EXPERIlMENTAL lNVESTXGATION OF...

165
EXPERIlMENTAL lNVESTXGATION OF TAPERED PILES Jin Qi Wei Faculty of Engineering Science Department of Civil Engineering Submitted in partial ful fillment of the requirement for the degree of Master of Engineering Science Faculty of Graduate Studies The University of Western Ontario London, Ontario August, 1998 O Jin Qi Wei 1998

Transcript of EXPERIlMENTAL lNVESTXGATION OF...

  • EXPERIlMENTAL lNVESTXGATION OF TAPERED PILES

    Jin Qi Wei

    Faculty of Engineering Science Department of Civil Engineering

    Submitted in partial ful fillment of the requirement for the degree of

    Master of Engineering Science

    Faculty of Graduate Studies The University of Western Ontario

    London, Ontario August, 1998

    O Jin Qi Wei 1998

  • National Library Bbliithèque nationale du Canada

    Acquisitions and Acquisitions et Bibliographie Services senrices bibliographiques 395 Weüiington Street 395. rue W d l i OüawaON K 1 A W OttawaûN K1AON4 canada Canada

    The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Lïbcary of Canada to Bibliothèque nationale du Canada de reproduce, loan, disîniiute or sel reproduire, prêter, distri'buer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/fïlm, de

    reproduction sur papier ou sur format électronique.

    The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be pruited or othenirise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation.

  • ABSTRACT

    Tapered piles, which have greater top cross-sections than bottom ones, have not

    ofien been considered as a design option because of the lack of laiowledge about their

    behaviour. In this study, the characteristics of tapered piles performance were established

    from experimental investigation. A relatively large laboxatory facility for testing model

    instrumented steel piles was developed. In this facility, the sample soi1 was contained in

    a steel chamber and pressurized to mode1 the laterai stress dong the different "segments"

    of the pile. The effects of the pile taper on its response to axial compressive, tensile and

    cyclic, and lateral loads were examined. The results of the study confirnied their

    efiiciency over piles of uniform section with the same materid input in al1 loading modes

    considered in this study. It was concluded that tapered piles represent a more equitable

    distribution of pile material in several respects. A procedure was developed to calculate

    the shaft resistance of tapered and straight-sided wall piles based on the experimental

    observations. The shafi resistance for straight-sided wall piles estabiished 60rn the

    experimental results compared well with the theoretical prediaions using the standard

    design procedure, hence connmiing the validity of the experimental resdts.

    KEYWORDS: Tapered piles, Experimental model testing, Axial response, Uplift

    loading, Lateral response, Cyclic loadhg, Load transfer, Modulus of subgrade reaction.

  • I would like to express my sincere gratitude and appreciation to my Supervisor,

    Dr. M. H. El Naggar, for his guidance, encouragement and support during the course of

    study to this thesis.

    Thanks are due to Mr. Wilbert Logan for his help in the setup of the data

    acquisition system for this research and to Mr. Gary Lusk for his assistance as well. Ms.

    Trudy Laidlaw designed the soi1 chamber, her help is greatly appreciated.

    Sincere thanks are extended to the facdty and staff of the Department of Civil

    Engineering and my fellow graduate students for their assistance and companionship.

    1 am most gratefùl to my husband and my children for their love, understanding

    and patience throughout the work.

    This thesis is dedicated to my parents, Wang Lianying and Wei Guangcai.

  • TABLE OF CONTENTS

    Page

    CERTIFICATE OF EXAMZNATION

    ABSTRACT

    ACKNO WLEDGMENTS

    TABLE OF CONTENTS

    LIST OF TABLES

    LIST OF FIGURES

    C W T E R I INTRODUCTION

    1 . 1 OVERALL REVIEW

    1.2 OBJECTIVES AND SCOPE

    2. 1 PILE LOAD CAPACITY 2. 1. 1 Axial Bearing Capacity

    2. 1 . 1 . 1 Static analysis method 2. 1. 1.2 Pile load testing method 2. 1 . 1.3 Dynamic analysis method

    2.1.2 Upiift Load Capacity 2. 1. 3 Lateral Load Capacity 2. 1.4 Effect of Cyclic Loadiog

    2 . 2 RESPONSE ANALYSIS METHODS FOR SINGLE PILES 2.2. 1 Elastic Analysis Method 2. 2. 2 Subgrade Reaction Method 2. 2. 3 Finite Element Analysis Method

    2 .3 RELEVANT STUDES ON TAPERED PILES 2.3. 1 Field Testing Resuits 2 .3 .2 Laboratory Testing Observations 2. 3. 3 Theoretical Analysis Results

  • Page

    2. 4 MOTNATIONS

    C . T E R 3 TESTING FACILITES AND PREPARATION

    INTRODUCTION

    TESTING FACILITES 3.2. 1 Testing Piles 3 .2 .2 Strain Gauge Installation 3 .2 . 3 Soil Sample 3 . 2 . 4 Soil Chamber (VLPSC ) 3 . 2 . 5 Soil Pressure Transducers 3 .2 .6 ûther Test Equipment

    TESTING PREPARATION

    EFFECT OF PILE INSTALLATION METHOD

    CHAPTER 4 AXIAL COMPRESSIVE RESPONSE OF TAPERED PILES

    INTRODUCTION

    TESTING PROCEDURE

    TESTING RESULTS 4 .3 . 1 Load-Displacement and Bearing Capacity

    4 . 3 . 1. 1 First group of tests 4 .3 . 1.2 Second group of tests

    4 . 3 . 2 Load Distribution 4.3.3 Unit Load Transfer 4. 3 . 4 Pile Tip Resistance

    DISCUSSION: ARCHING PHENOMENON

    SUMMARY

    CHAPTER 5 UPLIFT BEHAVIOUR OF TAPERED PILES

    5 . 1 INTRODUCTION

    5 .2 TESTING PROCEDURE

  • Page

    5 . 3 TESTING RESULTS 5.3. 1 Uplift Load - Displacement S. 3.2 Ultimate Uplifi Load

    5.3.2. 1 hosesandstatus 5 .3 .2 .2 Relatively medium dense sand status 5.3.2.3 EEect of placement method

    5 . 3 . 3 Pile Head Stiffiiess 5. 3.4 Load Distribution 5 . 3 . 5 Shafi Friction 5.3.6 Downward and Uplifi Shaft Friction

    5- 4 DISCUSSION: RESIDUAL STRESSES

    C W T E R 6 RESPONSE OF TAPERED PILES S W C T E D TO LATERAL LOAD

    6.1 INTRODUCTION

    6 . 2 TESTING PROCEDURE

    6 . 3 TESTING RESULTS 6.3 . 1 Load - Deflection 6 . 3 . 2 Ultimate Lateral Load 6 . 3 . 3 Bending Moment Distribution 6 . 3 . 4 Maximum Bending Moment 6. 3. 5 Soi1 Resistance 6. 3 .6 Pile Deflection 6.3.7 py Curve

    6 . 4 PREDICTED ULTIMATE LATERAL LOAD

    6 .5 PREDICTED py CURVES 6.5. 1 Analfical Background 6 .5 .2 Observations

    vii

  • Page CHAPIER 7 CYCLIC RESPONSE OF AXIALLY LOADED

    TAPERED PILES

    7. 1 INTRODUCTION

    7.2 TESTING PROCEDLJFE

    7 . 3 TESTING RESULTS 7.3. 1 Cyclic Load-Displacement

    7.3. 1. 1 Zero confinuig pressure 7.3. 1.2 20 kPa connning pressure 7. 3. 1.3 40 kPaconfiningpressure 7 .3 . 1.4 60 kPa confining pressure

    7 . 3 . 2 Pile Head Stiffhess 7. 3. 3 Effect of Cyclic Load Amplitude 7 . 3 . 4 A c c d a t e d Pile Head Movement 7 . 3 . 5 Rate of Pile Movernent

    CItQPTER 8 VALIDITY AND APPLICATION OF THE STUDY

    8 . 1 INTERPRETATION OF TESTING RESULTS

    8 . 2 VALDITY OF MODEL TESTING RESULTS

    8 . 3 SHAFT RESISTANCE OF TAPERED PILES 8.3. 1 Relatively Medium Dense Sand Case 8 . 3 . 2 Loose Sand Case

    8 . 4 DISCUSSION 8.4. 1 The State of Stress Inside of the Soi1 Charnber 8 . 4 . 2 Boundary Effect

    C W T E R 9 CONCLUSIONS AND RECOMMENDATIONS

    viii

  • Table

    LIST OF TABLES

    Description

    Geometries of three piles

    Sand properties

    Test arrangement

    Axial compression resdts (first group of tests)

    Axial compression resdts (second group of tests)

    Pile tip resistance at Qu (second group of tests)

    Uplifi results (fbt group of tests)

    Uplifi resuits (second group of tests)

    Lateral loading resdts

    Variation of K with deflection and relative density (Geosofi)

    Amplitude of cyclic load applied at pile head

    Pile head stifkess

    Page

  • Figure

    LIST OF FIGURES

    Description

    Geometries of three piles

    Strain gauge circuits a: Axial loading test b: Lateral loading test

    Strain gauge installation

    Grain size distribution

    Variable lateral pressure sand column (VLPSC)

    Current - pressure relationships for soi1 transducers Applied confining pressure vs meanwd stress around pile S

    Axial loading equipment

    Uplift loading equipment

    Laterd loading equipment

    Oblique view of the testing facility

    Load-settlement curves of pile Tl with different confîning pressures ( k t group of tests)

    Load-setdement curves of pile T ï with different confining pressures (fust group of tests)

    Construction of the offset limit load (after Canadian Foundation Engineering Manual, 1992 )

    Load-settlement curves of pile T 1 with different confuiing pressures (second group of tests)

    Load-settlement curves of pile S with different confining pressures (second group of tests)

    Load distribution dong the pile with different values of load applied at pile heads of Tl and T2 (first group of tests)

