG-DISC), from

100. 2 0 0 . 300 . W O O . 5 0 0 . 6 0 0 . T I M E A F T E R RUPTURE ( s )

1 pressure across steam generator o u t l e t o r i f i c e -20 t o 600 S.

-CS. - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( s ) Fig. 228 Different ia l pressure across steam generator o u t l e t o r i f i c e (DPU-SG-DISC), from -6 t o 42 s.

Page 174: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 10000 . - 1 0 0 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( s ) Fig. 229 Differential ressure between simulated rupture injection line and Spool 6 (DPU-SGS-6 , from -20 to 600 s.

- 10000 . - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( s ) Fig. 230 Differential pressure between simulated rupture injection line and Spool 6 (DPU-SGS-6), from -6 to 42 s.

Page 175: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

2 0 . 0

1 7 . 5

1 5 . 0

1 2 . 5

1 0 . 0 - 100. 0 . 100. 2 0 0 . 300 . 4 0 0 . 5 0 0 . 60C

T I M E AFTER RUPTURE ( s ) g. 231 Differential pressure in intact loop tube rupture simulated cumul ator (DPU-SGS3-TB) , from -20 to 600 s.

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 9 )

Fig. 232 Diffcrcntial pressure in in tac t loop tubc rupturc simulated accumulator (DPU-SGS3-TB), from -6 to 42 s .

Page 176: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . 900 . 5 0 0 . 600 . T I M E AFTER RUPTURE ( s )

F ig . 233 D i f f e r e n t i a l pressure i n pressure suppression tank (DP-PSS-TB) , f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

Fig . 234 D i f f e r e n t i a l pressure i n pressure suppression tank (DP-PSS-TB) , f rom -6 t o 42 s.

Page 177: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 9 )

Fig . 235 Volumetr ic f l o w i n i n t a c t loop (FTU-1 and FTU-9), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s

Fig . 236 Vol~rmet.ric f low i n i n t a c t loop (FTU-1 and FTU-9), f rom -6 t o 42 s . '

Page 178: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . W O O . 5 0 0 . 600 . TI .ME AFTER RUPTURE ( s )

F i g . 237 Volumetr ic f l o w i n i n t a c t l oop (FTU-13.and FTU-15), f rom -20 t o 600 s .

-25 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( 9 )

Fig . 238 Volumetr ic f l o w i n i n t a c t loop (FTU-13 and FTU-15), from -6 t o 42 s.

Page 179: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100 . 0 . 100. 200 . 300 . 9 0 0 . 500 . , 600 . T I M E A F T E R R U P T U R E t r )

Fig . 239 Volumetr ic f l o w i n broken loop (FTB-21), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 ' t o . 0 5 0 . 0 T I M E A F T E R RUPTURE ( r )

Fig. 240 Volumetr ic f low i n broken l oop (FTB-21), f rom -6 t o 42 s.

Page 180: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( S )

F ig . 241 Volumetr ic f l o w i n broken loop (FTB-30 and FTB-37), from -20 t o 600 s .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 5 )

F ig . 242 Volumetr ic f l o w i n broken loop (FTB-30 and FTB-37), from -6 t o 42 s.

Page 181: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-75. - 100 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( s ) Fig . 243 Volumetr ic f l o w i n core entrance (FTV-CORE-IN), f rom -20 t o 600 s .

- 7 5 . - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 ,

T I M E AFTER RUPTURE ( 3 )

Fig . 244 Volumetr ic f l o w i n core entrance (FTV-CORE-IN), f rom -6 t o 42 s.

Page 182: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F ig . 24 ( FTU-HP

0 . 1 5

- 0 . 1 0 n \ - - 3 0 2 0 . 0 5

0 L.

a + W r 3 0 . 0 0 J 0 >

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T IHE AFTER RUPTURE ( s )

F ig . 246 Volumetr ic f l o w . i n i n t a c t l oop h igh pressure i n j e c t i o n l i n e (FTU-HPIS), f rom -6 t o 42 s.

Page 183: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fig . ( FTB

0 . 2 0

0 . 1 5 CI

m \ - - 1

0 . 1 0 0 J (L

0 - 0 . 0 5 a e W t 3

d 0 . 0 0 >

- 0 . 0 5 - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E A F T E R RUPTURE ( s ) Fig . 248 Volumetr ic f l o w i n broken loop h igh pressure i n j e c t i o n l i n e (FTB-HPIS), f rom -6 t o 42 s.

Page 184: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fig . ( FTU

. . 0 0 . 0 . 100 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 60C

T I M E AFTER RUPTURE ( r ) 249 Volumetr ic f l o w i n i n t a c t loop low pressure i n j e c t i o n l i n e

-LPIS), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 Q O . 0 5 0 . 0 T I M E AFTER RUPTURE ( 9 )

F ig . 250 Volumetr ic f l o w i n i n t a c t loop low pressure i n j e c t i o n l i n e (FTU-LPIS), f rom -6 t o 42 s.

Page 185: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0'0 . 0 . 100 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T. IME AFTER RUPTURE ( 8 )

Fig. 251 V o l u m e t r i c f l o w i n broken loop low pressure i n j e c t i o n l in i (FTB-LPIS), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( r )

Fig . 252 Volumetr ic f l o w i n broken loop low pressure i n j e c t i o n l i n e (FTB-LPIS), f rom -6 t o 42 s.

Page 186: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100 . 200.. 300 . 4 0 0 . 500 . 6 0 0 . T I M E AFTER RUPTURE ( s )

Fig. .253 Volumetric flow in intact loop accumulator discharge llr~e (FTU-ACC1 ), from -20 to 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

Fig. 254 Volumetric flow in intact loop accumulator discharge line ( FTU-ACC1 ) , from -6 to 42 s.

Page 187: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . Q O O . 5 0 0 . 6 0 0 . T I M E A F T E R RUPTURE ( s )

Fig. 255 Volumetr ic f low i n broken loop accumulator discharge l i n e (FTB-ACC2), f rom -20 t o 600 s .

Fig . ( FTB

Page 188: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- - -

- 1 0 0 . 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s )

F ig . 257 Volumetr ic f low i n i n t a c t l oop steam generator tube rup tu re s imu la ted accumulator (FTU-SGS), from -20 t o 600 s.

0 . 2 0 0

0 . 1 5 8 - n \ - x 0 . 1 0 0 0 J LL

0 - 0 . 0 5 0 a b W r 3

2 0 . 0 0 0 >

- 0 . o 5 o r - - m a . . . . . . . - . . . . - . . . . - . . . .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 ' to. 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

Fig. 258 Volumetr ic f l o w i n i n t a c t loop steam generator tube rup tu re s imu la ted accumulator (FTU-SGS), from -6 t o 42 s.

Page 189: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fig.

Fig .

0 . 0 . 100. 2 0 0 . 300 . 4 0 0 . 5 0 0 . - 60( T l M E 4 F T E R RUPTURE ( s 1,

Volumetric flow from pressurizer (FTU-PRIZE) , from' -20 t o 60(

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 T l M E AFTER RUPTURE ( s )

260 Volumetric flow from pressurizer (FTU-PRIZE), from -6 t o 42

Page 190: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g .

1 0 . 0 X FTV-4OA

5 . 0

0 . 0

- 5 . 0

- 1 0 . 0

- 1 5 . 0

- 2 0 . 0 - 1 0 0 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 60C

T I M E AFTER RUPTURE ( 5 )

261 F l u i d v e l o c i t y i n vessel (FTV-40A and FTV-40M), from -20 t o 60

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 5 )

F i g . 262 F l u i d v e l o c i t y i n vessel (FTV-40A and FTV-40M), from -6 t o 42 s.

Page 191: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 3 0 0 . 9 0 0 . 5 0 0 . 6 0 0 . T I H E AFTER RUPTURE ( s

Fig . 263 Momentum f l u x i n i n t a c t l oop (FDU-I), f rom -20 t o 600 s ,

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 r o . o 5 0 . 0 T I H E AFTER RUPTURE ( s )

F ig . 264 Momentum f l u x i n i n t a c t l oop (FDU-I), f rom -6 t o 42 s.

Page 192: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s )

Fig . 265 Momentum f l u x i n i n t a c t loop (FDU-5), from -20 t o 600 s.

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 3 )

F i g . 266 Momentum f l u x i n i n t a c t l oop (FDU-5), f rom -6 t o 42 s.