    Load distribution d m g the pile with different values of load applied at pile heads of Tl and S (second group of tests)

    Page

  • Figure Description

    Unit load transfer to the soil when ultimate load was reached at piles Tl and T2 (fint group of tests)

    Unit load t d e r to the soil when uitirnate load was reached at piles Tl and S (second group of tests)

    Variation of unit load transfer to the soi1 for piles Tl and T2 at different confining pressures applied (fim group of tests)

    Variation of unit load transfer to the soil for piles Tl and S at different confinhg pressures applied (second group of tests)

    The distribution of the ultimate load between the pile point and the pile shaft for various applied confining pressures

    Load- upward movement curves of piles at different confinùig pressure values in fîrst group of tests a: Tl b: T2

    Load- upward movement curves of piles at different connnllig pressure values in second group of tests a: Tl b: S

    The effect of confining pressure on the uplift pile head stiflhess a: First group of tests b: Second group of tests

    5-4 (a) Load distribution along the pile at different load increments applied at pile head of T 1 in first group of tests

    5-4 (b) Load distribution along the pile at different load increments applied at pile head of T2 in first group of tests

    5-5 (a) Load distribution dong the pile at different load increments applied at pile head of Tl in second group of tests

    5-5 (b) Load distribution along the pile at different load increments applied at pile head of S in second group of tests

    5-6 Shaft friction for piles Tl and T2 at dBerent connning pressure values in first group of tests

    5-7 Shaft friction for piles Tl and S at different confining pressure values in second group of tests

    Page

    45

    48

    50

  • Figure Description

    5-8 Variation of shaft fiction at different confining pressure values in f is t group of tests a: Tl b: T2

    5-9 Variation of shafi fiction at Merent confining pressure values in second group of tests a: Tl b: S

    5- 10 (a) The comparison of shaft fiction at dtimate uplift and compressive capacity in first group of tests, pile Tl

    5- 10 (b) The cornparison of shaft fiction at uîtimate uplift and compressive capacity in first group of tests, pile T2

    5-1 1 (a) The comparison of shafi fi-iction at dtimate uplift and compressive capacity in second group of tests, pile Tl

    5-1 1 (b) The comparison of shaft friction at ultimate uplift and compressive capacity in second group of tests, pile S

    Load-displacement curves at the loading point in the push fonvard phase for different piles a: Pile S b: Pile M c: Pile Tl

    Lateral load capacity versus confining pressure for three piles

    Moment distribution dong pile S

    Moment distribution dong pile T2

    Moment distribution dong pile Tl

    Normalized moment distribution dong pile S

    Nomalized moment distribution dong pile T2

    Normalized moment distribution almg pile Tl

    Variation of maximum bending moment with applied load for three piles

    Page

  • Figure Description

    6- 10 Bending moment dong the pile sh& for the three piles subjected to the same load at different connning pressure

    6-1 1 Soil resistance dong pile shaft for three piles under a typical load

    6-12 Soil resistance along the pile shaft for three piles under ultimate load

    6- 13 (a) Pile deflection along the pile shafi under a typical load

    6- 13 (b) Pile deflection dong the pile shaft under ultimate load

    6-1 4 The effect of pile taper angle on p y c w e s at 0.4 m depth

    6- 15 The effect of confining pressure on p-y curves for different piles

    6- 1 6 Degradation of modulus of horizontal subgrade reaction with deflection

    6- 17 Unrestrained laterdly-loaded pile (after Poulos and Davis, 1980)

    6- 1 8 Predicted p-y curves for piles Tl and S in relative dense sand (Geosoft)

    7-1 (a) Characteristics of cyclic load at different values of confining pressure ( T 1 , R a n d S )

    7-1 (b) Characteristics of cyclic load applied to pile Tl at 20 kPa confiring pressure

    7-2(a) Load-movement curves for piles S, Tl and T2 at zero confining pressure

    7-2(b) Load-movement c w e s for piles S, Tl and T2 at 20 kPa confuiing pressure

    7-2(c) Load-movement curves for piles S, T1 and R at 40 kPa confining pressure

    7-2(d) Load-movement curves for piles S, Tl and T2 at 60 kPa confIIiù1g pressure

    7-3 Pile head load-movement curves in the first and the tenth cvcles

    Page

    1 O0

    101

    102

    1 O3

    1 O4

    105

    1 O6

    107

    108

    108

    119

    119

    120

    121

    122

    123

    124

  • Figure Description Page

    7-4 Pile head stiffness at different confining pressure for piles Tl and S 126

    7-5 (a) Load-pile movement curve of Tl at Merent loading value under 20 kPa confining pressure 127

    7-5(b) Cornparison of pile Tl head Stifbess at 20 kPa confining pressure subjected to dflerent load amplitude 127

    Accumulation of displacement for piles Tl and S under different confining pressures 128

    Pile Tl head movement under cyclic load with different amplitude 129 a: Accumuiation b: Rate of displacement

    Average unit load tramfer a: in compression b: in tension 138

    (a) Unit tip resistance (b) Measured and prototype vertical stress 138

    Cornparison of pile shaft resistance established fiom experiment and theory a: in compression b: in tension 139

    Variation of Kt for pile T l with lateral pressure in relative dense sand 139

    The shaft resistance of prototype pile established from experimental results with relative medium dense sand (a) in compression (b) in tension

    Variation of l& for pile Tl and T2 with lateral pressure in loose sand 141

    The compression shaft resistance of prototype piles in loose sand established fiom experimental results

    (a) in compression (b) in tension

  • 1.1 OVERALL REVIEW

    Pile foundations are used extensively to support both inland and offshore

    structures, including important structures such as nuclear power plants and oil-drilling

    pladorms. Piles are usually loaded axially in compression to tramfer stnichual loads to

    deeper competent soil layers. In some structures, like transmission towers and jetty

    structures, pile foundations resist uplifi loads. Piles are also fiequentiy used to support

    structures subjected to lateral forces and moments such as offshore structures, harbour

    structures high rise bbuildings and bridge abutments.

    Piles are generally classified according to the pile material (timber, steel or

    concrete), the method of installation (driven, cast-in-place, bored, etc.), or are categorized

    in terms of the load transfer mechanism. (a) Friction piles: the load capacity depends

    mostly on the amount of fiictionai resistance developed at the interface between pile and

    soil. (b) End-bearing piles: the loading capacity relies primarily on the concentrated soil

    resiçtance at the pile tip for developing the resistance to axial load.

    D i f f m t iypes of piles with different shapes such as circle, square or rectangle

    cross sections are used in practice. Piles are mody used with straight-sided wdls. Most

    of the design procedures and guidelines have been developed for straight-sided wall piles

    with littie or no reference to tapered piles, aIthough tapered piles have the potential for

    substantial cost advantages over straight-sided wall piles (Robinsky et al, 1964 and

    Rybnikov 1990). Tapered piles are not widely considered as a design option due to the

  • lack of knowledge about their static and dynamic behaviour and the lack of appropriate

    design tools similar to those available for straight-sided wall piles.

    1.2 OBJECTIVES AND SCOPE

    The objectives of the shidy are to explore the static response of tapered piles

    subjected to axial, lateral and cyclic loads, and to provide a procedure for the design of

    tapered piles. A research program for studying pile performance in cohesionless soils was

    developed with emphasis on the pile shape effect on its capacity and displacement. Both

    tapered and straight-sided wdl piles were examined in order to obtain a complete

    comparative picture of pile actions.

    1.3 ORGANIZATION OF THESIS

    This thesis consists of nine chapters:

    Chapter 1 presents a general introduction and the objectives of this thesis;

    Pile's ultùnate load behaviour, displacement analysis methods and relevant studies of

    tapered piles are reviewed in Chapter 2;

    Chapter 3 contains a description of the experimental setup, test piles, sand properties

    and test preparations;

    In Chapter 4, the experimentd procedure and results for the axial compressive load

    are presented three piles were tested with six different confining pressures;

    Chapter 5 presents the experimental work and results for three piles subjected to axial

    temile Ioad;

  • In Chapter 6, the experimental data and andysis for lateraily loaded piles are

    descri bed;

    The response of tapered piles and straight-sided wall pile subjected to cyclic load is

    descnbed in Chapter 7;

    Chapter 8 presents the validity and application of mode1 test results; and

    Chapter 9 gives the conclusions and recommendations.

  • This literature review covers some s~rdies on straight-sided wall piles and tapered

    piles. Pile load capacity, the analysis methods of single piles and relevant research works

    on tapered pile are reviewed.

    2.1 PILE LOAD CAPACITY

    2. 1. 1 Axial Bearing Capacity

    The traditional study of single piles is directed towards the static load canying

    capacity, assinning that the displacement or deformation is acceptable if an appropriate

    safety factor is used in determining the allowable loads. There are three methods to

    estimate or check the ultimate load capacity of a single pile: static analysis method, pile

    loading test method and dynamic analysis method.

    2. 1. 1. 1 Static anabsis method

    The axial load canying capacity of single pile Qu is determined in practice as the

    sum of the shaft resistance, Qs, fiom the pile-soi1 interface and the tip resistance, Qb, less

    the weight of the pile, Wp, i. e. Qu is calculated as follows:

    Q ~ = Q ~ + ~ ~ - w ~ = J f ~ d z + f b ~ b - w ~ (2 - 1)

    where f, = ultimate unit shaft fiction; C = pile perimeter; fb = dtirnate unit base

    resistance; Ab = area of pile base; Wp = pile weight. The h c t i o n f, a n d 5 are caicdated

  • fiom ernpirical correlation with standard geotechnical soi1 properties, such as the

    undrained shear strength for cohesive soils and the fiction angle for cohensionless soils,

    and the overburden pressure ( Meyerhof, 1 976).

    For piles in sand or gravel, effective stress analysis of ultimate load capacity is

    appropnate. When the cohesive component of drained strength is ignored, the ultimate

    unit shaft fiictionf, and d h a t e unit base resistancefb can be expressed as foilows:

    I;= Ks &tan 6 ( 2 - 2 )

    fb = Nq ~ b ' ( 2 - 3 )

    where &= vertical effective stress adjacent to the pile and a,b'= vertical effective stress

    at the pile base. This approach will be m e r described in Chapter 8.

    2. 1. 1.2 PiIe load testing method

    Pile load testing is usually camied out to quanti@ pile load-settiement behaviour

    and to detemine the uitimate bearing capacity as a check on the value obtained fiom

    theoretical calculations. A number of empirical d e s have been used to serve as criteria

    for detemiinhg ultimate load f?om the load test. Examples are the Davission criterion, the

    Brinch-Hansen criterion and the Chin criterion (Canadian Foundation Engineering

    Manual, 1992). The Davission cntenon defines the pile offset limit load as the load that

    produces a movement, rn, of the pile head equal to:

    where: m = the movement of the pile head at the offset limit load, mm, A = elastic

    shortenhg of the pile, mm, b = diameter of the pile at the tip, m. The other two criteria

    were described in Canadian Foundation Engineering Manual (1 992).

  • Many research achievements have also been made towards the understanding of

    characteristics of compressive piles as repoxted by Nordlund (1963), Coyle and Reese

    (1 966), Bane j e e and Davies (1 978), and O'Neill et. al. (1 982).

    2. 1. 1 .3 Dynamic analysis method

    The capacity of a single pile can be estimated by means of dynamic methods. The

    objective with the dynamic methods of pile test is to relate the dynamic pile behaviour

    (acceleration or driving resistance) to the ultimate static pile resistance. Pile axial capacity

    can be obtauied based on dynamic monitoring, wave-equation analysis or dynamic

    formula. However, dynamic anaiysis rnethods are better used to provide general guidance

    due to its high dependence on competent person, local expenence and relevant

    assumptions. For more detailed information about the dynamic analytic rnethods, see

    Poulos and Davis (1980).

    2. 1 .2 Uplift Load Capacity

    There were considerable debates over the relative magnitude of pile shaft capacity

    in tensile (uplift) loading as compared with compressive loading case. Generally, it is

    assumed that the pile shaft capacity is identical under both tensile and compressive

    loading case. However, there is widespread experimental and numerical evidence that in

    sand, the straight-sided shaft capacity is significantly lower for tensile loading than for

    compressive loading (e.g. Chattopadhyay and Pise, 1986 , Nicola and Randolph, 1993).

    Pile uplift load testing is u s d y carried out to obtain pile uplifi resistance. In

    practice, the interpretation methods used for estimating ultimate pullout load fiom pile

  • puilout load- pile upward movement ciwe are: (1) failure load may be taken as the Ioad

    value that produces a net upward pile top movement of 6.25 mm; (2) upward failure load

    occun at the intersection point of tangents on the load-movement curve; or (3) upward

    failure load is the value at which upward movement suddenly increases.

    2.1.3 Lateral Load Capacity

    Broms (1964% b) provided solutions for the ultimate lateral resistance of a pile

    assuming a distribution of the lateral pile-soi1 pressure and considering the statics of the

    problem. He considered two modes of failure: yielding of the soi1 dong the length of the

    pile (short-pile failure) and yielding of the pile itself at the point of maximum moment

    (long-pile failure). Meyerhof (1995) accounted for the ef6ects of load eccentricity and

    inclination on the ultimate lateral capacity.

    Pile lateral load testing is performed to assess the load-deflection behaviour of a

    pile. Methods for detemwiing failure load fiom lateral load testing Vary depending on the

    tolerable movement of the structure supported by the pile. The general critena are: (1)

    ultimate load can be taken al 6.25 mm Meral movement or deflection; or (2) ultirnate

    load can be considered at the point of intersection of tangents on the load-movement

    curve.

    2.1.4 Effect of Cyclic Loading

    The performance of the foundation piles under cyclic loading is an important

    factor in the design of piles for offshore structures, transmission towen, and some ta11

    buildings. Two major types of cyclic loading are considered in the design of piles. The

  • first type is dynamic or random loading whereby the dynarnic component is significant

    compared to the rea of the forces, such as earthquake load. The second type is non-

    dynamic or approximately systematic loading whereby a steady but slow variation of the

    load is applied, as shown in wind and wave loads or tidai effects on piles resisting uplifi

    forces. The cyclic loading has three possible effects on pile performance:

    1. Accumulation of permanent displacement;

    2. " Shake down" phenornenon reported by Poulos (1982), the pile defiection stabilizes

    and react elastically to any further load cycle;

    3. A possible reduction or " degradation" of pile resistance, especially shaft resistance;

    It is acknowledged that the pile response to cyclic loaduig depends on the

    characteristics of the pile-soi1 system. Chan and Hama (1980) investigated the effects of

    the load amplitude, the type and the number of load cycles on a pile's response and

    concluded that the response of the pile to cyclic load is cornplex. Podos (1 988,1989)

    used soil degradation factors, which are defined as the ratios of soil properties after cyclic

    loading to properties for static loading, to calculate the reduction of pile load capacity due

    to cyclic axial loading, and showed their significance.

    2.2 RESPONSE ANALYSIS METHODS FOR SINGLE PILES

    Several approaches have been developed for the response analysis of axidly and

    laterally loaded piles. These approaches assume either the theory of elasticity or the

    theory of subgrade reaction. The former includes Poulos and Davis (19681, Mattes and

    Podos (1969), Poulos (1971), Randolph (1981), Pise (1984) and Budhu and Davies

    (1988), and the latter includes Coyle and Reese (1966), Kraft Jr. et al (1 98 1) and O'Neil

  • et al (1982). The load-settlement or loaddeflection behaviour of axially or laterally

    loaded piles is highly nonlinear and hence requires a nonlinear analysis. Poulos and Davis

    (1980) and Budhu and Davies (1987) modified the elastic solutions to account for

    nonlinearity using yield factors. The modulus of subgrade reaction approach was

    extended to account for the soil noniinearity. This was done by introducing p y curves

    (Matlock, 1970; Reese et al., 1974; Reese and Welsh, 1975; Prakash, et al 1996).

    2.2.1 Elastic Analysis Method

    The elastic d y s i s of pile load-displacement behaviour under static axial or

    lateral loading was based on the elastic theory for both the pile and surrounding soil. The

    soil is considered as an elastic continuum, the pile is assumed to be a thin strip and

    divided into nurnber of elements. Factors such as soi1 yield, soil layer depth, soil

    inhomogeneity, stifk bearing stratum, and enlarged pile base were considered, the

    dificulty of the application of the elastic method to practical problems is detemiining the

    appropriate soil modulus.

    2.2.2 Subgrade Reaction Method

    The subgrade reaction method or load-tramfer method, correspondhg to lateral or

    axial loaded pile, is based on the curves of soil resistance us. pile displacement. These

    curves are commonly texmed as t- z, q-z curves, denoting load transfer vs setdement

    curves dong the pile or at pile tip, respectively; and p-y curves, denoting lateral resistance

    vs deflection. An apparent advantage of this method is that it can incorporate inelastic soil

    behavior by using nonlinear curves while not complicating the analysis. The weakness of

  • this model is that the continuous nature of the soil medium is ignored and the pile

    reaction at a point is simplly related to the deflection at that point.

    The corresponding experimental curves have been develo ped for clay (Co y le and

    Reese 1966, O'Neil et al 1982, Brown et al 1987) and sand (Brown et ai 1988). In

    addition , an attempt was made to derive theoretical t- z curves (Kraft Jr. et ai 198 l), in

    which the theoretical analysis provided a bais for t-z criterion that couid be applicable to

    a variety of pile and soil conditions. Rakash et al. (1996) developed a method to predict

    the load-deflection relationship @-y curve) for single piles embedded in sand, cons ide~g

    soil nonlinearity using subgrade reaction, based on the analysis of 14 Ml-scale lateral pile

    Ioad tests results.

    2.2.3 Finite Element Analysis Method

    The finite element method could be used for the response analysis of single piles.

    It gives a better insight in the pile foundation behaviour, provided that adequate modeling

    of the soil and the pile- soil interface takes place. The finite element method was used by

    Ellison et al (1 97 l), Desai (1 974), Kuhlemeyer (1 979) and Randolph (1 98 1 ). Ellison et al

    (1971) developed a general procedure to collocate the behavior of elements with the

    cornplex foundation-soi1 system., where the h i t e elemect model was used to predict the

    load capacity and load-deformation of a bored pile in stiff clay. Desai (1974) applied the

    finite element method to predict load-deformations and stress distributions for

    compressive steel pipe piles in sandy soils. Kuhlemeyer (1979) analyzed laterally loaded

    piles and highhghted the dynamics solution. Randolph (1 98 1) examined pile static lateral

  • load behaviour and eeated the soil as an elastic continuum with a linearly varying soil

    modulus.

    2.3 RELEVANT STUDIES ON TAPERED PILES

    A number of studies have been directed toward the response of individual

    straight- sided wall piles with littie attention being paid to tapered piles. The vast rnajority

    of the research on tapered piles focuses on the load-carrying capacity.

    The previous studies of tapered piie subjected to axial compressive load include

    full-scale field testing, laboratory testing and analytical procedures. Field testing results

    are reported in Norlund (1 963), Appolonia and Haribar (1963) and Rybnikov (1990).

    Laboratory testing observations include those conducted by Robinsky et al. (1964) and

    Bakholdin (1971). Ladanyi and Guichaoua (1985) and Kodikara and Moore (1993)

    suggested analytical solutions for tapered pile response; Poulos and Sim (1990)

    conducted a theoretical anaiysis with five different pile types to assess their cyclic load

    capacity.