Page 193: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100 . 0 . 100. 2 0 0 . 300 . 4 0 0 . 500 . 6 0 0 . T I M E AFTER RUPTURE ( s )

Fig . 267 Momentum f l u x i n i n t a c t loop (FDU-lo), from -20 t o 600 s .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 9 )

Fig. 268 Momentum f l u x i n i n t a c t l oop (FDU-lo), from -6 t o 42 s .

Page 194: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 500 . 6 0 0 . T I H E AFTER RUPTURE ( s

F ig . 269 ~omentum f l u x i n i n t a c t loop (FDU-13), f rom -20 t o 600 s.

- C d w w .

- 1 0 . 0 0 . 0 1 0 . 0 . 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 9 )

F ig . 270 Momentum f l u x i n i n t a c t loop (FDU-13), f rom -6 t o 42 s.

Page 195: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- - -

-100. 0 . 100 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E A F T E R RUPTURE ( 9 )

Fig . 271 Momentum f l u x i n broken l oop (FDB-21), f rom -20 t o 600 s.

- 2 5 0 0 0 . - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 SO. 0

T I M E A F T E R RUPTURE ( 9 )

Fig . 272 Momentum f 1 ux i n broken l oop (FDB-21) , from -6 t o 42 s.

Page 196: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . 273

0 . 10 T I M E

lomentum f l u x i n

1 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 AFTER RUPTURE ( s )

woken loop (FDB-23), from -20 t o 600 s.

0 . 3 0 0 E + 0 6

. . rU 0 . 2 0 0 € + 0 6

C I

C .\ Q, -. -

0 . 1 0 0 E + 0 6 3 .J LL

s 3 C Z 0 . 0 0 0 W r 0 r

=-O. l00E+08 - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0

T I M E AFTER RUPTURE ( s ) F i g . 274 Momentum f l u x i n broken loop (FDB-23), from -6 t o 42 s.

Page 197: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1000. -100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 .

T I M E A F T E R R U P T U R E ( r ) F i g . 275 Momentum f lux i n broken loop (FDB-30), from -20 t o 600 S .

-2300 . I - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E A F T E R RUPTURE ( s )

F ig . 276 Momentum f lux in broken loop (FDB-30), from - 6 t o 42 s.

Page 198: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 5 )

F ig . 277 Momentum f l u x i n broken l oop (FDB-37), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 5 )

F ig . 278 Momentum f l u x i n broken l oop (FDB-37), f rom -6 t o 42 s.

Page 199: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 10000. - 100 . 0 . 100. 200 . 300 . 400 . 500 . 6 0 0 .

T I M E AFTER RUPTURE ( r ) \

Fig. 279 Momentum f l u x i n broken loop (FDB-42), from -20 t o 600 s.

- 10000. - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( r ) Fig . 280 Momentum f l u x i n broken loop (FDB-42), from -6 t o 42 s.

Page 200: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E A F T E R RUPTURE ( 5 )

F ig . 281 Momentum f l u x i n core entrance (FDV-CORE-IN), f rom -20 t o 600 s.

.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E A F T E R RUPTURE ( 5 )

Fig . 282 Momentum f l u x i n core entrance (FDV-CORE-IN), from -6 t o 42 s.

Page 201: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

. - 7 5 0 . 0

5 0 0 . 0

2 5 0 . 0

0 . 0 - 100 . 0 . 100. ZOO. 300 . 400 . 5 0 0 . 600 .

T I M E A F T E R RUPTURE ( s )

g. 283 Densi ty i n i n t a c t l oop (GU-1T and GU-1B), from -20 t o 600 s..

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E A F T E R RUPTURE ( r )

Fig . 284 Densi ty i n i n t a c t l oop (GU-IT and GU- lB) , f rom -6 t o 42 s.

Page 202: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...
Page 203: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . 287

1000.0

9 5 0 . 0

- M .

Q,

a " 500.0

> I- c.

V) z W 0 E50.0

0.0 -10.0 0.0 10.0 20.0 30.0 QO. 0 5 a

T I M E A F T E R R U P T U R E ( 5 )

F l g . 288 Dens i ty i n i n t a c t loop (GU-5VR and GU-1 OVR) , from -6 t o 42 s

Page 204: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 . - 1 0 0 . 0 . 100. 2 0 0 . 300 . W O O . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( r )

Fig . 289 Density i n i n t a c t loop (GU-13VR), from -20 t o 600 s.

0 . - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 . 4 0 . 0 SO. 0

T I M E AFTER RUPTURE ( 9 )

Fig . 290 Density i n i n t a c t loop (GU-13VR), from -6 t o 42 s.

Page 205: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s 1

F i g . 291 Dens i ty i n i n t a c t l oop (GU-15T and GU-15B), f rom -20 t o 600 s.

Page 206: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 500 . 6 0 0 . T I M E AFTER RUPTURE ( s )

F ig . 293 Densi ty i n i n t a c t loop (GU-15C), from -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 q0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

F ig . 294 Densi ty i n i n t a c t loop (Gu-15C), from -6 t o 42 s.

Page 207: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E A F T E R RUPTURE ( 9 )

F i g . 296 Density i n broken loop (GB-21T and GB-21B), from -6 t o 42 s .

Page 208: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 . - 1 0 0 . 0 . 100. 2 0 0 . 300 . Q O O . 5 0 0 . 6 0 0 .

T I n E AFTER RUPTURE ( s 1

Fig. 297 Density in broken loop ( G B - 2 . 1 ~ ) ~ from -20 to 600 s.

1 2 5 0 . 0

1 0 0 0 . 0

7 5 0 . 0

5 0 0 . 0

2 5 0 . 0

0 . 0 - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 ' to. 0 SO. 0

T I HE AFTER RUPTURE ( r 1 Fig. 298 Density in broken loop ( G B - 2 1 ~ ) ~ from -6 t o 42 s.

Page 209: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F ig a

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s 1

Fig . 300 Density i n broken loop (GB-30T and GB-30B), from -6 t o 42 s.

Page 210: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

V .

- 1 0 0 . 0 . 1 0 0 . 2 0 0 . 3 0 0 . 9 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s )

F i g . 301 Dens i ty i n broken loop (GB-30C), f rom -20 t o 600 s.

- 1 O ' . O 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 b 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( r )

F ig . 302 Densi ty i n broken loop (GB-~OC), from -6 t o 42 s.

Page 211: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 . T I H E AFTER RUPTURE ( r 1

F i g . 303 D e n s i t y i n b r o k e n l o o p (GB-37HZ), f r o m -20 t o 600 s.

Page 212: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

-100. 0. loo. 200. 300. 900. 500. 600. T I M E AFTER RUPTURE ( s

F i g . 305 Dens i ty i n broken 1 oop (GB-42VR), from -20 t o 600 s.

-10.0 0.0 10.0 20.0 30.0 90.0 50.0 T I M E AFTER RUPTURE ( s )

F i g . 306 Densi ty i n broken l oop (GB-42VR), from -6 t o 42 s.

Page 213: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 200 . 300 . 4 0 0 . 5 0 0 . 600 T I M E AFTER RUPTURE ( e l

F i g . 307 Densi ty i n vessel (GV-COR-150HZ), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . T I M E AFTER RUPTURE ( 9 )

Fig. 308 Densi ty i n vessel (GV-COR-150HZ), f rom -6 t o 42 s.

Page 214: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 Q O . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

F i g . 31 0 Dens i t y i n vessel (GVLP-165HZ and GVLP-172HZ), f rom -6 t o 42 s.

Page 215: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fig.

0 0 . 0 . 100. 200 . 300 . 9 0 0 . 5 0 0 . 600 T I M E AFTER RUPTURE ( 9 )

311 Mass f low i n i n t a c t loop (FDU-1, GU-lC), f rom -20 t o 600 s.

1 5 . 0

1 0 . 0

5 . 0

0 . 0

- 5 . 0 - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T, IME AFTER RUPTURE ( 9 1

i g . 312 Mass f l o w i n i n t a c t loop (FDU-1, GU-IC), from -6 t o 42 s.

Page 216: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . boo. 500 . 6 0 0 . T I M E AFTER RUPTURE ( s )

Fig . 313 Mass f l o w i n i n t a c t loop (FTU-1, GU-IC), from -20 t o 600 s.

G . J

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 9 )

F ig . 314 Mass f low i n i n t a c t loop (FTU-1, GU-IC), f rom -6 t o 42 s.

Page 217: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 3 0 0 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( r

F ig . 31 5 Mass f low in i n t a c t l o o p (FDU-5, GU-5VR), f rom -20 t o 600 s .

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 9 )

L F i g . 316 Mass f l o w i n i n t a c t l o o p (FDU-5, GU-5VR), f rom -6 t o 42 s. /

Page 218: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 160. 2 0 0 . 300 . 9 0 0 . 500 . 6 0 0 . TIHE AFTER RUPTURE ( 3 1

F i g . 317 Mass f low i n i n t a c t l oop (FTU-9, GU-IOVR), from -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I ME AFTER RUPTURE ( r 1

F ig . 318 Mass f l o w i n i n t a c t l oop (FTU-9, GU-IOVR), f rom - 6 t o 42 s.

Page 219: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 500 . 6 0 0 . T I M E AFTER RUPTURE ( r ) '

F i g . 319 Ma'ss f l o w i n i n t a c t loop (FDU-10, GU-IOVR), from -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . T I M E AFTER RUPTURE ( $ 1

Fig . 320 Mass f l o w i n i n t a c t loop (Frill-10, GU-IOVR), f rom -6 t o 42 s.

Page 220: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

1 0 . 0

7 . 5

A

n \ 5 . 0 a Y

x 0

2 . 5 LL

II) U, a s

0 . 0

- 2 . 5 - 1 0 0 . 0 . 106. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 .

T I M E AFTER RUPTURE ( s )

Fig . 321 Mass f l o w i n i n t a c t l oop (FDU-13, GU-13VR), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 . 2 0 . 0 3 0 . 0 ' 4 0 . 0 5 0 . 0 'T IME AFTER RUPTURE ( s )

F ig . 322 Mass f l o w i n i n t a c t l oop (FDU-13, GU-13VR), f rom -6 t o 42 s.

Page 221: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s )

F ig . 323 Ma$s f low i n i n t a c t l oop (FTU-13, GU-13VR), f rom -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I H E AFTER RUPTURE ( s )

F i g . 324 Mass f l o w i n i n t a c t l o o p (FTU-13, GU-13VR), f r om -6 t o 42 s.

Page 222: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . 9 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s 1

F i g . 325 Mass f l o w i n i n t a c t l o o p (FTU-15, GU-15C), f rom -20 t o 600 s .

- 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

F ig . 326 Mass f low i n i n t a c t l o o p (FTU-15, GU-15C), f rom -6 t o 42 s.

Page 223: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . 400 . ' 500 . 6 0 0 . T I ME A F T E R RUPTURE ( 9

F i g . 327 Mass f l o w i n broken l oop (FDB-21, GB-21C), from -20 t o 600 s.

- 1 0 . - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0

T I M E A F T E R RUPTURE ( 9 )

F ig . 328 Mass f l o w i n broken l oop (FDB-21, GB-21C), from -6 t o 42 s.

Page 224: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . boo. 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( 9 )

F i g . 329 Mass f l o w i n broken l o o p (FTB-21, GB-21C), f rom -20 t o 600 s .

- 1 O ; O 0 . 0 10 .0 2 0 . 0 3 0 . 0 Q O . 0 5 0 . 0 T I M E AFTER RUPTURE ( s )

F i g . 330 Mass f l o w i n broken l o o p (FTB-21, GB-21C), f r om -6 t o 42 s.

Page 225: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

3 . 0

2 . 0

L.

n \ a, 1 . 0 s - f 0

0 . 0

ln ul 4 s

- 1 . o

- 2 . 0 - 100 . 0 . 100. 2 0 0 . 300 . 400 . 5 0 0 . 6 0 0 .

T I M E A F T E R RUPTURE ( s )

Fig . 331 Mass f low i n broken loop (FDB-30, GB-30C), from -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E A F T E R RUPT,URE ( s )

F ig . 332 Mass f low i n broken l oop (FDB-30, GB-30C), f rom -6 t o 42 s.

Page 226: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100. 2 0 0 . 300 . 900'. 5 0 0 . 6 0 0 . T I M E A F T E R RUPTURE ( s )

F i g . 333 Mass f l o w i n broken l oop (FTB-30, GB-30C), f rom -20 t o 600 s.

1 0 . 0

5 . 0

A

n \ 0 . 0 -11 - 3t 0

- 5 . 0 LL

U) V) u I:

- 1 0 . 0

- 1 5 . 0 - 1 0 . 0 0 . 0 10 .0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E A F T E R RUPTURE ( s )

F ig . 334 Mass f l o w i n broken l oop (FTB-30, GB-30C), f r o m -6 t o 42 s.

Page 227: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . boo. 5 0 0 . 6 0 0 . T I ME AFTER RUPTURE ( s 1

Fig . 335 Mass f l o w i n broken l oop (FDB-37, GB-37HZ), from -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 :O T I M E AFTER RUPTURE ( s )

Fig . 336 Mass f low i n broken l oop (FDB-37, GB-37HZ), from -6 t o 42 s.

Page 228: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 . 0 0 - 1 0 0 . 0 . 100. 2 0 0 . 3 0 0 . 400 . 5 0 0 . 6 0 0 .

T I H E AFTER RUPTURE ( e l

F i g . 337 Mass flow i n broken loop (FTB-37, GB-37HZ), from -20 to 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 . . 40 .0 5 0 . 0 TIME AFTER RUPTURE ( r )

F i g . 338 Mass flow in broken loop (FTB-37, GB-37HZ), from - 6 t o 42 s.

Page 229: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

100. 200 . 300 . 4 0 0 . 5 0 0 . 6 0 0 . -100 . 0 . T I ME A F T E R RUPTURE t r 1

Fig . 339 Mass f l o w i n vessel (FDV-CORE-IN, GV-COR-150HZ), from -20 t o 600 s.

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 'to. 0 5 0 . 0 T I M E A F T E R RUPTURE ( s 1

Fig . 340 Mass f l o w i n vessel (FDV-COKE-IN, GV-COR-150HZ), .from - G to'

42 s.

Page 230: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E A F T E R RUPTURE ( r )

F i g . 341 Mass f l o w i n vessel (FTV-CORE-IN, GV-COR-150HZ), f rom -20 t o 600 s .

. -

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 T I M E A F T E R RUPTURE ( 9 )

F ig . 342 Mas.s f l o w i n vessel (FTV-CORE-IN, GV-COR-150HZ), f rom -6 t o 42 s.

Page 231: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

F i g . - 2 0

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 9 0 . 0 5 0 . 0 T I M E A F T E R R U P T U R E ( 9 )

F i g . 344 Core hcatcr rod t o t a l power (PWRCOR T-1 and PWRCOR T-2). from -6 t o 42 S .

Page 232: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 0 . 0 . 100 . 2 0 0 . 300 . 4 0 0 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE ( s )

F i g . 345 Core h e a t e r vo l t age (VOLTCOR-T), from -20 t o 600 s .

- 1 0 . 0 0 . 0 1 0 . 0 20,O 3 0 . 0 9 0 . 0 5 0 . 0 T I M E AFTER RUPTURE ( 9 )

F i g . 346 Core h e a t e r vo l t age (VOLTCOR-T), from -6 t o 42 s.

Page 233: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 . - 100 . 0 . 10.0. 2 0 0 . 300 . 4 0 0 . 5 0 0 . 6 0 0 .

T I M E ' A F T E R RUPTURE ( s F i g . 347 Core heater t o t a l current (AMPCOR-T), from -20 t o 600 s.

- -

T I M E A F T E R RUPTURE ( 9 )

F i g . 348- Core heater t o t a l -current (AMPCOR-T), from -6 t o 42 s.

Page 234: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 , 9 0 . 6 5 U . 0 T I M E A F T E R RUPTURE ( 9 )

F i g . 350 Primary pump current ( P U M P U - C U R ) , from -6 t o 42 s .

Page 235: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 100 . 0 . 100. 2 0 0 . 300 . ' 400 . 5 0 0 . 6 0 0 . T I M E AFTER RUPTURE (sl

Fig . 357 Pr imary pump speed (PuMPU-RPM), f rom -20 t o 600 s.

1e50. - 1 0 . 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0

T I M E AFTER RUPTURE ( 9 )

F i g . 352 P.rimary pump speed (PUMPU-RPM), f rom -6 t o 42 s.

Page 236: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

. IV. REFERENCE

1 . E. M. Feldman and D. J . Olson, Semiscale Mod-1 Program and System Description for the Blowdown Heat Transfer Tests (Test Series 2), ANCR-1230 (August 1975).

Page 237: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

APPENDIX A

DATA ACQUISITION SYSTEM CAPABILITIES

Page 238: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

Page 239: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

APPENDIX A ,

DATA ACQUISITION SYSTEM CAPABILITIES

The Semiscale Mod-1 system provides for the acquisition, processing, and presentation ,of test data. Detectors, signal conditioners, signal processors, and recording and display equipment comprise the test data system. The data obtained are principally recorded on an on-line digital system. Selected data channels are also recorded on an analog system.