    2.3. 1 Field Testing Results

    Norlund (1963) described a pile test program and a method for computing the

    ultimate axial resistance of a pile in cohesioniess soils was developed. The test data

    demonstrated the signifiant effect of pile taper, the roughness and the shape of the pile

    sdace , and the volume of soil displaced by the piie on the pile bearing capacity.

    Rybnikov (1 990) shidied the bearing capacity of bored-cast-in-place tapered piles through

    a field experimental investigation. He suggested that the tapered piles had a specific

  • bearing capacity that exceeded the specific bearing capacity of straight-sided wall pile

    having the same length by 20.30%.

    2.3.2 Laboratory Testing Observations

    Robinsky et al. (1964) investigated the effect of the shape and volume of piles

    installed in sand on their capacity. In this study, instnunented model straight-sided wall

    and tapered piles were driven into sand at different embedment depth to diameter ratios.

    These tests revealed that the intensity of unit load transfer through the pile walls changed

    continuously as the piles were advanced. Furthemore, tapered piles were found to be

    appreciably more efficient than straight-sided wail piles. Robinsky and Momion (1964)

    studied the effect of pile taper on the displacement and compaction of cohesiodess soi1

    adjacent to fiction tapered piles. It was found that in relatively homogeneous

    cohesionless soils, a tapered pile with most of the load being carried by skin fiiction can

    support considerably greater loads than a sûaight-sided wall pile with a larger point.

    2.3.3 Theoretical Analysis Results

    Ladanyi and Guichaoua (1985) compared the response of tapered piles, straight-

    sided wall piles and comgated piles in permafkost soils. They showed that tapered piles

    were the safea because they display strain hardening characteristics as opposed to the

    brittle failure that occurred in other types of piles. They also developed a model for the

    analysis of tapered piles wherein the soil resistance was modeled by two components; the

    first component was the fiction and adhesion dong the shaA (shearing resistance) and the

    second component was due to the lateral soil reaction mobilized by the hole expansion

  • resdting fiom the pile penetrating the ground. A simila. mode1 was presented by

    Kodikara and Moore (1993) for the analysis of the axial response of tapered piles, it

    accounted for the nonlinearity conditions dong the pile-soi1 interface. Podos and S im

    (1 990) conducted a theoreticai analysis with five different pile types to assess their cyclic

    Ioad capacity. They concluded that the pile taper could have a favorable effect on its

    cyclic performance as it reduced stress concentration.

    2.4 MOTIVATIONS

    In tapered piles, which have the great top cross section than the bonom one, an

    increase in the side resistance can be expected when there is a slip of the pile relative to

    the ground. This occurs because the ground adjacent to the pile is then forced to expand

    radially, so that additional lateral pressures are developed and lead to an increase in the

    shear stresses across the pile-soi1 interface. The flexural effects of deflection and bending

    moment of a pile subjected to a lateml load at the top are also highest at the top and

    decrease rapidly with depth. Hence, it is also expected that tapered piles represent a more

    efficient distribution of the pile matenal in this loading mode as well.

    In order to obtain a complete comparative picture of pile action, it is essential to

    midy both tapered and straight-sided wall pile. A program was initiated to study fiiction

    piles in cohensioniess soils, with particular emphasis on the effect of shape on pile

    capacity. Four phases are included in this program, the fia phase examined the pushing

    down bearing capacity of the tapered piles (Wei and EL Naggar, 1998); the second phase

    dealt with the effect of the pile taper on tensile loading; the thKd phase examined the

  • response of test piles to the lateral loading and the forth phase explored pile behavior

    under uniforni axial cyclic loading.

  • CHAPTER 3

    TESTING FACILITIES AND PREPARATION

    3.1 INTRODUCTION

    The loading tests were performed on mode1 piles installed in dry sand in a

    laboratory setup. The sand was enclosed in a steel chamber that ailowed the application of

    variable confining pressure to the sand. The description of the experimentd setup,

    hcluding the test piles, instrumentation, soil sample, soil chamber, loading equipment,

    and testing preparation are given below.

    3.2 TESTING FACILITIES

    3.2.1 Testing Mes

    Three inmumented structural steel piles of equal length and average embedded

    diarneter but different taper angles were used in this mdy. Two piles were tapered wirh

    different taper angles and the third was a straight-sided wall pile. Tapered pile number 1 ,

    Tl, had a taper angle = 0 . 9 5 ~ ~ while tapered pile number 2, Tî, had a taper angle = 0.6'.

    The piles were 1.52 m in length with diameters varying between 160 and 200 mm and a

    wall thickness of approximately 6.4 mm. The length to diameter ratio for these piles was

    approximately 9, typical of rigid piles. The geometrical properties of piles are given in

    Table 3-1, and are shown schematically in Figure 3-1. The piles were fitted with slip - on

    flanges at their heads to facilitate loading.

  • 3.2.2 Strain Gauge Installation

    The piles were instrwnented with electrical resistance saain gauges (CEA-06-

    XOUW- 120). Full and half bridge electrical resistance strain gauge circuits were used in

    axial and lateral loading tests, respectively, as shown in Figure 3-2.

    Six pairs of sirah gauges were attached to the exterior walls of the piles using M -

    Bond 200 adhesive. They were distributed over the length of the pile such that the first

    strain gauge was 0.3m from the pile head (approximately at the surface of the sand) and

    the last main gauge was close to the pile tip , 0.05 m fiom the pile tip. The rest of the

    main gauges were spaced as shown in Figure 3-3.

    3.2.3 Soi1 Sample

    The soi1 w d in the tests consisted of coarse, anguiar particies of air dned sand.

    The p i n size distribution for the sand is shown in Figure 3-4.

    A standard test of the sand showed it had a maximum unit weight of 18.35 kN/m3

    and minimum unit weight of 15.83 w / m 3 at a moisture content of 0.25 per cent. Two sets

    of tests were perfomed on piles in this study for axial static load test. In the fint set, the

    sand was loose with relative density, Dr = 18.4%. In the second set, the sand was

    compacted by applying a 100 kPa confining pressure and then releasing the pressure to

    zero before starting the testing procedure. The initial relative density in this case was

    calculated as Dr = 32.7%. Grain size analysis and other data relating to the sand are given

    in Table 3-2. The relationship between angle of fiiction and relative density of sand are

    adopted fiom Das (1995).

  • 3.2.4 Soil Chamber (VLPSC)

    To mode1 the effixt of varying confining pressure on the response of piles

    installed in cohesioniess soil a device termed the Variable Laterai Pressure Sand Column

    or VLPSC was used and is depicted in Figure 3-5. This device was designed and used by

    Moore et al (1995).

    The sand was contained in a steel chamber, VLPSC, 1 Sm in intenor diameter,

    with 10 mm thick walls, and 1.445m in depth. The top and bottom of the steel chamber

    were covered by ngid steel plates. The top plate has a 397mm access hole for the test pile

    and svain gauges leads to the data acquisition system. The edge of the access hole is

    stiffened by a steel r i . fitted with an arrangement to facilitate the attachent of the

    loading b e . The loading fiame (reaction fiame) was made of steel channel sections

    with a fitting to fasten the hydraulic jack used for both axial and laterai loading.

    The steel charnber was Iined with an air bladder so that sand inside the steel

    chamber could be pressurized. The air bladder was used to vary the confining pressure to

    simulate the typical embedded depth of piles. A manifold was applied to control the air

    pressure through lines comected to the air bladder. The pressure variation was fiom O to

    100 kPa.

    3.2.5 Soil Pressure Transducer

    Three soi1 pressure transducers were used in this study. Typical Current-Pressure

    relationships of soil pressure tmnsducers are showed in Figure 3-6. The variation of the

    stresses around the test piles were obtained before loading tests. Two soil transducers, Pl

    and P2, were placed 150 mm fiom the pile tip; one to measure the vertical stress at the

  • pile tip elevation and the other to masure the lateml stress at the level of 200 mm above

    the pile tip. A third soi1 transducer, P3, was installed in the sand 200 mm under the sand

    surface, 150 mm fkom the pile to measure the lateral stress ~f the sand. The relationship

    between applied confining pressures and measured stresses a r o d the tested piles are

    illustrated in Figure 3-7.

    3.2.6 Other Testing Equipment

    Other testing equipment used in this study are listed as follow:

    Blackhawk Holoram Hydraulic Jack, 178 kN (20 TON) capacity, 50.8 mm (2 in.) stroke

    Simplex R106 Hydraulic jack ,89 kN (10 TON ) capacity, 127 mm (Sin.) stroke

    Simplex Hydraulic Hand pump, RP6A, 0-68.95 MPa (10,000 Psi ) capacity

    S train,ce~e

    FL25U- 2SGKT 1 1 1.25 kN (25,0001b) loadcell

    Donc Digital Readout Mode1 420

    Data Acquisition System includes

    Compter @oric 245A, &ta logger)

    Strain gauge conditioner (UC- 19)

    Beckmann "logger" software

  • 3.3 TESTING PREPARATION

    More than seventy testing configurations were considered on pile testing to

    establish the behaviour of tapered piles in cohesionless soil, as indicated in Table 3-3.

    Two sets of tests were performed in this study for investigating the behaviour of tested

    piles under axial loading. In the first set, the sand was w d in a loose state, while in the

    second set, the sand was relatively medium dense due to the application of a 100 kPa

    c o n f i g pressure before testing started. Lateral and axial cyclic loading tests were

    conducted with loose sand. The same preparation procedure described below was

    followed for al1 performed tests.

    The sand was spread in patches in the lab and air dried, it was placed into the

    VLPSC to a depth of about 400 mm using a min technique. The pile was then placed at

    the center of the chamber guided by a m e to assure centric vertical alignrnent. The pile

    was slightly embedded in the sand such that the total embedrnent depth of the pile would

    be 1.2m afier filling the soil chamber, and the first strain gauge was approximately at the

    suface of the soil. As mentioned forgoing two pressure transducers were placed 150 mm

    fiom the pile tip. Afier securing the pile and pressure transducers in place, more sand was

    added around the pile until the chamber was filled to capacity. A third pressure

    transducer was installed in the sand 200 mm under the sand surface, 150 mm fkom the

    pile. The surface of the sand was leveled and the top cover plate was placed and screwed

    to the chamber.