The on-line digital system is called the digital data acquisition and processing system (DDAPS). The DDAPS has dual and single speed capabilities with identical storage and data output limitations. The dual speed mode is used to ex'tend the recording time when obtaining high frequency data.

From each of up to 240 data channels, the test data system stores 20 blocks of data. Each block of data contains 920 words (each word is the abscissa and ordinate of a data point) of digital information. These 920 words represent a fixed storage display.

The maximum measured.throughput rate for the system is 24 000 words per second. This throughput rate can be reduced in increments of 100 words per sccond. The throughput rate, the number of data channels recorded, and fmed display of 920 words per block determine the time base for displaying the data.

After .the data have been stored, data reduction can be made for presentation and analysis .purposes. Because of hardware limitations and aesthetic considerations of data presentation, only certain time bases are used when the data are reduced. For data displayed from -20 to 300 s, the recorded data are made to occupy a 320 s span yielding a time base of 16 s, which is the 320 s span divided by the 20 blocks of recorded data.

Generally, 920 words from a given data channel are displayed in the nominal time base of 16 s. Integral (1 to 20) multiples of 16 s may be used as variations on the nominal time base. Because the output is fixed at 920 words, data compression is done by averaging adjacent data points to give the desired compression.

Page 240: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

Page 241: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

APPENDIX B

POSTTEST ADJUSTMENTS TO DATA FROM SEMISCALE MOD-1

TEST S-28-3 ,

Page 242: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

Page 243: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

APPENDIX B

. .

POSTTEST ADJUSTMENTS TO DATA FROM SEMISCALE MOD-1

TEST S-28-3

Many of the transducers used in the Semiscale Mod-1 system exhibit significant sensitivity to one or more spurious inputs. Strain gage bridge circuits used in pressure transducers, differential pressure transducers, and drag discs are sensitive to changes in ambient temperature. Differential pressure cells are also sensitive to changes in system pressure. Photomultiplier tubes used as gamma ray detectors in the density transducers are sensitive to temperature changes, as well as to random variations in the locations of the radiation sources. Core power measurements. depend' on a calibrated resistor, whose. resistance changes in value as a function of time and power level as it heats up.

Although the errors introduced into the data by spurious secondary inputs generally do not exceed the specified error ranges of the transducers, significant improvement in measurement accuracy can be achieved if the secondary sensitivity can be identified and removed. In the case of the drag discs, corrections are absolutely necessary because the signal due to temperature fluctuations can exceed that due to flow by several hundred percent. Since the exact values of the spurious inputs to which different transducers might be sensitive cannot often be easily predicted and are sometimes inconvenient to measure, secondary effects have been accounted.for by correcting the data after the test rather than by using elaborate real time programs in the data acquisition system computer. The methods and results of the posttest data correction analysis for Test S-28-3 are presented in the following paragraphs and tables.

1. PRESSURE MEASUREMENTS

Corrections to pressure transducer measurements in the main system loop are based on data taken from the standard reference ( ~ e i s e ) gauge at Spool 4, taken 15 s before initiation of blowdown and at 300 s after initiation of blowdown. The pressure readings are adjusted to account for pressure variations around the main loop, using the readings of nearby differential presslire cells. A linear correction is then applied to the pressure data to match the data to the calculated reference data at the two specified time points.

Correction of the steam generator secondary pressure (PU-SGSD) measurement is done in the same manner as for the main loop pressures using a Heise gauge installed expressly for this purpose. The data from the pressure transducer for the pressure suppression system (P-PSS) are corrected to match the process instrumentation at preblawdnwn conditions.

Page 244: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Pressure measurement corrections are performed using the data acquisition system (DAS) computer using the following equation:

where

F1(t) = corrected data

F(t) = raw data

Co = offset, kPa

C1. = scaling factor.

The values of the offset and scaling factor are given in Table B-1.

TABLE B-I

CONSTANTS FOR PRESSURE MEASUREMENT CORRECTIONS (TEST S - 2 8 - 3 )

Detector Identification

PU-SGSD -6.27 . 0.9895

P-CB 88,25 1,0407 . .

P-HR

DIFFERENTIAL PRESSURE MEASUREMENTS

. . , .

Pressure sensitivity in the .differential pressure cells in the main system. loop is determined from the pretest system pressure check; Digital data are recorded for all measurements at ambient .temperature, with no system flo.w, at pressures of ambient, 1780, 5 1 10, 7 160, 8820, 12 220, and 15 500 kPa. The output of the differential pressure cells is plotted against system pressure, .with. the resulting plots used to describe the pressure response of the transduccrs.

Pressure cell ambient offsets are evaluated ushg a posttest, system drained digital data scan. The measured transducer outputs are compared with .values calculated from the differences in standing leg heights for the sense lines to each pressure cell. . The ,.. difference between the measured value and the calculated value is the ambient offset. .,

Page 245: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

For some differential pressure ieasurements, other references are used. The liquid level measurements in the intact loop accumulator (DPU-ACCl-TB) and the broken loop accumulator (DPB-ACCZTB) are referenced to calculated values based on geometrical considerations at the time when the water is depleted from the accumulators and gas flow begins. The reading from the steam generator discharge venturi (DPU-SG-DISC) is shifted to read zero after flow is stopped.

In correcting differential pressure data for pressure sensitivity, the data are initially corrected for errors in amplification and ambient offsets. The data are then corrected for pressure sensitivity to arrive at the final values. Corrections were made using the following equations :

F 1 ( t ) = K [ F ( t ) ] + Co

where

F1(t) = data corrected for amplification and ambient offsets, kPa

K . = amplification factor

F(t) = raw data, kPa

Co, = ambient offset, kPa

F f l ( t ) = F 8 ( t ) + C1 for t < tl

where i takes on values 1 to,n-1

F M ( t ) = F 1 ( t ) + C, for t > t,,

where

t - - time

F1'(t) = final corrected data

Ci and t l = correclions a ~ i d t h e points.

The values of the constants are given in Table B-11.

Page 246: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE B- I1

CONSTANTS FOR DIFFERENTIAL PRESSURE MEASUREMENT CORRECTIONS (TEST S-28-3)

Detec tor K I d e n t i f i c a t i o n o i - 1 C2 t2 C3 t j -- P

DPV-26-55QM 1 -1.724 0 -1 . l o 3 0.0'1 0 35

DPV- 55-1 1 OMM 1 -0.683 0 -0.455 0.01 0 35

DPU-SG-SEC 1 -4.206,

DPU-SG-DISC 1 3.792 .

Page 247: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

3. MOMENTUMFLUXMEASUREMENT

The tempkrature sensitivity of drag discs is determined from pretest warmup data taken at temperatures from ambient to 478 K with no system flow. Some drag discs are also pressure sensitive and are evaluated at pressures from ambient to 15 5 10 kPa with no system flow. The temperature and pressure sensitivity are removed before the data are converted to momentum flux. The temperature and pressure at each drag disc are taken' from the signal of a nearby thermocouple and pressure transducer. Slight corrections are also made at this time for errors in setting the transducer output to zero at ambient conditions. corrections are made using the following equation:

F 1 . ( t ) = F(t) + Co - Ti T(t) - Pi P(t)

where

Fi(t) = corrected data, DAS volts

F(t) = raw data, DAS volts

Co ' = ambient offset, DAS volts

Ti = temperature sensitivity, DAS volts/K

T(t) = temperature data from the transducer used for tempera- ture sensitivity correction, K

Pi = pressure sensitivity, DAS volts/kPa

P(t) = pressure data from the transducer used for pressure sensitivity correction, kPa.

Values of the constants are given in Tablt: B-111.

Page 248: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE B-111

CONTANTS FOR MOMENTUM FLUX MEASUREMENT CORRECTIONS' (TEST S- 28- 3)

Detector 0 I d e n t i f i c a t i o n Ti

r ( t ) C a l Pi p ( t ) L c l

FDU- 1 0.340 0.000 866 RBU-2 -0.000 000 4 PV-UP+10

FDU- 5 0 -0.000 382 TFU-6 0.000 001 5 PV-UP+lO

FDU- 1 0 0 0.000 241 TFU-10 0.000 000 8 PU-13

FDU- 1 3 0 0.001 544 RBU-14A 0.000 001 8 PU-1'3

FDB- 21 0 -0.001 064 TFB-20 -0.000 004 9 PB-21

FDB- 30 [ b I -0.168 -0.001 877 TFB-30 . 0,000 01 5 7 PV-UP+10

FDB- 37 [ b I -0.158 0.000 346 TFB-37

[a] T ( t ) i s the temperature data used f o r temperature 'sensi t i v i t y cor rec t ion. Ihe symbols l i s t e d i d e n t i f y the thsrflocoupler from which the data are obtained.