    The reaction frame was placed across the access hole at the top plate and tightly

    screwed to the rim of the access hole. A reference beam was then attached to the edge of

    the chamber. Dia1 gauges were installed on the reference beam (separated fiom the

  • loading system) to meamre the pile head settlement or deflections. A hydraulic jack and

    a load ce11 were placed between the pile head and the reaction fiame and adjusted to

    ensure centric loading. A data acquisition systern was connected to the sûain gauges and

    the load ce11 to read and record the strains and load appiied simultaneously durulg testing

    every ten seconds. The loading equipment for axial downward, axial upward and laterai

    loading are shown in Figures 3-8 to 3- 10, respectively, the axial downward and upward

    loading equipment were used to conduct the axial cyclic loading tests. A typical oblique

    view of the testing facility is shown in Figure 3-1 1.

    The testing procedure descnbed and the pile load testing were repeated three

    times for each testing configuration. The difference between the pile ultimate load in the

    three sets was Iess than 10%. The results reported herei. represent one set of results that

    was the closest to the average of the three sets.

    3.4 EFFECT OF PILE INSTALLATION METHOD

    The pile placement method may have important influence on pile performance.

    When a pile is driven into sana the mil is usuaily cornpacted by displacement and

    vibration. In loose sand, the load capacity of a pile is increased as a result of the increase

    in relative density caused by the driving. Detailed investigations of extent of compaction

    of sand and the increase in relative density around the pile have been carried out by

    Robinsky and Monison (1 964).

    Aiizadeh and Davisson (1 970) described a pile load testing program conducted to

    determine the lateral Ioad-deflection behavior for individual vertical and batter piles, the

  • flexurd behavior of piles and the effect of sand density on the pile response. The results

    showed the significant effect of the relative density of sand on the pile's behaviour.

    To ensure that the placement method has no influence on the relative performance

    of the piles, the same instailation procedure was w d for aii piles. In this procedure, as

    was described, the pile was placed in the center of soi1 chamber and then the sand was

    poured into i t Therefore, no densification was due to the placement method because no

    soi1 displacement occurred. This installation method is more like a "bored pile" case and

    hence, the results obtained do not represent the case of driven piles. However, it is

    expected that the effect of the taper will be more pronounced in dnven piles. This is

    because the wedging effect of tapered piles would result in more densification of the sand

    narounding the pile that in tum would lead to a better performance under axial and

    lateral loads as shown Iater.

  • Table 3-1 Geometries of Three Piles

    Table 3-2 Sand Properties

    'pi le Diameter (outside. ml IThickness(mrn) 'Length(rn) S~night sided wall pile. S Tapemi pile. T2 Tapend pile, Tl

    Ettécrive diameter

    Utirl'om~r~ coetticicnt

    ASThn* Sieve Desipotion No. IO No. 20 No. 40 No. 60 No. 100

    Mas~murn densi' Initial relative densin

    Percentage f i bv weight 84.17% 45.96% 13.53% 4.66% 1.85%

    D,o=0.35mrn

    C,=2.85 26"-30"

    1.615kg/rn3 28"-35"

    l.873k~@? 18.4% (first group of tests) & 32.7% (second group of tests)

    1.524 1.524 1.524

    0.1683 0. & 968~Q0.165 1

    _0.2032&0.1524

    13 2"( tint poup or tests) &3S0(second p u p of tests) ASTM* 1993

    7.1 12 6.35 6.35

    Table 3-3 Test Arrangement

    Apyilicd contininp pressiirr

    Coinpression Lcwsr ssind Relritivrly rnaiium dense sanù

    ~rnsion Lwse sand Rrlritivelv medium dense sond

    h e m 1 Lmse sand

    C'!.clic Loc~sc smd T1.TZ.S TI.T2.S TI.T2,SI T1.T2.S I

    O kPa

    TI. ft

    20kPn

    T 1 . n

    4OWa

    T1.n

    60kPa I 8 0 U a

    TI.T2 S. Tl

    T 1 . n S. TI

    T 1 . n . S

    100L;Pa

    S. TI

    TI,T2 S. TI

    T1.R.S

    S. Ti

    1

    S. Tl

    T1.Tz.S

    S. Tl

    Tl. T2 S. Tl

    TI.T2,S

    S. Tl

    T 1 . n S. TI

    T l .

    S. TI

    S. Tl

    T1.Tz.S

  • Dummy / \ Active / Signai 1

    A c t C ive T

    Act ive

    Figure 3-1

    T Act ive

    Strain griuge circuits a: mial loading test b: Lateral loading test

  • Latera

    L

    I iood-

    Strain lndicator

    F e 3 - Strain gauge installation

    Grain size in miIlimeters

    Grain size distribution

  • O -! 1

    0 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 Pressure. psi

    Figure 3-6 Typicai current-pressure relationship for soi1 transducer (1 psi = 6.895 kPa)

    Applied conlining pressure (kPa)

    Figure 3-7 Applied confining pressure vs. measured stress around pile S

  • To hydraulic

    Figure 3-8

    Figure 3-9

    I /Reaction frame J

    Load cell

    Hydroulic jack

    Bearing plate

    Axial loading equipment

    Uplifl loading equipmtnt

  • I ' VLPSC . . I I 1 . . I I I I I I 1 I I I

    holdeî

    beam

    Figure 3-10 Lateral loading equipment

  • Figure 3-1 1 Oblique view of the testing facility

  • CHAPTER 4

    AXIAL COMPRESSIVE RESPONSE OF TAPEIRED PILES

    4.1 INTRODUCTION

    Piles have been used to bansfer structural loads to deeper competent soil layers,

    allowing construction in areas where the soil conditions near the ground surface are

    unfavorable.

    To investigate the effect of the pile taper on the pile axial response, two sets of

    compressive loading tests, as defhed in Chapter 3, were performed in this study. The test

    procedure and observations are discussed in this chapter, including failure load

    detemination, load distribution dong the pile, unit load tramfer and the distribution of

    pile shafl and tip resiçtance, etc.

    4.2 TESTING PROCEDURE

    At the beginning of pile load testing, al1 the instruments were reset to zero. The

    fist axial loading was performed with zero confining presstire fiom the air bladder. The

    pile was loaded in 20 increments. each about 10% of the expected pile capacity. Each

    load increment was maintained for 2.5 minutes. The measurements of load and strains

    were recorded every 10 seconds through the data acquisition system. The dial gauge

    readings were taken at the middle and the end of time interval for each loading increment.

    After the axial loading (downward) was completed, the uplift test was conducted.

    Uplifi capacity was less than the compression bearing capacity for the same pile under the

    same confining pressure and was attained at a smaller displacement. Hence, the pile had

  • to & pdled up to the initial embedded depth (1.2m) &er the uplift test. This was done to

    ensure that the embedment depth was the same for ail loading tests. Also, any residual

    stresses due to previous loading may dissipate due to that process. The pressure was then

    increased by an additional 20 kPa, and the process repeated until the pile had been tested

    at dl desired values of confining pressure.

    in each group of tests, the confinùig pressure was varied fkom O kPa to 100 kPa.

    However, before ninning the second group of tests, a connning pressure of 100 kPa was

    applied to the sand for two hours and then released to O kPa. The top cover plate was

    then removed and the drop of the sand sudace was measured and was found to be 30 mm.

    More sand was added to f iU the chamber up again and the top cover plate was placed

    back on the steel chamber. Therefore, the sand in the second set of tests could be

    wnsidered medium dense. The same test procedure used in the first set was followed in

    the second set. The axial load tests in the fkst group of tests were successfully completed

    with 0-60 kPa confinhg pressure only. The testing at higher confining pressure was

    intemipted due to a problem with the air bladder.

    4.3 TESTLNG RESULTS

    4.3.1 Load-Displacement and Bearing Capacity

    4.3.1.1 First group of tests

    The load applied at the pile head and the displacement of the pile head were

    measured during the first set of tests and plotted in Figures 4-1 and 4-2. Figure 4-1 shows

    the load-displacement curves at different values of confining pressure for tapered pile,

    Tl, while Figure 4-2 shows the load-displacement curves for tapered pile, R. It can be

  • noted fiom Figure 4-1 and 4-2 th, as expeaed, the effect of the confining pressure was

    to increase the pile capacity for both piles. Also, it may be noted that the axial stiffiess

    (load divided by displacement) of pile Tl, with greater taper, at any loading increment

    was greater than the axial sfiffness of pile T2 at the same level of loading for d l values of

    confining pressure.

    The ultimate load for each pile was detemiined fiom the load displacement c w e s

    using Davisson cntenon (Canadian Fomdation Engineering Manual, 1992), illustrated in

    Figure 4-3. The results are compared in Table 4-1 based on the pile bearing capacity ratio,

    KQ, and the coefficient of effective utilization of the pile material, KV. The ratio KQ is

    defined as the ratio of the bearing capacity of the two investigated piles, while the ratio

    KV is defmed as the ratio of the specific bearing capacity (pile capacity per unit volume)

    of the two piles. It cm be observed fiom Table 4-1 that pile Tl displayed higher axial

    capacity for all values of confinhg pressure. This increase was manifested in terms of KQ

    and KV values higher than 1. These values implied that the axial capacity of pile Tl is 17

    to 27% higher than the axial capacity of pile T2 for the given values of confining

    pressure, with the highea increase at a confïning pressure equal to 20 kPa. The same

    trend was observed in the coefficient KV, which implied that the taper of the pile

    increased the efficiency of the utilization of the pile material. These results are consistent

    with the results obtained by Rybnikov (1990), who found that the specific bearing

    capacity of a tapered pile was higher by a factor of approximately 1.3 compared with a

    straight-sided wall pile.