[b] 'Temperature s e n s i t i v i t y correct ions were app l ied as usual ; I however, because FDB-30 and FDB-37 are mounted hor i zon ta l l y , dur ing blowdown they were p a r t i a l l y f i l l e d w i t h subcooled water which a f fec ted the temperature s e n s i t i v i t y . Therefore, the temperature sens i t i v i t y2 co r rec t i on i s more uncer ta in than t h a t appl ied t o 'other detectors.

[c] P ( t ) i s the pressure data from the ind icated transducer used f o r pressure s e n s i t i v i t y cor rec t ion. The symbols 1 i s t e d i d e n t i f y the pressure transducers from which the data are obtained.

Page 249: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

4. DENSITY MEASUREMENTS

Density calculations are based on the voltage output of the photomultiplier tubes in the gamma-attenuation densitometer assemblies. The equation used for converting voltage to density is as follows:

where

p = the density in kg/m3

C = a constant based on the length of the gamma beam path

D = a theoretical voltage for zero attenuation inside the vessel

A = an amplification factor

B = a biasing factor

F(t) = the transducer voltage output. -

Constants A and R are adjusted to match the final data to density values calculated from measured pressure and temperature values at the preblo.wdown and postdrain conditions, effectively giving the data an in-place calibration. The values of the constants for various transducers are given in Table B-IV.

The density measurements GVLP-172HZ and GV-COR-ISOHZ use amplifiers which precalculate the logarithm function, and hence have a simpler conversion formula:

Some density measurements are obtained using a two-beam gamma densitometer which operates on the same basic principle of gamma attenuation as does the single-beam gamma densitometer. Each beam originates from the same gamma source and is allowed to pass through separate portions of the piping cross-sectional flow area to obtain an average density measurement in that particular region. The geometrical relationship of the gamma beam path through the piping and geometrically related variables used for processing of data from a two-beam gamma densitometer are shown in Figure B-1 .

Page 250: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE B - I V

CONSTANTS FOR DENSITY MEASUREMENT CONVERSIONS TO ENGINEERING UNITS (TEST S-28-3)

Detector I d e n t i f i c a t i o n A B C D

GU- 1 B 1.026 0.047 0.000 50 6.86

GU- 1 OVR 1.100 -0.448 0.000 59 6.80

GU- 13VR 1 -452 -1.318 0.000 59 3.29

GU- 15T 1.192 -0.825. 0.000 36 5.57

GU- 15B

GB-21T

GB- 21 8

GB- 30T

GB- 300

GB- 37HZ 1.839 -3.342 0.000 59 4.35

GB-42VR 1.1RFi 4. 974 0.000 37 6.88

GVLP-IbSHL 1.054 -0.163 0.081 50 4.09

m e average density measured by each individual gamma beam is obtained using the same equation as is used for the single-beam gamma densitometers. Values for the constants for' the single-beam density measuremefits obtained with the two-beam gamma densi- tometers .are presented in Table B-IV along with the constaqts for single-beam gamma Sensitometers.

In the Semiscale Mod-1 system, two.-beam gamma densitometers provide added information which allows the calculation of a better average density than that obtained from a single'beam. A mathematical model is used for processing the two-beam data to obtain the provided average density information. The processing method used is based on a .froth-water model coupled with information from the two individual gamma beams and related beam path and piping cross-sectional geometry. The resulting information is recorded and reported under the density measurement identification ending with a "C", for example, GB-2 1 C.

Page 251: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Path

Froth

1- Pipe Inside Diameter I / 1 I

F i g . B-1 Geometry used f o r processing o f densi ty data obtained from two-beam gamma densitometers.

The use of the froth-water model for obtaining average density from a two-beam gamma densitometer is based on observations indicating that flow regimes in the Semikale Mod-1 system can be modeled by a layer of water on the bottom of the pipe with a degree of froth on the surface. For homogeneous flow conditions such as a l l froth or all liquid the model remains valid.' At any point in time slug flow is also modeled. The froth-water model does not model annular or inverted annular flows very well. However, these flows are not expected to exist for 'significant portions of a Semiscale Mod-1 system blowdown in horizontal piping. Density gradients from the top to the bottom of the pipe may exist showing no distinct location change from water to froth. This flow is neither, totally homogeneous nor stratified, but the froth-water model does provide an adequate approximation of the average density characteristic of this flow pattern.

. The average density obtained by using the gamma beam geometry shown in Figure B-1 and by applying the froth-water mode.1 is given by

Page 252: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

where

- P = average cross-sectional density

p1 = average density measured by the upper gamma beam (measures the froth density)

pw = density of liquid water (at local system conditions)

a.~f = 1 +. (1 /2n) (sinpg) = froth fraction.

Thc nngle which j3 represents is s h o w in Fig~~rr, 8-1. Values for fl are obtaincd as follows :

where

h = H 2 P 2 - P1 b = cos 0

Pw - "1

where .

H = Q,cos 8 (IZ, and 6, are defined in Figure B-1 )

D = piping inside diameter . ..

. . p* = the average density measured by the lower gamma beam. . .

Average density is not cdculated using theatwo-beam froth-water model when the angle 8 is not favorable due to system hardware restrictions in pqsitioning. the source. '1Be froth-water model requires separate density sampling in both the upper and lower port'ions of the piping cross section. . -

Page 253: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

APPENDIX C

SELECTED DATA WITH ESTIMATED TOTAL ERROR

BANDS FROM SEMISCALE MOD-1 TEST S-28-3

Page 254: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

THIS PAGE

WAS INTENTIONALLY

LEFT BLANK

Page 255: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

APPENDIX C

SELECTED DATA WITH ESTIMATED TOTAL ERROR

BANDS FROM SEMISCALE MOD-1 TEST S-28-3

Analysis has been performed on selected data from Test S-28-3 to provide a guide to the uncertainty associated with data measurements in the Semiscale Mod-1 system. The end result of the analysis is presented as error bands about the measured data which represent a 95% confidence level.

The error bands are obtained by combining uncertainties obtained from analysis of the data itself (random error) and engineering analysis of the measurement system (engineering error). The procedure by which error bands were established for the data presented in this appendix is described in the following paragraphs.

The data trace under analysis wits empirically fitted with a linear difference equation, which was subject t o a white noise input at each sampling time point. The objective of the empirical fitting procedure was to characterize the white noise, which was taken to represent the random error. The procedures for fitting the difference equation are discussed in depth in Reference C-1. A data trace was often segmented and different equations were fitted to each segment with statistical correlations between successive observations accounted for by the fitting procedure. The white noise input was assumed to arise from a normally distributed population. The standard deviation.of the white noise, as found during the fitting procedures, was taken as an estimate of the random error standard deviation and is shown in Table. C-I. The data traces of the error band analysis are shown in Figures C-1 through C-3 8. . .

TABLE C - I

RANDOM ERROR VARIANCE (TEST S-28-3)

Random E r r o r Variance

Measurement ' OR

Per iod o f Appl i c a t i on .

( s ) F igure Comments

0 t o 24 C-1 .24 t o 59 59 t o 77 77 t o 85 85 t o 600

Page 256: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE C-I (.continued)

Random Error . Period of Var iance Appl i ca t ion

Measurement a~ ( s ) Figure Comments

TFU-PRIZE 11.470 0 t o 8 C-4 1.018 8 t o 26 1.975 . 28 t o 49 0.129 49 t o 600

TMU- 1 TI 6 0.280 0 t o 600 C-5

TH- E4-09 4.178 0 t o 130 C-7 30.551 130 t o 145 0.246 145 t o 600

Page 257: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE C - I ( c o n t i n'ued)

Random E r r o r Variance

Measurement OR

FTU- 1 60.194 221.055 103.382

. 16.330 20.809

FTU- 1 5 16.535 38.551 16.338 47.783 24.084 83.567 12.060 20.468

Pe r iod of A p p l i c a t i o n

( s ) F igu re Commen t s

FTU-LPIS 0.215 0 t o 18 ' C-17 0.672 18 t o .26 0.146 26 to 56 0.007 56 t o 600

FTU-ACC1 2.602 0 t o 10 C-18 E r r o r bands a r e n o t pre- 2.619 10 t o 20 sented f o r t ' = 85 s, t o 0.995 20 t o 45 t = 600 s.Ca1 3.896 45 t o 55 3.208 55 t o 77

Page 258: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE.C-I (cont inued) '

Random E r r o r Period of

Variance Appl i c a t i on Measurement OR ( s ) F igu re Comments

GU- 1 T 3.234 0 t o 12 C-21 . 0.245 - 12 t o 59 0.319 59 t o 600

GU- 1 OVR 2.401 0 t o 22 C-24 0.286 22 t o 600 , .