  • 4.3. 1.2 Second group of tests

    Figures 4-4 and 4-5 present the load and displacement measurements at the pile

    heads at different values of confining pressure during the second set of tests. Figure 4-4

    presents the load-displacement curves for tapered pile, Tl, while Figure 4-5 shows the

    load-displacement curves for dght -s ided wall pile, S. It can be noted fiom the figures

    that the confining pressure was to increase the pile head sti&ess, for both piles.

    However, this effect was less significant in this set of tests (dense sand) than it was in the

    first set of tests (loose sand), especially at higher values of confining pressure (80 and 100

    kPa). This observation could be used as an argument to support the arching effect for

    piles installed in cohesionless soil. Further, It may be noticed that it was even less

    significant for the pile Tl, which draws part of its capacity fiom the lateral resistance of

    the soil. The comprison of the response of the tapered pile, Tl, and the straight-sided

    wall pile, S, shows that Tl displayed a stiffer response at dl loading increments for al1

    values of confinhg pressure.

    In Table 4-2, the axial capacity of Tl and S were compared based on KQ and KV.

    It c m be seen from the cornparison that the axial capacity of the tapered pile was higher

    than the axial capacity of the straight-sided wall pile for al1 values of confining pressure.

    The ratio KQ varied between 1.05 to 1.37, with the maximum value occurring at a

    confining pressure of 40 kPa. The ratio KV varied between 1 .O9 to 1.42, with the

    maximum value occurring at a confining pressure of 40 kPa. Both KQ and KV increased

    as the confining pressure increased until a confining pressure of 40 kPa was reached. For

    higher values of confining pressure, both KQ and KV decreased as the confining pressure

    increased.

  • 4 3 . 2 Load Distribution

    The forces transmitted at different locations were caiculated fiom strain gauge

    readings, i.e.

    4, =E, E A , (4- 1)

    where q, is the pile axial load at the location of strain gauge i, E is the strain measurement

    of snain gauge i, E is the elastic modulus of the pile matenal and A, is the pile cross-

    sectional area at the location of sûah gauge i.

    Figures 4-6 and 4-7 show the load distribution dong the piles under various load

    increments for the first and second sets of tests, respectively. It may be observed fiom the

    two figures that the general trend of the load distribution was the same for al1 three piles

    at al1 loading increments. It can also be noticed that most of the load was transferred to

    the soii through the pile shaft with a small contribution fiom the pile tip. A closer look at

    these figures showed that tapered pile Tl transferred more load to the soi1 along its upper

    portion than did both tapered pile T2 and straight-sided wall pile S.

    4.3.3 Unit Load Transfer

    The unit load transfer of the pile shaft was calculated from the main

    measurements during the pile test. When the ultirnate load of the pile was reached, the

    readings of the strain gauges were recorded and used to calculate the load distribution

    along the pile. The difference between the force calculated fiom any two sets of strain

    gauges dong the pile wall represented the total load transferred to the surrounding soi1

    between the two points. Dividing this ciifference by the correspondhg surface area, the

    average of unit load tnuisfer was obtained

  • wheref;, is the average unit load transfer between stations i and j and Sv is the surface area

    of the pile between stations i and j. The unit load transfer c w e was obtained fkom the

    values of unit load transfer dong the pile.

    Figure 4-8 shows the comparison of the unit load transfer for piles T l and T2 in

    the f is t set of tests, while Figure 4-9 shows the comparison between Tl and S in the

    second set of tests. These two figures iliustrate clearly that, as expected, the unit load

    tramfer increased as the confining pressure increased, for dl piles. However. for higher

    confinhg pressure (Le. greater than 60 kPa) the unit load tramfer for tapered pile Tl

    leveled off at a maximum of 40 kPa. These results were in good agreement with the

    results obtained by Robinsky e t al. (1964). It may be noted fiom the wo figures that the

    effect of the taper was to increase the unit load transfer especially for the topmon part of

    the pile and the lower confining pressure range. Furthemore, comparing the unit Ioad

    transfer for the tapered pile Tl in the two sets of tests (Figures 4-8 and 4-9), it could be

    observed that the initial sand density has a significant effect on the unit load transfer in

    the lower confining pressure. This effect was less significant, however, in the higher

    confiking pressure range.

    Figure 4-1 0 shows die unit load transfer curves for

    different values of confining pressure, derived fkom the £ïrst

    tapered piles T l and T2

    set of tests, while Figure

    11 shows the unit Ioad transfer for piles Tl and S, derived fiom the second set of tests.

    These two figures confirrn that the intensity of the load transfer increased with an increase

    in the confining pressure until a maximum value of unit load transfer was reached. The

  • increase in the confining pressure beyond this point has no effect on the load tramfer

    through the pile shaft. This observation suggests there was a limiting fiction value that

    depends on the of shearing resistance of sand and the pile Wction angle. Similar

    conclusions were made by Yoshimi and Kishida (1 98 1) in their experimental study on the

    characteristics of the fiiction between sand and metal surface.

    4.3.4 Pile Tip Resistance

    Table 4-3 compares the distribution of the ultimate load between the pile point

    and the pile shaft for various applied confining pressures plotted in Figure 4-12. It can be

    observed fiom the figure that the contribution of the pile tip was higher for the maight-

    sided wall pile than for the tapered pile. For zero confiring pressure, the tapered pile T1

    derived approximately 58% of its support from the pile tip while the straight-sided wall

    pile denved about 66%. As the confining pressure value increased, the pile tip

    contribution decreased and the shaft contribution increased. This is in a good agreement

    with Abendroth and Greimann (1 WO), where the end-bearing capacity of the mode1

    fiction piles was as large as 70% and 49% of the total vertical capacity for the piles

    ernbedded in loose and compacted sand, respectively.

    4.4 DISCUSSION: ARCHING PHENOMENON

    The effect of pile taper can be explained by the arching phenomenon. The pile

    compression test was accompanied by some sand loosening dong the pile walls, which

    was believed to cause a complex systern of arching in the soil s w r o ~ d h g the piles

    (Robinslq, 1964). The pile shape and the initial soil density detemüned the systern of

  • arching and the efficiency and capacity of the piles. Tests with the tapered pile permitted

    the development of wide arches, thus transferring the pile load to a greater volume of

    sand than in the tests with the straight-sided wall pile. With the kght -s ided wdl pile,

    the load had to be carried by a smaller volume of sand. The failure stresses in the sand

    surrounding a &&t-sided wall pile were tt.s reached at a lower total load than in the

    case of the tapered pile.

    At low confinhg pressure values, the axial capacity of both piles increased

    significantly with the increase of the appiied confining pressure. At hi& confining

    pressure values, this effect is much less significant. The experimentd investigation by

    Sirnonini (1996), on the pile behaviour offered a possible explanation for this trend.

    When a pile is ioaded, the effective stresses inside the soi1 mass range fiom low values,

    co~responding to the initial overburden stress, to very high ones; at high confining

    pressures, dilatancy vanishes and crushing becomes the only mechanism of deformation

    in addition to simple slip. These combined effects lead to a decrease of the sheax-ing

    strength of sand. This explariation was supported by the fact that the cnishing sound was

    heard during the experimental work as the dtimate load was reached, at confining

    pressure values greater than 60 kPa At one stage during the pile loading at a 100 kPa

    confinhg pressure, two soil pressure transducers with a capacity of 700 kPa were failed.

    That meant the stress in the soil exceeded the tramducers capacity, which resulted in the

    sand crashing.

  • 4.5 SUMhlARY

    An experimental investigation of the axial response of tbree steel piles with

    different taper angle installed in sand was presented and discussed in this chapter. The

    analysis of the results showed consistent agreement with the results obtained by other

    researchers. Based on the results presented and the cornparisons between the response of

    tapered piles and straight-sided wall pile, the following conclusions were made:

    1. The pile axial capacity increased with an increase in confinulg pressure for d l piles

    examined in this study.

    2. The resdts indicated a beneficial effect of the pile taper in ternis of an increase in the

    axial capacity and niffness.

    3. The analysis of ihe test results indicates that there was a limiting fiction value that

    depends on the angle of shearing resistance of sand and the pile friction angle.

    4. As the effect of the taper was much less significant for higher confixing pressure values

    (Le. greater embedment depth), it may be recomrnended that the taper be confied to the

    topmost part of longer piles.

    5. The pile tip contribution 10 the total pile capacity was less for tapered piles than for

    straight-sided wall pile.

  • Tcrbte 4-1 Axial Compression Results ( first group of tests)

    Applied confining pressure O kPa 20 kPo 40 kPa , 60 kPa t3canng Cnpacity h QT2 1.70 7.10 1 1.50 14.50

    2 .OQ 9 .O0 17.00

    Table 4-2 Axial Compression Results ( second group of tests)

    Table 4-3 Pile Tip Resistance at Qu ( second group of tests)

    Applicd Confininp Pressure Rearing Cepacity

    Qu (W QS QT 1

    KQ=QT I /QS Capacit)lNolume 1 ( Q W s

    Applied Confininp Pressure l'ip Kcsisionce (kN)

    Shaîl Resistance (kN)

    Perceniage of Shaft Resistancc Perccniaee of Tip Rctsisiancc.