GU- 1 5T 4.306 0 t o 7 C-25 . . 12.220 7 .to 23

1.548 23 t , ~ 46 10.381 46 t o 55 0.663 55 t o 77 0.71 3 77 t o 568 3.933 568 t o 600

GU- 15B

GU- 1 5C

0 t o 7 C-26 7 to ' 23

23. t o 46 . 46 t o 5 3 , . 53 t o 82 82 t o 89 . 89 t o 146

146 t o 566 566 t o 600

. . -

- . .

0 t o 7 ' C-27 7 t o 23

23 to :46 : : . .

46 t o 55 :.

55 'to" 81 81 t o 1 5 4 . . . . .

i 5 4 t o 567 ' ,

567 to . 600 . .. .. . . . .

. . .

Page 259: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE C- I (continued)

Random Er ro r .. . Period of variance Appl i c a t i o n

Measurement ('R (s ) Figure Comments

GVLP- 1 72HZ 6.489 0 t o 7 C-30 3.293 7 t o 33 6.508 33 t o 41 6.237 41 t o 55 1 ; 361 55 t o 163 0.432 163 t o 600

FDU-1, 0.809 0 t o 13 C-31 GU- 1 C 0.096 13 t o 28

0.275 28 t o 58 0.089 58 t o 600

FDU-5 , 1.041 0 t o 11 C-33 GU-5VR 0.208 11 t o 1.8

0.197 18 t o , 26 0.404 26 t o 33 0.316 33 t o 71 0.100 71 t o 600

FTU- 1 3, 1.285 0 t o 12 C-34 GU- 1 3VR 0.829 , 12 t o 45

1.916 45 t o 57 0.144 57 t o 116 0.328 116 t o 600

Page 260: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE C-I (continued)

Random Error Variance

Measurement R

FTU- 1 5, 0.783 GU- 1 5C 1 .989

0.433 0.709 0.142 0.81 1

FTB-21, 3.873 GB- 21 C 2.516

0.449

FTV-CORE-IN, 0.364 GV-COR- 150HZ 0.329

2.254 4.532

Period of Application

( s )

0 to. 12 12 t,n 43 43 t o 59 :

59 t o 600

0 t o 8 8 t o 54

54 to' 600

0 t o 7 7 t o 54

54 t o 98 98 t o , 600

Figure Commen t s

C-35

[a ] Error bands a r e not represented i n t h i s region. The sensor gave a constant reading due t o one of the following: ( 1 ) sensor sa tura- t i o n , ( 2 ) sensor dropout, o r ( 3 ) sensor deadband. Random e r r o r in measurement cannot be modclcd under thesc condit ions*

Page 261: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

1 -

1 I , . -

1 - TFB-23

- Y - W 5 0 0 . - - (L 3 C a (L W a x W C

0 r o o . - -

3 -J LL

3 0 0 . * I I 1 1 I

0 . l o o . 2 0 0 . 3 0 0 . r o o . 5 0 0 . 6 0 0 .' T I M E A F T E R R U P T U R E ( 5 )

Fig. C-1 FI uid temperature in broken 'loop (TFB-23).

6 0 0 .

5 5 0 .

5 0 0 .

r 5 0 .

4 0 0 .

3 5 0 .

3 0 0 . 0 . 1 0 0 . 2 0 0 . 30.0 . 4 0 0 . 5 0 0 . 6 0 0 .

T I ME A F T E R RUPTURE ( s 1

Fig. C-2 Fl ui d temperature in downcomer annul us (TFV-ANN-35A).

Page 262: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

300. ' 0. 100. 200. 300. 400 . ' 500. 600.

T I M E A F T E R R U P T U R E ( 5 )

F i g . C-3 F l u i d t e m p e r a t u r e i n 1 o w e r p l e n u m (TFV-LP-7).

,

625. I I I I T ' iu - -p lR I zt . ~.

600. -f i -

. . - Y -

575. 01

- 3 C 4 6 550. - n r .

-. , .b . .! -.. 0 : . ,

. . . 200. . 3.00 . . 400. 500; 600. , ,

" ' T I M,E, A F T E R R U P T U R E ( s '1

F i g . C-4 F l u i d t e m p e r a t u r e i n p r e s s u r i z e r s u r g e 1 i n e (TFU-PRIZE) . . . .

'W C

5'25. 0 - 3 . . J LL

500.

4 7 5 .

1 - -

-- ------3. L---

\--- - -

I I 1 I I . ..

Page 263: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

4 0 0 . 0. 100. 200. 300. 'too.

T I M E A F T E R R U P T U R E ( 5 )

Fig. C-5 Material temperature i n i n t a c t loop

350. 0. 100. 200. 300. 900. 500. 600.

. I

T I M E A F T E R R U P T U R E ( s )

Fig. C-6 Material temperature i n vessel f i l l e r (TMV-CI -70A) .

Page 264: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0. 100. 200. 300. 400. 500. 600. T I M E A F T E R RUPTURE ( s )

F i g . - C-7 Core heater temperature, Rod' E-4 (TH-E4-09).

. Fig;. C-&,Core heater temperature, Rod E-4 (TH-E4-27).< .* .

Page 265: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 . 1 0 0 . 2 0 0 . 3 0 0 . ' t o o . 5 0 0 . 6 0 0 . T I M E A F T E R R U P T U R E ( s )

F i g . C-9 Core heater temperature, Rod E-4 (TH-E4-55).

U . 0 . 1 0 0 . 2 0 0 . 3 0 0 . 9 0 0 . 5 0 0 . 6 0 0 .

T I M E A F T E R R U P T U R E ( s

F i g . C-10 Pressure i n i n t a c t loop, Spool 13 (PU-13).

Page 266: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 . l o o . 2 0 0 . 3 0 0 . r o o . 5 0 0 . 6 0 0 . T I M E A F T E R R U P T U R E ( s )

Fig . C-11 Pressure i-n broken loop, Spool 23 (PB-23).

: . . O . 1 0 0 . .' 2 0 0 . 3 0 0 . W O O . 5 0 0 . 6 0 0 . - . . . .. T ' I M E : A F T E R R U P T U R E ( s 1

F i g . C-12 Di f f e r e q i a1 p ressure i n i n t a c t 1 oop (DPU-7-10).

Page 267: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

1 1 1 I D P U - 12- 15

-

I

- -

< I 1 1 1 1 - -20. 0. 100. 200. 300. 400. 500. 600.

T I M E A F T E R R U P T U R E ( s )

F ig . C-13 D i f f e r e n t i a l pressure i n i n t a c t l oop (DPU-12-15).

T I M E A F T E R R U P T U R E ( 5 ) - F ig . C-14 Volumetr ic f l o w i n i n t a c t l oop (FTU-1). .

Page 268: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

1 I I 1 1 F T U - 1 5

-

- I

-

C

l o o . 2 0 0 . 3 0 0 . r o o . 5 0 0 . 6 0 0 T I M E A F T E R R U P T U R E ( s )

Fig . C-15 Vo lumet r ic f l o w i n i n t a c t l oop (FTU-15).

0 . 1 5

- * 0 . 1 0 \ - - x 0 J

L L ' 0 . 0 5 0 - a I- W x 3 J 0 . 0 0 0 3

- 0 . 0 5 . _ 0 . 100: 2 0 0 . 3 0 Ob.- 4 0 0 . . 5 0 0 . 6 0 0 .

- ' T I M E A F T E R R U P T U R E ( s )

F ig . C-16 Volumetr ic f low i n i n t a c t l oop h igh pressure i n j e c t i o n l i n e (FTU-HPIS).

Page 269: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Fig. C-18 Volumetr ic f l o w i n i n t a c t loop accumulator discharge 1 i n e ( FTU-ACC1 ) .

0.4 I I 1 I I 2

F T U - L P I S

- ul

\ C_----______L_-____------------------- - - 0.2-

0 J

' LL

0 - a 0.1 I- W I: 3 J 0 > 0.0

-0.1 1 1 1 I 1 h

0. 100. 200. 300. 400. 500. 660. T I M E A F T E R R U P T U R E ( 5 )

Fig . C-17 Volumetr ic f l o w i n i n t a c t loop low pressure i n j e c t i o n l i n e (FTU-LPIS).

-

i

-

-

7 - 1

4 I

Page 270: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

1 I I I 0. 100. 200. 300. *OO. 500. 600.

T I M E A F T E R R U P T U R E ( s )

Fig . C-19 F l u i d v e l o c i t y i n vessel (FTV-40A).

100. . . 200. 300. 400. 500. 600. - . T I M E r A F T E R R U P T U R E ( s

Fig . C-20 F l u i d v e l o c i t y i n vessel (FTV-40M).

Page 271: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

- 2 5 0 . 0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 .

T I M E A F T E R R U P T U R E ( 5 )

F ig . C-21 Dens i ty i n i n t a c t loop (GU- IT ) .

-250. 0 . l o o . 2 0 0 . 3 0 0 . r o o . 5 0 0 . 6 0 0 .

T I M E A F T E R RUPTURE ( s

F ig . C-22 Densi ty i n i n t a c t l oop (GU-1B).

Page 272: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

G U - I C

-

-

I I I 1 I -250. 0. 1 0 0 . 200. 300. q00. 500. 600.

T I M E A F T E R R U P T U R E ( s 1

Fig. C-23 Density i n i n t a c t loop (GU-1C).

Page 273: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

GU- 1 ST

- 2 5 0 . - 0 . 100%. 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 .

T IME AFTER RUPTURE ( 5 )

F i g . 'c-25 Density i n i n t a c t l o o p (GU-15T).

1 0 0 . 2 0 0 . 300.. 4 0 0 . fl 5 0 0 . . T IME A F T E R RUPTURE ( 5 )

, F ig . C-26 Density i n i n t a c t l o o p (GU-15D).

Page 274: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

I I I 1 I >

GU- 1 5 C

- -

C -

1 -- I I 1

2 0 0 . . . , , 0 . 1 0 0 . 3 0 0 . 4 0 0 .'. 5 0 0 . 6 0 0 . T I M E A F T E R R U P T U R E , ( 5 )

Fig. C-27 Densi t,y in intact loop (GU-15C).

-500. 0 . 1 0 0 . - 200 . . 30.0 . . ' t o o . . , 5 0 0 . 6 0 0 .

T I..ME . A F T E . R . R U P T U R E ( s

Fig. C-28 Density in vessel (GV-COR-150HZ).

Page 275: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

T I M E A F T E R R U P T U R E ( s )

Fig . C-29 Density in vessel (GVLP- 165HZ).

-250 .. 0. 100. 200. 300. '-too. 500. 600.

T I M E A F T E R R U P T U R E ( 3 )

Fig. C-30 Density in vessel (GVLP-1 72HZ).

Page 276: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

5 I 1 I I I FDU- I . G U - 1 C

0 - -

5 - --------z---. ' ---cr---'#-'-----'----

Y

_ _ _ _ _ _ _ C _ _ _ _ _ _ _ - _ - _ - - ~ - - - - - - - - -

/ -I / - ---- -

- 2

I -

0 1--- I 1 1

0. 100. 209. 300. 400. 500. 600. T I M E A F T E R R U P T U R E ( s )

F ig . C-31 Mass f l o w i n i n t a c t loop (FDU-1, Gu-1C).

0. 100. 200. 300. 400. 500. 600. T I M E A F T E R . R U P . T U R E ( 5 )

Fig . C-32 Mass f l ow i n i n t a c t loop' (FTU-1, GU-1C).

Page 277: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0. 100. 200. 300. 400. 500. 600 T I M E A F T E R R U P T U R E ( s )

Fig . C-33 Mass f l o w i n i n t a c t l oop (FDU-5, GU-SVR).

10.0

G U - 13VR

5.0

0.0

-3.0 0. 1 0 0 . 200. 300. 400. 500. 600

T I M E A F T E R R U P T U R E ( s )

Fig . C-34 Mass f l o w i n i n t a c t l oop (FTU-13, GU-13VR).

Page 278: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

0 1 1 1 I I F T U - 1 5 . G U - 1 5 C

5 - -

-

5 - 7

0 - I 1 . I 1 1

0 . 1 0 0 . 2 0 0 . 3 0 0 . 4 0 0 . 5 0 0 . 6 0 0 T I M E A F T E R R U P T U R E ( s )

F ig . C-35 Mass f l o w i n i n t a c t l oop (FTU-15, GU-15C).

0 . 1 0 0 . 2 0 0 . 3 0 0 ; b o o . 5 0 0 . 6 0 0 . T I M E A F T E R R U P T U R E ( s )

F ig . C-36 Mass f l o w i n broken l oop (FDB-21, GB-21C).

Page 279: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

30.0

20.0 - V)

\ Q,

- 3 10.0 0 A LL

m m 4

= 0.0

- 1 o . o y -

I 1 I I I

0. 100. 200. 300. 400. 500. 600. T I M E A F T E R R U P T U R E ( s )

Fig . C-37 Mass f l o w i n broken l oop (FTB-21, G B - 2 1 ~ ) .

20.

-20. 0. 100. 200. 300. 9 0 0 . 500. 600.

T I M E A F T E R RUPTURE ( s )

F i g . C-38 Mass f 1 ow i n vessel ( FTV-CORE- I N, GV-COR- 1 SOHZ) .

Page 280: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

Other errors in the data exist because of such factors as variability in installation procedures and techniques, calibration errors, variability in materials, and temperature and pressure sensitivities. These errors and the procedures for estimating them are discussed in Reference C-2. They are referred to as engineering-errors and the estimates are largely subjective. Because of the continuing effort to improve the accuracy of the measured data, such as through the use of better transducers, better signal conditioning and processing equipment, and better calibration and installation techniques, the engineering errors for data from most of the transducer systems have changed from those published in Reference C-2. Table C-I1 provides a summary of engineering error values obtained from current analysis techniques as applied to the data presented herein.

In addition to the normal hardware and installation related sources of engineering error, a significant measurement uncertainty results when the current transducer systems are subjected to separated t w ~ - ~ h a s e flow regimes during the course of the blowdown transient. Accordingly, for those data affected (fluid density, momentum flux, volumetric flow, and mass flow), which are presented in this appendix, a more extensive assessment was conducted for additional engineering error due to flow regime effects. Table C-I11 identifies the data analyzed and the period in the blowdown process for which flow regime errors were included as a part of the total engineering error. The time of occurrence of separated two-phase flow and the resulting effect on the uncertainty of the data were evaluated by considering, on an individual basis, each detector output with reference to indications by other auxiliary measurements.

The gamma densitometer density measurement data are affected by two-phase separated tlow regimes. 'l'he resulting transducer output is a measurement of the average attenuation of the gamma beam through the measured medium. The beam attenuation, in turn, is interpreted through physical relationship to be a measure of the average density along the beam path. When stratified type flow was considcrcd prcsent, thc gamma beam attenuation was considered to be a result of a liquid layer and steam at system conditions. With this assumption and the system geometry, a void fraction was calculated and a new "effective" average density was calculated. The difference between the average density based on the assumption of homogeneous conditions and the average density for stratified conditions was considered to be the error.

Momentum flux measurement uncertainties for two-phase flow regimes present the most difficult engineering evaluation problems. The drag target and arm location, degree of flow stratification, transducer temperature sensitivity, and slip ratios all combine to produce possible flow regime errors ranging from a small fraction of the transducer output value to multiples of it. Therefore, the error values were obtained, where possible, through use of the observed discrepancies between the momentum flux and turbine flowmeter data in combination with system pressure measurements and the analysis of system fluid density measurements.

The flow regime errors of the turbine flowmeter were estimated by calculating a void fraction and the cross-sectional liquid and steam flow areas for stratified flow. This calculation was accomplished using methods similar to those used to calculate the average

Page 281: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE C - I 1

Measurement Ca tqgory E r r o r sources E r r o r Value Expected E r r o r Value

F l u i d Changes i n homogeneity of the - +1.11 K Tlempera t u r e thermocouple.wire due t o c o l d

working

Data i n t e r p r e t a t i o n from ' - t1.11 K standard reference tab1 es

General data a c q u i s i t i o n processing

Thermal aging o f the thermocouples +0.28 K

M a t e r i a l Temperature

Changes i n homogeneity o f the - +1.:11 K thermocouple w i r e due t o c o l d working

Thermocouple r a d i a l p o s i t i o n - +2.78 K

Data i n t e r p r e t a t i o n from standard - +1.11 K reference tab les

General data a c q u i s i t i o n and - +2.50 K processing

Thermal aging o f the thermocouples - +0.28 K I . _- .