    TI S

    T I S

    T I S

    Tl S

    O kPa 4.54 5.00

    O kPa 2.89 2.96 2.1 1 1.58

    42.20 34.80 57. 80 65.20

    40 kPa 15.36 2 1 . 0

    20 kPa 1 1.50 14.50

    1.10 1 .O3

    60 kl'a 1.82 2.29 2 1.78 17.2 1 92.29 88.26 7.7 1 1 1.74

    1.37 3.50

    1,26 2.62

    20 W u 5.86 6.08 8.64 5.42 59.59 47.13 40.4 1 52.U7

    60 kPa 19.50 23.60

    40 kPa 2.32 2.64 1 N.68 12.72 88.95 82.8 1 1 1 .O5 17.19

    80 kPa 0.71 1.4

    24.58 22.60 97.19 94.17 2.81 5.83

    1.21 4.44

    100 kPa I .58 1.8 1

    26.42 24.19 94.36 93.04 5.64 6.96

    80 kPn 24.00 25.29

    100 P a 26.00 28.00

    1 ,O5 5.47

    1 .O8 5.93

  • Figure 4- 1

    confining pressure

    10 1 S 20 Settlement (mm)

    Load-seulement curves of pile T 1 wirh different codining pressures (firsr group of tests)

    1s 20

    Setticment (mm)

    Figure 4-2 Load-settlement curves of pile T2 with different confining pressures (first group of tests)

  • Figure 4-3 Constmction of the offset limit Ioad (after Canadian Foundation Engineering Manuai, 1992 )

  • 15 20 Settlemmt (mm)

    Figure 4 4 Load-senlement curves of pile Tl with dEerent confhing pressures (second group of tests)

    Figure 4-5 Load-seulement curves of pile S with different confining pressures (second group of tests)

  • -1.4 - a: O kPa confining pressure

    c: JO kPa confining pressure

    b: 20 kPri confining pressure

    Load (kN)

    - - * - -5.OkN (Tl) - - * - -1O.OW~l)

    -1.4 1 d: 60 kPa confining prrsswe

    Figure 4 6 Load distribution along the pile with different values of load applied at pile heads of T 1 and T2 (first group of tests)

  • Load (kN) O 10 20 30

    a: 0 kPa cotirinirig pressure

    c: JO kPa confirring pressure

    b: 20 kPa coiifiiiitig prcssurc

    Load (kN) O 20 40 60

    d: 60 kPa conlining pressure

    Figure 4-7 Load distribution dong the pile with different values of load appiied at pile heads of T 1 and S ( second group of tests)

  • Load (kN) O 1 O 20 30 40

    - - * - -2û.O kN(T1) - - * - -30.0kN(T1)

    -1.4 -

    e: 80 kPa coiifinirig prcssiirc

    Figure 4-7 (continued)

    Load (kN) O 20 40 60

  • Unit load transfer (kPa)

    O 2 4 6 8 10 12 14

    a: O kPa c o ~ i i i n g pressure

    Unit luad transfer (kPa)

    O 20 40 60 80

    - 1

    c: 40 kPa confining pressure

    Unit load transler (kPa)

    O I O 20 30 40 50 60

    J

    b: 20 k f a conliniiig pressure

    Unit load transfer (kPa)

    -1 J

    d: 60 kPa confining pressure

    Figure 4-8 Unit load transfer to the soi1 when ultimate load was reached at piles T 1 and T2 (first group of tests)

  • Unit load transfer(kPa)

    O 5 1 O 15 M

    Unit load transfer (kPa)

    O M 40 60

    c: 40 kfa confiiiing pressure

    Unit load transfer (kPa)

    O 10 20 30 40

    Unit load transfer (kPa)

    0 2 0 4 0 6 0 8 0 1 0 0

    d: 60 kPa confining pressure

    Figure 4-9 Unit load transfer to the soi1 when ultimate load was reached at piles Tl and S (second group of tests)

  • Unit load transfer (kPa)

    O 20 40 6 0 8 0 1 0 0 1 2 0 1 4 0

    C

    e: 80 );Pa confining prcssurc

    Fisure 4-9 (continued)

    Unit k d transfer (kPa)

    O 20 40 60 80 1 0 0 1 2 0 1 4 0

  • Unît ioad transfu ( kPa)

    10 20 30 40 50

    Unit ioad transfer (kPa)

    1 O 20 30

    b: Tapcred pile. T2

    Figure 4- 10 Variation of unit load transfer to the 5011 curves with piles Tl and T2 at different confining pressure applied (first group of tests)

  • Unit load tnnsfer (kPa) O 10 20 30 40 50 60

    -1 J

    a: Tapercd pilc. Tl

    Unit load transfer (kPa) O 10 20 30 40 50 60 70

    -1 J

    b: Straiglitaided wall pile. S

    Figure 4- 1 1 Variation of unit load transfer to the soi1 curves with piles TI and S at different confining pressure applied (second group of tests)

  • O 1 O 20 30 40 50 60 70 80 90 100 Confining pressure (kPa)

    Figure 4- 12 The distribution of the ultimate load between the pile point and the pile shafl for various applied confining pressures (second group of tests)

  • CHAFTER 5

    UPLIFT BEKAVIOUR OF TAPERED PILE

    5.1 INTRODUCTION

    In practice, a working pile is not aiways subjected to a compressive load. Piles

    supporting transmission towers and jetty structures have to resist uplifi loads.

    Tapered piles have a substantial advantage with regard to their load-carrying

    capacity in the downward frictional mode. The uplift performance of tapered piles has not

    been fully unùerstood. This chapter describes the results of the experimental investigation

    into the characteristics of the uplift performance of tapered piles. The observations

    include the load-displacement behaviour, ultimate uplifi load, ratio of uplift to

    compressive !oad and load -fer patterns.

    5.2 TESTING PROCEDURE

    The pile axial compressive loading test started after the installation procedure was

    completed as described in Chapters 3 and 4. The pile was fîrst loaded ciownward with

    zero applied confinhg pressure. After the downward axial loading was completed, a

    pullhg jack was set and al1 the instruments were reset to zero, the uplifi test was

    conducted. The testing procedure and readings for the axial pullout tests were similar to

    those for axial compression tests described in Chapter 4 except that the load was applied

    in tension. Each loading increment was about 10% of the expected pile uplift capacity

    until 15 mm upward pile movement was attahed or the failure (significant change in

    displacement due to a small load increment) occurred first.

  • 5.3 TESTING RESULTS

    5.3.1 Upiift Load-Disphcement

    The load applied at the pile head and the displacement of the pile head were

    measured during the loading tests and plotted in Figures 5-1 and 5-2 for the first and

    second group of tests, respectively. Figures 5-1 (a) and 5-2 (a) show the load-

    displacement cuves at different values of confining pressure for tapered pile, Tl , in the

    fkst and second sets of tests, respectively. Figure 5-1 @) shows the load-displacement

    curves for tapered pile, T2, and Figure 5-2 (b) shows the load-displacement curves for

    straight-sided wall pile, S. It can be noted fiom the figures that the pile's uplift capacity

    increased due to the increase in the confining pressure. It may also be noted that the piles

    with larger taper angle, Tl, displayed a softer response manifested by larger

    displacements at the sarne load level, except for initial loading which was afTected by the

    res idd stresses as discussed later.

    5.3.2 UItimate Uplitt Load

    The ultimate pullout Ioad for each pile was detemiined fiom the load

    displacement Cumes. The fdure load of a pile was considered to be the load that resulted

    in 6.25 mm upward movement. The results were compared in Table 5-1 based on the pile

    uplift capacity ratio, KP, and the net uplift capacity ratio, KF$J. The ratio KP was defined

    as the ratio of the uplifi capacity of the two investigated piles, while the ratio KPN was

    defmed as the ratio of the net uplift capacity (pile upiift capacity subtracted by pile-self

    weight) of the two piles. The ratio of the net uplift to push down shaft capacity for the

    same pile under the same confining pressure was also obtained. The results of the fkst

  • group of tests, piles Tl and T2 in loose sand, and the resulu of the second group of tests,

    piles T 1 and S in medium dense sand, are given in Tables 5- 1 and 5-2, respectively.

    5.3.2.1 Loose sand status

    It can be observed fiom Table 5-1 that pile Tl displayed lower uplift capacity

    manifested in values of KP and KPN lower than 1, for dl values of confining pressure.

    The uplift capacity of pile Tl is 7 to 12% lower than the uplifi capacity of pile T2 for the

    given values of confining pressure, with the lowest capacity at confining pressure e q d to

    20 and 40 kPa. The same trend was observed in KPN. The ratio of net uplift capacity to

    push down shaft capacity for Tl varied between 41% at zero confining pressure to 33% at

    40 kPa, while it varied fiom 66% at zero confhing pressure to 46% at 40 kPa for T2.

    These values suggested that this ratio was less for piles with a larger taper angle and

    higher confming pressure.

    5.3.2.2 Relatively medium dense sand status

    It can be seen fiom Table 5-2 that the axial uplift capacity of the tapered p lile was

    lower than the axial uplift capacity of the straight-sided wall pile for al1 values of

    confining pressure. However, the difference was insignificant, especially at higher

    confining pressure. The ratio KP varied between 0.86 to 0.98, with the maximum value

    occurring at a confining pressure of 20- 40 kPa The ratio KPN varied between 0.83 to

    0.99, with the maximum value occuning at a confining pressure of 20 kPa. The

    cornparison between the renùts of the two sets of tests suggested that the eEect of the

    taper angle on the uplifi capacity of prototype piles installed in dense sand wodd be

  • small, especially for longer piles (as the confining pressure increases with depth). The

    variation of the ratio of net uplift capacity to push down shaft capacity was small in the

    case of the straight-sided wall pile, S, mtween 59% and 70%) while a larger variation

    was calculated for the tapered pile, Tl, (between 37% and 58%). A cornparison with the

    results of the first set of tests suggested that this ratio was higher for piles installed in

    dense sand.

    5.3.2.3 Effect of pile placement method

    The ratios of net uplift capacity to push down sh& capacity in this study were

    lower than the results referred by Nicola and Randolph (1 993). In their study, the ratio of

    tende and compressive shaft capacities varied with an average of about 0.7 for piles

    driven into sand. In the current study, the pile was placed in the centre of the soi1

    chamber and the sand was then poured around it, resulting in no densification due to the

    method of placement. In the case of pile driving, the soi1 is displaced and the sand

    becomes denser in the close vicinity of the pile, and consequently, the ratio of uplifi

    capaci~j to pushdown capacity becomes higher. Levacher and Sieffert (1984) investigated

    the axial performance of piles installed in sand. They concluded that the placement

    method had a significant effect on the axial performance of piles.

    5.3.3 Pile Head Stiffness

    The eflect of confinhg pressure on the pile head e e s s is illustrated in Figure

    5-3. Severai observations can be made fiom this figure. FirstIy, as the connning pressure

    increased both the initiai and secant stifniess of ail piles increased, as expected. However,

  • the inmease in the secant *ess (at ultimate load) was much more significant.

    Secondly, piles with smaller taper angle, Tï, in the first set of tests and S in the second

    set, had smaller values of initial stiffhess and higher values of secant &ess. The higher

    initial stifhess values of piles with larger taper angle may be attributed to lower rrsidual

    stresses developed during the pushdown loading tests. However, as the pullout loading

    continued, the residual stresses were dissipated and piles with smaller taper angle

    displayed higher secant stifniess values. This behaviour was more evident in the second

    group of tests because more significant residual stresses were developed due to

    application of higher loads to piles in dense sand. Thirdly, the secant stifhess was 15-

    20% of the initial stiffhess for al1 piles, which represented a highly nonlinear behaviour in

    this loading mode. This nonlinearîty was more pronounced in loose sand and piles with a

    larger taper angle.

    5.3.4 Load Distribution

    The forces transmitted at different locations were calculated from strain gauge

    readings as

    4, =E, E A , (5-1)

    where q, is the pile axial load at the location of main gauge i, E, is the main mesurement

    of strain gauge i, E is the elastic modulus of the pile material and Ai is the pile cross-

    sectional area at the location of strain gauge i.

    Figures 5 4 (a) (b) and 5-5 (a) (b) show the load distribution dong the piles under

    various load incrernents (given as ratios of the ultimate uplift load, P.) for the first and

    second groups of tests, respectively. It may be observed from both figures that the

  • general trend of the load distribution was the same for ail three piles at ail loading

    increments. It can aIso be noted that the load was transferred to the soi1 gradually except

    for a distinct change close to the pile tip. This change was the result of residual stresses

    developed during the downward loading test that was performed before the uplift loading

    test. The presence of the residual stresses was evident fiom the compressive stresses

    shown near the pile tip. It may also be noted that the residual stresses were more

    pronounced in piles installed in the dense sand.

    5.3.5 Shaft Friction

    The shaft friction of the pile was calculated from the strain measurements during

    the pile test. The readings of the strain gauges recorded when the ultimate uplift load was

    applied were used to calculate the load distribution dong the pile. The difference

    between the force calculated fiom any two sets of strain gauges dong the pile wall minus

    the corresponding weight of the pile represented the total load transferred to the

    surrounding soi1 between the two points. Dividing this value by the conespondhg

    surface area. the average of shaft fiction was obtained as

    wheref, is the average shaft friction between stations i and j , S, is the surface area of the

    pile between stations i and j, and Wg Ys the pile weight between stations i and j. The shaft

    friction curve was obtained fiom the values of shaft fiction dong the pile.

    Figure 5-6 shows the comparison of the shaft fiction for piles Tl and T2 in the

    first group of tests, while Figure 5-7 shows the comparison between Tl and S in the

  • second group. Both figures illustrate that the shaft friction was slightly lower for piles

    with larger taper angle. Comparing the shaft fiction for the tapered pile Tl in the two

    sets of tests, the effect of initiai sand density on the shaft fiction could be observed. As

    expected, the pile in the dense sand had a higher shaft fiction, however, this effect was

    Iess significant at higher confining pressure.

    The shafl friction curves at different values of confuiing pressure are shown in

    Figures 5-8 and 5-9 for piles Tl and T2 in the first group of tests, and Tl and S in the

    second group of tests, respectively. Both figures show that the intensity of the shaft

    fnction increased with an increase in the confining pressure. However, the increase in the

    shaft friction was less in the higher confuiing pressure range (greater than 60 kPa). This

    suggested that there was a limiting fiiction value in this mode of loading.

    5.3.6 Downward and Upiift Shaft Friction

    The cornparison of shaft friction at ultimate tensile and compressive capacity are

    s h o w in Figures 5-10 (a) (b) and 5-1 1 (a) (b) for the first and second groups of tests,

    respectively. The compressive results were extracted fiom Chapter 4. The general trend

    was that for most of the pile Iength the tensile shaft fiction was lower than the

    compressive shaft fiction, but close to the pile tip the compressive shaft fiction

    decreased and the tensile fnction increased. This trend was similar to that reported in

    Nicola and Randolph (1993), where the theoretical basis for a consistent difference in

    tensile and compressive sh& capacity of straight-sided wall piles in sand was explored.

    Their work showed that there are sound reasons for expecting the tensile shaft capacity to

    be significantly lower than the compressive shaft capacity for straight-sided wall piles in

  • fiee draining soils. The increase in the tende niction close to the pile tip could have been

    fictitious and codd be ateibuted to the presence of the residual stresses which affected

    the strain measurements used to calculate the shaft fiction along the pile.

    5.4 DISCUSSION: RESIDUAL STRESSES

    The existence of residual stress has k e n known and investigated by other

    researchers such as Stewart and Kulhawy (1 98 11, Briaud and Tucker ( 1 984) and Poulos

    (1987). In the field, these stresses develop during the driving of piles, where their value

    could be significant, or as a result of the load testing of bored piles.

    During driving or downward axial loading tests, a pile moves downward, and the

    pile-soi1 friction along the shaft and the point soi1 resistance acts upward on the pile to

    resist the pile's peneûation. Mer dnving and during the unloading that follows, the soi1

    under the pile tip pushes the pile back and stresses dissipate. However, a significant

    residuai point load c m exist in the pile toe, especially with lower confining pressure

    applied since point capacity is larger and a large rnovement is needed to unload the pile

    tip, wMe little movement is needed to unload the pile shaft.

    Poulos (1987) emphasised the importance of considering the residual stresses in

    the interpretation of btrumented pile loading tests. He noted that if zero r e s i d d

    stresses were assumed, only the incremental stresses and loads were measured, and a false

    picture of the shaft and toe resistance was obtained. Hence, substantial ciifferences

    appeared to exist between the skin Wction values in compression and tension, whereas

    the values were the sarne (in his opinion). He also pointed out that the effect of residual

    stresses was more signifiûant on the initial uplifi stiffness of piles dnven in sand.

  • In the current study, the pile installation method did not result in any residual

    stresses. However, the piles were tested in compression prior to the uplift test which

    might have renilted in sorne residual stresses developing dong the lower part of the pile.

    The load transfer c w e s obtained in this study varied considerably as s h o w in Figures 5-

    6 and 5-7. This variation could be amibuted partially to the residual stresses. However,

    it is the author' opinion that the soi1 reaction to the pile motion was inherently different in

    the two loading modes, especially for tapered piles.

    5.5 SUMMARY

    An experimentai investigation of the axial uplifi response of three steel piles with

    different taper angles installed in sand was presented and discussed in this chapter. The

    q l i f i performance characteristics of the piles were investigated and the following

    conclusions were drawn:

    1. The pile axial uplift capacity increased with an increase in the confinuig pressure for al1

    piles examined in this study;

    2. The ratios of uphft to compressive load and load transfer patterns for straight-sided

    wall piles were similar to those obtained by other researchers. These ratios were less for

    tapered piles than saaight-sided wall piles since tapered piles possessed much higher

    bearing capacity and slightly less uplifi capacity;

    3. The uplifi capacity of tapered piles was comparable to that of straight-sided wall piles

    at higher confining pressure values, suggesting that the performance of actual tapered

    piles (with greater length) would be comparable to that of straight sided wall piles;

  • 4. Residual stresses developed during the pushdown loading phase and their effect were

    more significant on the initial uplift capacity of piles. This effect was more pronounced in

    the case of straight-sided wail piles in dense sand.

  • Confining pressure

    O S 10 15 Upward movement (nm)

    O 5 10 15

    Upward movement (mm)

    Figure 5- 1 Load- upward movement curves of piles at different confining pressure values in first group of tests a: Tl b: T2

    Confining pressure

    O kPa - o . - M kPa -_-- 40 kPa ; - * . o . - 60 kPa ---

    L 80 kPa -1WkPa j

    O 5 10 1s O 5 1 O 15 Upward movement (nm) Upward movcmmt (mm)

    Figure 5-2 Load- upward movement curves of piles at different confinhg pressure values in second group of tests a: Tl b: S

  • 1 lntial stiffness I

    O 20 40 60

    Confining pressure (kPa)

    1 Secant stiffness at Pu (

    Confining pressure (kPa)

    a: First group of Tests

    lntial stiffness I

    O M 40 60 80 100 Confining pressure (kPa)

    - - --

    Secant stiffness at Pu

    O 20 40 60 80 100

    Confining pressure (kPa)

    a: Second group of Tests

    Figure 5-3 The effect of cunfining pressure on the uplifi pile head st if iess a: First group of tests b: Second group of tests

  • Load (kN)

    O 0.2 0.4 0.6 0.8 Load (kN)

    O 1 2 3

    Load (kN)

    -2 O 2 4 6

    Figure 5-4 (a) Load distribution dong the pile at different load incrernents applied at pile head of T 1 in first group of tests

  • Uplift Ioad applied at pile liead (w I

    Load (kN)

    O 0.2 0.4 0.6 0.8

    Load (kN)

    -2 O 2 4 6 8

    Figure 5-4 @) Load distribution dong the pile at different load incrernents applied at pile head of Tl in first group of tests

  • Uplifi load appIied at pile lmd (kN)

    Load (kN)

    -5 (W

    -1 O 1 2 O S

    a. O i ù ? ~

    Load (kN)

    I .