Page 282: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE C- I I (conti nued ) . .

Measurement Category Error Sources

Pressure Entrance effect's

Cali bration

Tenperature s e n s i t i v i t y

feneral data acquis i t ion .and F roces s i ng

h) P 0\ Different ia l Ins ta , l la t ion

Pressure

Calibrat ion t.ransducer ranges - +4.96 through t199.26 kPa -

Transducer ranges +344.7L, t689.47, 23447 k ~ a - -

Transducer ranges - +6894, %I0 342 kPa -

Error Val UE Expected Error Value

+O. 31 of transducer - f u l l scale

+O. 262 of transducer - f u l l sca le

+89.63 kPa - Cbl +O. 13% of transducer - f u l l sca le

+O. 1 % of sys tem f u l 1 - sca le

+O. 3% of transducer - f u l l sca le \ +[(0.05) + (0.5 F)FS) - of transducer f u l l s ca l e

2 112 +[(0.03) + (0.5 l?,'FS) 1 % - of f u l l sca le .. ,

2 112% +[(0.02) + (0.5 l?,'FS) ] - of f u l l sca le

where

R = transducer reading ( kPa

FS = transducer range f u l l s ca l e (kPa) I

+2% of transducer - f u l l sca le [c 1

Page 283: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

. TABLE C-I1 (cont inued)

Measurement Category E r r o r Sources E r r o r Value Expected E r r o r Val ue

D i f f e r e n t i a l Temperature sensi t i v i t y - +0.5% o f transducer Pressure f u l l scale ( c o n t i nued)

General data acqui s i ti'on and - +0.1% o f system f u l l p ro tess i ng scale

A i r ,entrapme.nt - +0.069 kPa

F l u i d V e l o c i t y I n s t a l l a t i o n - t o . 8% o f transducer (po i n t v e l o c i t i e s f u l l , s c a l e ~ ~ e a s u r e d w i t h

+5% o f transducer tCO.582 5 +

C a l i b r a t i o n - ' M P t urboprobes) - f u l l scale 2 .I (0.008R) I 1/2m1s

Data a c q u i s i t i o n and processing - +O. 25% o f transducer frequency conversion f u l l scale

w'fiere General - +0.1% o f system f u l l R = transducer read-

scale i n g (m/s)

Dens i t y Cal i b r a t i o n - +I .O% o f reading (kg/m

Detector sys tern e r r o r - t2 .1 kg/m3 [ d l

General data a c q u i s i t i o n and + l . 6 kg/m 3 -

processing . .

Page 284: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE C-1.1 (cont inued)

Measurement Category Erro? Sources E r r o r Jalue Expected E r r o r Value

\

Densi ty Flow regime (cont inued)

G r [ d l

where

Momentum F l ux I n s t a l l a t i o n al ignment and ve l o c i ty p r o f i 1 e zhanges (drag d i s c ) from c a l i b r a t i o n zondi t i o n s

k? 00 C a l i b r a t i o n [ e l

.Senera1 data acqui s i t i on 3nd processing

+O. 1% o f sys tem 'u l l - > sca le (kg/ms-)

F low regimes [ d l

Vol umetr i c Flow :a1 i b r a t i o n i nstrume-l t readi,ng ( t u r b i n e f10.w- meter)

3al i b r a t i o n szand3r-d;

' i e l o c i t y p,rof i 1e

,=requency- to -vo l t3ge sonvers i on

General data a c q u i s i t i o n and processi ng

+0.25% o f transducer - f u l l scale

+19.56 x lo- ' e /s -

+2.9% o f read i ng -

to. 25% o f transducer - f u l l scale

+O. 1% o f sys:em - f u l l 'scale

Page 285: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE C-I1 (continued)

Measurement Category Error Sources Error Value . ,

Yo1 umetri c Fl ow Dead bands (turbine flow- meter) (continued)

Fl ow regimes

+5% of transducer - fu l l scale

Mass Flow Rate Combined resul t s from (from volumetric indi vi'dual error sources

[ d l

.flow and density for volumetric flow and density [fl 'data) data

u Mass Flow Rate Combi ned resul t s from , P

\O (from momentum individual error sources for flux and density momentum flux and density data [fl data)

Expected Error Value

[ d l

[a] This value i s no longer valid a f t e r thermocouple dryout occurs.

[b] Value for transducers with 20 684 kPa full-scale ranges.

[c] Value i s based on observed system performance. I t i s more conservative than that obtained from the s t a t i s t i c a l summation of the identified engineering errors.

[ d l Error value i s time'and flow regime depend,ent.

[e l Dependent on transducer fwl I-scale range reading.

[f] The general method for conbining volumetric flow or momentum flux with density data to obtain mass flow ra te and the.resul t ing errors i n the data are explained in Reference B-2.

Page 286: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

TABLE C-I11

TIME PERIODS WHEN FLOW REGIME ERRORS WERE APPLIED. (TEST S-28-3)

Transducer I d e n t i f i c a t i o n

FTU- 1

CU- 1 C

GU- 1 OVR

GU- 1 5C

Time du r ing which Flow Regime Er ro rs

were Appl ied (s ) F igure

2 to, 600

8 t o 17 and

55. t o 600

2 t o 600

7 t o 20

8 t o 17 and

55 t o 600

2 t o 600

FTU- 1 , GU- 1 C 2 t o 600, C- 33

FDU- 5, GU=5VR

FTlJ- 1 3 GU- 1 3VR

FTU-15, GU-15C

2 t o GOO

8 t o 17 and

55 t o 600

density for stratified flows. A simple model was used to equate the forces on the turbine withthe assumption of a known void fraction, stratified flow, known component densities, and slip ratio greater than unity. This process provided phase velocities. With the phase densities, velocities, and void fraction, a volumetric flow rate could be calculated. The difference between this value and the measured value was considered to be the error.

The overall standard deviation of a data point is taken as the root mean of the sum of the random error variation and the total engineering error variance; that is, '

Page 287: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

where

uo = overall standard deviation of a data point

U R = random error standard deviation

UE = engineering error standard deviation.

The error bands for the data are computed about the value given by the fitted difference equation yi at time point, i; that is,

e r r o r band = yi + 1.960, (C-2)

With due regard to the fact that o~ has been estimated subjectively, the error band may be interpreted as an approximate 95% confidence interval within which any true value of the measured variable is consistent with the data.

On certain occasions, the symmetrical error band given by Equation (C-2) is not appropriate. On those occasions, asymmetrical error bands were computed. (That is, with the width being greater on one side of yi than on the other.)

Finally, the original data trace, along with its error band from Equation (C-2), was 1- input to a computer plot package. The resulting. plot contained the actual data trace surrounded by an error band derived both from random error and engineering error considerations. The indicated error bands after thermocouple dryout occurred for the fluid

, : , .. temperature measurements should be ignored. Error bands for these segments of the data were not obtained and bands only appear because of limitations in the plotting package. 0. .

. . .. . " :,

REFERENCES

C-1. G . E. P. Box and B. M. Jenkins, Time Series Analysis - Forecasting and Control. San Francisco: Holden-Day , 1970.

d

C-2. E. M. ~e ldman and S. A. Naff, Error Analysis for I-112-Loop Serniscale System Isothermal Test Data. ANCR-1188 (May 1975).

Page 288: EXPERIMENT DATA REPORT FOR SEMISCALE MOD-I TEST S-28-3 ...

.DISTRIBUTION RECORD FOR TREE-NUREG-1150

I n t e r n a l D i s t r i - b u t i o n . . . .

1 - Chicago Patent Group - ERDA 9800 South Cass Avenue Argonne, l i l i n 6 i s 60439

2 - CA Benson Idaho Operations O f f i c e - ERDA Idaho F a l l s , I D 83401

3 - RJ Beers, I'D

5 - RE T i l l e r , I D

6 - RE Wood, I D

7 . - HP Pearson, Superv isor l echn ica l 1nformat.ion

8-'17 - INEL Technical L i b r a r y

18-37 - Authors

38-107 - Specia l Interna.1

Ex terna l D i s t r i b u t i o n

108-109 - Saul Levine, D i r e c t o r O f f i ce o f Nuclear. 'Reyu1atur.y Resear-ch, NRC Washington, D. C. 20555

110-414 - D i s t r i b u t i o n under NRC-2, Water Reactor Safety Research Systems Engineering